Waters LCMSWaters LCMS Troubleshooting

download Waters LCMSWaters LCMS Troubleshooting

of 82

Transcript of Waters LCMSWaters LCMS Troubleshooting

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    1/82

    Waters Corp. 20042004 Waters Corporation

    Troubleshooting CommonMS Problems

    by Claude Mallet, Ph.D

    [email protected]

    presented by

    Michael S. Young, Ph.D.

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    2/82

    2004 Waters Corporation2004 Waters Corporation

    Troubleshooting Common MS Problems

    Overview of Troubleshooting Strategy

    ESI sources parameters

    Single and triple Quadrupoles

    SIR vs MRM

    Ion Suppression

    Outline

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    3/82

    2004 Waters Corporation2004 Waters Corporation

    Try to simplify --

    assess impact on lab efficiency --

    inspect the MS or /MS/MS --

    try to categorizetroubleshoot the easiest to fix

    items first

    CHEMISTRY MECHANICAL IMPROPER SETTINGS

    Adducts (Na+, K+)

    Multiple chargeIon stability (pH)

    Ion suppression

    Ion beam instability

    Probe clogging

    Heater/sensor

    N2 gas flow

    Loss of vacuum

    Power supply

    ESI sources parameters

    Quadrupoles parameters

    Acquisition modes

    MS Troubleshooting Strategy

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    4/82

    2004 Waters Corporation2004 Waters Corporation

    Sample

    Preparation ChromatographyMass

    Spectrometry

    Polarity:

    Silica- C18, C8, C4, C2Hybrid- C18, C8, C4, C2Polymer- C

    18

    , C8

    , C4

    , C2Embedded polar group

    Cyano, Phenyl

    Particle size:

    2.5, 3.5, 5 or 7 m

    Internal diameter:4.6, 3.9, 2.1, 1.0,

    0.32 mm and 75 m

    Length:

    150, 100, 50, 30, 20 mm

    Source:

    ESI

    APcI

    Nano-ESI

    Mass analyzers:

    magnetic sectors

    electric sectors

    time of flight

    quadrupoleion trap

    FT-ICR

    Raw sample:

    - CaCO2, microsomes, P450,

    hepatocytes etc

    - tissue, CSF, plasma, serumurine, tears etc

    - water, sediment, food etc

    Extracted sampleFor LC/MS/MS

    The Total Analysis

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    5/82

    2004 Waters Corporation2004 Waters Corporation

    BA MassSpectrometry

    ESI source parameters

    Part 1

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    6/822004 Waters Corporation2004 Waters Corporation

    Quattro UltimaZQ

    Quattro Premier

    Mass Spectrometers

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    7/822004 Waters Corporation2004 Waters Corporation

    First, lets take a look at the

    first event in an ESI orthogonal

    source. The primary function

    of the probe is to transform a

    liquid (from LC column or other

    source) into a gas stream as

    shown in the red circle. Three

    parameters are used to

    optimize the probe, which are

    the 1- nebulizer gas, 2- the

    desolvation gas flow and 3-the desolvation temperature.

    The nebulizer gas is

    automatically set at maximum

    on the ZQ and manually on

    other mass spectrometers (i.e.

    Ultima, QToF, LCT etc).

    The desolvation gas flow anddesolvation temperature can

    be optimized to maximize

    signal intensity. Higher

    temperatures are required

    when using mobile phases

    containing high percentage of

    water.

    2,31

    Mass Spectrometers

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    8/822004 Waters Corporation2004 Waters Corporation

    Nebulizer gas flow off Nebulizer gas flow on

    Notice the formation of a liquid drop. It can lead to

    source flooding if unattended for a long period of time.

    To avoid potential electrical hazard, the source isequipped with a drain valve.

    Notice the formation of liquid droplets from

    condensation of the sprayer on the probe holder

    assembly.

    ESI Probe Parameters

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    9/822004 Waters Corporation2004 Waters Corporation

    Isolation valve

    Cone shield and

    cone assembly

    Baffle

    Stainless steel capillary

    Desolvation heater

    Ion Block

    ESI probe

    ESI Source

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    10/822004 Waters Corporation2004 Waters Corporation

    10 mm

    5 mm

    Cone

    Probe

    ESI Probe Parameters

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    11/822004 Waters Corporation2004 Waters Corporation

    Capillary Tip

    Make sure capillary

    extends approx. 0.5 mm

    beyond probe tip.

    Any corrosion, deposit

    constriction or other flow

    restriction will hinder

    proper nebulization.

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    12/822004 Waters Corporation2004 Waters Corporation

    Probe toofar from the

    cone?

    Probe

    extends toofar past

    cone?

    ESI Probe Parameters

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    13/82

    2004 Waters Corporation2004 Waters Corporation

    Probe tooclose to the

    cone?

    ESI Probe Parameters

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    14/82

    2004 Waters Corporation2004 Waters Corporation

    Response ofreserpine shows

    a good gaussian

    distribution with

    baseline

    resolution of the

    C13 isotopes

    Temperature and

    gas flow are

    parameters thataffect the

    desolvation

    efficiency of the

    probe. Improper

    settings can result in

    loss of signal. Thesevalues are optimized

    according to the

    column flow rate.

    ESI Probe Parameters (tune page)

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    15/82

    2004 Waters Corporation2004 Waters Corporation

    In this case, a too low

    desolvation

    temperature resulted

    in a 50 % reduction in

    signal intensity.

    This effect is

    compound dependent.

    Desolvation Temperature

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    16/82

    2004 Waters Corporation2004 Waters Corporation

    Similar loss of signal

    intensity, in this case,

    it is due to a too low

    setting of thedesolvation gas (113

    vs 550 L/hr). The

    gas used for the

    desolvation is

    nitrogen

    It must be of high

    purity (99.95%) and

    oil free. (traps can be

    used to increase the

    gas purity if needed).

    Make sure delivery

    pressure is regulated

    to 100 psi.

    Desolvation Gas Flow

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    17/82

    2004 Waters Corporation2004 Waters Corporation

    Column flow rate Desolvation temp Desolvation gas flow

    L/min C liters/hr

    < 10 100 to 120 200 to 250

    10 to 20 120 to 250 250 to 400

    20 to 50 250 to 350 250 to 400

    >50 350 to 400 400 to 750

    Higher desolvation temperatures give increased sensitivity. However, increasing thetemperature above the range suggested reduces beam stability. Increasing the gas

    flow rate higher that the quoted values lead to unnecessary high nitrogen consumption.

    Avoid operating the desolvation heater for long periods of time without proper gas flow.

    To do so could damage the source.

    Suggested Settings

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    18/82

    2004 Waters Corporation2004 Waters Corporation

    Dewar tanks Nitrogen generator

    Both setups are widely used and the choice mostly depends on the consumption ofnitrogen per day. Larger laboratories will have a tendency to choose the nitrogen

    generator for convenience and cost for long term operation.

    Dewar Tank vs Nitrogen Generator

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    19/82

    2004 Waters Corporation2004 Waters Corporation

    At this point lets take a look at the

    second event. Once a spray is

    stable, ions are produced and

    directed toward the mass analyzer.

    Five parameters in the orthogonal

    source are used for this purpose.These parameters are: 1- capillary

    voltage, 2- cone voltage, 3-

    extraction voltage and 4- RF lens

    (transfer optics) 5- Source

    temperature. A high voltage, in

    the kV range, is applied to astainless steel capillary tubing in

    the probe. This will produce

    charged droplets. With the

    assistance of the desolvation gas

    flow and desolvation temperature,

    those droplets will in turn produce

    ions in gas phase next to the cone.

    The cone voltage attracts positively

    charged ions from the spray into a

    reduced pressure chamber (ion

    block). The extractor and RF lensare used to guide the ion beam into

    the mass analyzer

    1 2

    34

    ESI Probe

    ESI Source

    ESI Source Parameters

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    20/82

    2004 Waters Corporation2004 Waters Corporation

    Clean cone and cone shield

    Notice the white residue on the cone

    shield, but the aperture of the cone is

    still clear. This is an indication that

    samples injected on this MS were notclean. In both pictures, the baffle

    shows brown spots, which indicates

    routine and normal usage. The white

    residue can result from long exposure

    to poorly prepared samples or from

    nonvolatile mobile phase additives.Over time, the aperture of the cone will

    become clogged, thus reducing signal

    intensity.cone

    baffle

    Brown spot

    ESI Source Parameters

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    21/82

    2004 Waters Corporation2004 Waters Corporation

    These are typical

    starting values to

    obtain a stable ion

    beam with flow

    rate ranging from

    0.2 to 0.4 ml/min.

    The ion block is

    heated to avoid

    any condensationproblems.

    The source has a

    maximum setting

    of 150 C.

    ESI Source Parameters

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    22/82

    2004 Waters Corporation2004 Waters Corporation

    With insufficient

    capillary voltage, the

    signal shows an 80%

    decrease in signalintensity.

    Typical optimum

    values for most small

    molecules are

    between 3.0 and 3.5kV.

    Higher values usually

    have little effect on

    signal intensity.

    Deviations from

    experimentally

    optimized value may

    indicate problems in

    the source.

    Capillary Voltage

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    23/82

    2004 Waters Corporation2004 Waters Corporation

    The cone voltage is

    applied to a spherical

    metal plate, the first gate

    between the sprayer (atatmospheric pressure)

    and the inside of the

    mass analyzer (at 10-6

    Torr of pressure). The

    cone creates the first

    bend of the ion beam in

    the orthogonal source.

    This slide shows that we

    have optimized the cone

    voltage at 35 volts andincreased our signal

    intensity.

    Cone Voltage

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    24/82

    2004 Waters Corporation2004 Waters Corporation

    Poor response can

    occur if cone voltage

    is set too low. A

    sufficient voltage is

    required to atract a

    high population of

    ions into the ion

    block.

    Once the conevolatage is optimized,

    loss of sensitivity may

    result from

    contamination at the

    cone.

    Cone Voltage

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    25/82

    2004 Waters Corporation2004 Waters Corporation

    Poor response can also

    occur if cone voltage is set

    too high. Too much energy

    causes a phenomenon

    known as In-source

    fragmentation.

    When ions are accelerated

    from the sprayer to the ion

    block with very highvelocities, collisions among

    ions can create a high

    population of daughter ions

    at the expense of parent

    ions.

    In this case, the ion at m/z

    609 shows a 90% reduction

    in signal intensity.

    Cone Voltage

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    26/82

    2004 Waters Corporation2004 Waters Corporation

    The extractor voltageis applied to a second

    cone shaped metal

    plate that separates

    the ion block and the

    mass analyzer. This

    plate creates a second90 degree angle in the

    ion beam, completing

    the Z spray shape.

    An incorrect voltagesetting of the extractor

    resulted in a 70%

    reduction in signal

    intensity.

    Typical extractorvoltage settings range

    from 1 to 3 volts;

    higher values will not

    usually give better

    sensitivity. Higher than

    expected values mayindicate contamination

    in the source block

    Extractor Voltage

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    27/82

    2004 Waters Corporation2004 Waters Corporation

    The RF lens focuses

    the ion beam as it

    passes into the mass

    analyzer. In the

    tandem mass-spectrometer, it

    focuses the beam to

    the center of the

    transition lens

    hexapole assembly.

    The RF lens value

    should typically be set

    to range from 0.1 to

    0.5 volts.

    RF Lens

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    28/82

    2004 Waters Corporation2004 Waters Corporation

    3.5

    3.5

    3. 3.

    In the example shown,

    we needed to increase

    the RF lens to achieve

    a symmetrical peakshape. This may

    indicate that the

    source is

    contaminated.

    RF Lens

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    29/82

    2004 Waters Corporation2004 Waters Corporation

    BA MassSpectrometry

    ESI source parameters

    Quadrupoles

    Part 2

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    30/82

    2004 Waters Corporation2004 Waters Corporation

    The quadrupole mass analyzer, like other type of mass analyzers (I.e. ToF, ion traps, sector etc)

    separates ions according to their mass to charge ratio (m/z). The quadrupole is made of 4 highly

    polished metal rods positioned at precise angles from one another. These rods are connected to high

    voltage power supply (DC, positive/negative) and a radio frequency (RF) generator. The slope ofRF/DC applied to the rods is proportional to a range or a specific mass to charge ratio.

    Quadrupole Mass Analyzers

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    31/82

    2004 Waters Corporation2004 Waters Corporation

    Source

    DetectorNonresonant

    Ion

    Resonant Ion

    dc and rf voltages

    +Udc + V cost

    -Udc V cost

    Molybdenum Alloy

    Quadrupole Schematic

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    32/82

    2004 Waters Corporation2004 Waters Corporation

    Stable ion

    Non-resonant

    Trajectory

    Pre-Filters

    Resonant

    Trajectory

    Quadrupole

    Resonant vsNon-Resonant Trajectory

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    33/82

    2004 Waters Corporation2004 Waters Corporation

    Quadrupole Unit Mass Resolution

    1

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    34/82

    2004 Waters Corporation2004 Waters Corporation

    572.8339

    570 571 572 573 574 575 576 577m/z0

    100

    %

    0

    100

    %

    573.9185

    574.8116

    573.2997

    574.3072

    575.3155

    QuadrupoleResolution: 1000

    Q-ToF

    Resolution: 10 000

    [M+H]+

    Isotopes

    Bradykinin Frag 1-5:Arg-Pro-Pro-Gly-Phe

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    35/82

    L d

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    36/82

    2004 Waters Corporation2004 Waters Corporation

    The low and high

    mass resolution are

    arbitrary values that

    are calculated from

    the RF/DC ratio.

    The LM setting

    affects the resolution

    of ions at the low

    mass range of the

    quadrupole; the HM

    setting at the high

    mass range of the

    quadrupole.

    The quadrupole canonly achieve mass

    unit resolution,

    which means that

    multiple charged

    peaks are not fully

    resolved.

    Low andHigh Mass Resolution

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    37/82

    2004 Waters Corporation2004 Waters Corporation

    .

    Udc

    V

    (DC voltage)

    (Rfvoltage)

    Correct V/U ratio

    mass 1 & 2 are resolved

    R: 1000

    V/U slope

    Stable trajectory

    Unstable trajectory

    Quadrupole Stability Diagram

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    38/82

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    39/82

    2004 Waters Corporation2004 Waters Corporation

    .

    Udc

    V

    (DC voltage)

    (Rfvoltage)

    Low V/U ratio

    mass 1 & 2 merge together

    R: 10V/U slope

    Stable trajectory

    Unstable trajectory

    Quadrupole Stability Diagram

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    40/82

    2004 Waters Corporation2004 Waters Corporation

    In this case, the LH

    and HM resolution

    were set too high.The ion beam falls in

    the nonresonant

    portion of the stability

    diagram shown

    earlier.

    Under these

    conditions, the ion

    beam will not reach

    the multiplier at the

    back of the massspectrometer and

    produce a signal.

    Low and High Mass Resolution

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    41/82

    2004 Waters Corporation2004 Waters Corporation

    .

    Udc

    V

    (DC voltage)

    (Rfvoltage)Incorrect V/U ratio

    mass 1 & 2 are over resolvedV/U slope

    Unstable trajectory

    Stable trajectory

    Quadrupole Stability Diagram

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    42/82

    2004 Waters Corporation2004 Waters Corporation

    The ion energy is

    applied to a small

    lens positioned

    between the

    quadrupole and

    the multiplier. This

    lens is used to

    refocus the beamtoward the

    multiplier. Typical

    values range from

    0.3 to 0.6.

    As shown here,higher values will

    produce distortion

    and loss of

    resolution between

    the peak and

    isotopes.

    Ion Energy

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    43/82

    2004 Waters Corporation2004 Waters Corporation

    The multiplier is the

    last step in the signal

    production. The ions

    produced by the ESI

    source and filtered bythe quadrupole are

    converted by the

    multiplier into a

    measurable current.

    If the multiplier is settoo low, as shown

    here, the signal

    intensity will be

    considerably reduced.

    Too high a multipliersetting produces

    saturation (flat-top

    peaks) and poor

    quantitation.

    Multiplier

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    44/82

    2004 Waters Corporation2004 Waters Corporation

    BA MassSpectrometry

    MS/MS

    Part 3

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    45/82

    2004 Waters Corporation2004 Waters Corporation

    Single Ion Recording

    (SIR Mode)

    Static

    Full Scan

    (MS mode)

    Scanning

    LOQ = 500 pg (quantity injected) LOQ = 5 pg (quantity injected)

    Note: A quadrupole mass spectrometer is typically available with amass range of 2000 Daltons or 4000 Daltons

    Single Q Mode of Acquisition

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    46/82

    2004 Waters Corporation2004 Waters Corporation

    Full Scan Acquisition

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    47/82

    2004 Waters Corporation2004 Waters Corporation

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    Scan ES+TIC

    2.06e9

    2.76

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    Scan ES+TIC

    3.12e9

    2.76

    2.56

    3.182.98

    3.29

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    Scan ES+TIC

    5.60e93.18

    2.962.54 2.743.27

    [ ] = 50 ng/mL

    [ ] = 5 ng/mL mixture of 5 basic compounds

    [ ] = 500 ng/mL

    Full Scan Acquisition

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    48/82

    2004 Waters Corporation2004 Waters Corporation

    Single Ion Recording (SIR)

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    49/82

    2004 Waters Corporation2004 Waters Corporation

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    SIR of 5 Channels ES+TIC

    3.77e7

    2.76

    2.55

    0.85 2.26

    3.182.97

    3.28

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    Scan ES+TIC

    2.06e9

    [ ] = 5 ng/mL

    [ ] = 5 ng/mL

    Scan mode

    SIR mode

    Single Ion Recording (SIR)

    Tandem Mass Spectrometry

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    50/82

    2004 Waters Corporation2004 Waters Corporation

    A single quadrupole mass analyzer can be operated in two distinct modes, SCAN and SIR. A triple

    quadrupole mass spectrometer can offer 4 types of acquisition; 1- Daughter scan, 2- Multiple Reaction

    Monitoring (MRM), 3- Parent scan and 4- Constant neutral loss or gain scan. These types of scans

    rely on the middle quadrupole called the collision cell. The collision cell is in fact a hexapole (6 rods) that

    operates in RF mode only (no resolution capacity). The cell can be pressurize with argon gas. This

    provides a physical surface onto which ions filtered by MS1 can be fragmented by collision, hence the termcollision induced dissociation. Depending if MS1 and MS2 are set in scan or park mode will determine the

    desired type of acquisition mentioned earlier.

    Tandem Mass Spectrometry

    Collision Induced Dissociation (CID)

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    51/82

    2004 Waters Corporation2004 Waters Corporation

    Parent Ion Scanning

    MS1 MS2

    Collision

    Cell

    StaticScanning

    Triple Q Modes of Acquisition

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    52/82

    2004 Waters Corporation2004 Waters Corporation

    Daughter Ion Scanning

    MS1 MS2

    Collision

    Cell

    Static Scanning

    Triple Q Modes of Acquisition

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    53/82

    2004 Waters Corporation2004 Waters Corporation

    Constant Neutral Loss or Gain

    MS1 MS2

    Collision

    Cell

    ScanningScanning

    Triple Q Modes of Acquisition

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    54/82

    2004 Waters Corporation2004 Waters Corporation

    Multiple Reaction Monitoring

    MS1 MS2

    Collision

    Cell

    Static Static

    Triple Q Modes of Acquisition

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    55/82

    2004 Waters Corporation2004 Waters Corporation

    MS1 MS2Daughter

    MS1

    CID

    MS2

    A triple quadrupole mass

    spectrometer offers lower

    sensitivity and

    reproducable

    fragmentation. With

    Multiple ReactionMonitoring (MRM), up to

    1000x in sensitivity can be

    achieved in comparison to

    scan mode. The next

    slides will describe some

    of the common problems

    associated with MRM and

    a guide on how to optimize

    MRM transitions.

    We infused a basic drug(clemastine) and opened

    windows for MS1, daughter

    and MS2. Notice the mass

    unit resolution of the

    parent mass and isotopes

    on both MS1 and MS2.

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    56/82

    2004 Waters Corporation2004 Waters Corporation

    Next, the LM/HM (1)

    values are lowered to the

    point that the first isotope

    and the parent ion are

    both passed into the

    collision cell. The peaks inthe MS1 windows (2) will

    broaden and show loss of

    resolution. Conequently,

    the ion beam passing from

    MS1

    to the collision cell is

    also increased (3). In the

    daughter scan window

    (middle window in the tune

    page), the parent peak is

    offscale and one isotope

    of the molecule is evident.Since MS2 is set with unit

    mass resolution setting

    (LM/HM = 15 ), good

    resolution is seen in the

    third window among the

    parent peak and theisotopes.

    1

    2

    3

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    57/82

    2004 Waters Corporation2004 Waters Corporation

    1

    2

    In this slide, LM/HM on MS1is slightly increased ( small

    gain in resolution) just to the

    point that the isotope is notseen. This step is crucial, if

    LM/HM on MS1 are too low,

    additional ions will enter the

    collision cell and will create

    additional daughter ions foreach isotope of the parent

    molecule.

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    58/82

    2004 Waters Corporation2004 Waters Corporation

    12

    3

    Then, by decreasing the

    LM/HM on MS2 (1), the signal in

    the daughter scan window has

    increased (3). The resolution

    on MS2 also decreases as aconsequence of lowering the

    LM/HM values (2).

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    59/82

    2004 Waters Corporation2004 Waters Corporation

    Lets take a look at a common

    problem when optimizing an MRM

    transition. If we look at the LM/HM

    values (1,2) on both MS1 and MS2,

    the quadrupoles are set at unit

    mass resolution. This can be

    verified in the MS1 and MS2window in the tune page. The

    peaks shows a gaussian

    distribution and resolution with the

    isotopes. However, the daughter

    window in the tune page shows no

    signal (4). The answer is quitesimple; choosing a correct MRM

    transition also requires us to park

    MS1 on the top of the parent peak.

    The parent peak has a molecular

    weight of 344.2 Da (see previous

    slide). In this example, the setting

    was incorrect, 343.7 Da. The

    difference of 0.5 Da (3) was

    enough to miss the parent peak

    completely in MS1, thus leading to

    a total loss of signal in MS2.

    1

    2

    3

    4

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    60/82

    2004 Waters Corporation2004 Waters Corporation

    1

    2

    3

    4

    5

    At this point, the quadrupoles

    are optimized to give maximum

    signal intensity (1,2) and MS1 is

    correctly set at 344,2 Daltons

    (4). In this tune page both MS1and MS2 windows wereremoved so we can

    concentrate on the daughter

    ion scan (5). As we can see,

    the tune page only shows the

    parent ion without any daughterions. This is because the

    collision gas was not activated

    (6) and the collision cell was

    not optimized to produce

    daughters ions from collision

    with argon gas (3).

    6

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    61/82

    2004 Waters Corporation2004 Waters Corporation

    Prior to introduction of

    collision cell gas (1). the

    pressure on the collision

    cell pirani guage

    indicates 1.0 e-4 mbar(2). Also, since there is

    no argon gas in the

    collision cell, the analyzer

    penning guage should

    show a pressure in the

    vicinity of 1-2 e-5 mbar

    (3). This pressure

    indicates that the entire

    mass analyzer is under

    optimum vacuum.

    12

    3

    Optimizing an MRM

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    62/82

    2004 Waters Corporation2004 Waters Corporation

    1

    2

    When the collision gas

    button is activated (1),

    argon gas will flow

    freely into the collision

    cell located inside the

    mass analyzer(between MS1 and

    MS2). Notice that the

    pressure on the

    collision cell gage will

    increase (2), typicalvalues are between 2

    to 3e-4 mbar.

    p gTune Page with Gas Cell Pressure

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    63/82

    2004 Waters Corporation2004 Waters Corporation

    1 2

    3

    Once the argon gas pressure is

    optimized in the collision cell, it

    requires some energy to

    produce fragments. In this case,

    the collision energy is set at 15

    (1) (arbitrary units). The result isthe production of two major

    fragments at 215 Da and 128 Da

    (2) of the parent ion of mass

    344.20 Da. Notice that the

    energy level is still low enoughto see a small fraction of the

    parent ion (3).

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    p gSetting Collison Cell Energy

    Optimizing an MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    64/82

    2004 Waters Corporation2004 Waters Corporation

    1

    2

    3

    In this scenario, the collision

    energy was purposely

    increased to higher values (1)

    that gives a 100 % conversion

    of the parent ion (3) into

    fragments ions. However, thelevel of energy is also high

    enough to produce further

    fragmentation of smaller

    daughter ions (2) and to reduce

    the intensity to the larger

    fragments. This type of settingis not favored for trace

    analysis. The optimum for

    sensitivity is to use conditions

    that will produce a 100 %

    conversion of the parent ion

    into one or two majors

    fragments. Hhowever, the

    production of more than two

    fragments may be desirable for

    verification of unknowns.

    Erratum: the optimized values of IE1 and IE2 are 0.4 and 0.8 respectively

    p gSetting Collison Cell Energy

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    65/82

    2004 Waters Corporation2004 Waters Corporation

    100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400m/z0

    100

    %

    0

    100

    %

    0

    100

    %

    344.2

    215128

    215

    128

    344.2

    215

    128

    CID 0 volts

    CID 10 volts

    CID 20 volts

    [M+H]+

    NCH3

    O

    CH3

    Cl215

    128

    Clemastine

    (Different scale)

    Daughter Ion Spectrum

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    66/82

    2004 Waters Corporation2004 Waters Corporation

    Note: typical value of dwell times are between 0.2 and 0.05 seconds

    Multiple MRM

    M l i l MRM

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    67/82

    2004 Waters Corporation2004 Waters Corporation

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    MRM of 5 Channels ES+TIC

    2.91e5

    2.95

    2.54 2.76

    3.18

    3.27

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    SIR of 5 Channels ES+TIC

    2.29e6

    2.272.75

    2.56

    3.18

    2.96 3.27

    0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00Time0

    100

    %

    Scan ES+TIC

    2.04e9

    [ ] = 0.1 ng/mL

    Scan mode

    [ ] = 0.1 ng/mLSIR mode

    [ ] = 0.1 ng/mLMRM mode

    Multiple MRM

    P t 4

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    68/82

    2004 Waters Corporation2004 Waters Corporation

    BA MassSpectrometry

    Ion suppression

    Causes of Ion SuppressionTroubleshooting Ion Supression

    Part 4

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    69/82

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    70/82

    2004 Waters Corporation2004 Waters Corporation

    Various type of additives can increase or decrease the signal of a target analyte. Furthermore, since

    ESI is compound dependent, it is expected to see variation in signal intensity as well as suppression

    or enhancement effect. At this point, lets take a look at common additives used in LC and the

    response profile of various SPE extraction protocols.

    Acidic additive Buffers SPE extracts

    Trifluoroacetic acid Ammonium formate protein precipitation

    Acetic acid Ammonium bicarbonate Oasis HLB 1-D

    Formic Acid Ammonium biphosphate Oasis HLB 2-D

    Oasis MCX

    Basic additive Ion pairing additive

    Ammonium hydroxide Tetraethylammonium hydroxide

    Pyrrolidine Dimethylhexylamine

    Detergents

    Triton X100

    SDS

    What is ion suppression or enhancement ?

    Experimental design aimed to look for a better solution

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    71/82

    2004 Waters Corporation2004 Waters Corporation

    2795

    ESI-MS

    Infusion pump

    Used to add range of modifiers,

    salts, ion pairs, pH additives,Matrix extracts

    50/50 ACN/ H2O

    8 compounds

    0.2mL/min

    0.2mL/min

    ES+

    260.2 Propranolol

    291.3 Trimethoprim

    354.4 Pipenzolate*

    411.4 Resperidone

    472.6 Terfenadine

    485.6 Methoxy-Verapamil

    591.6 Benextramine609.6 Reserpine

    *quaternary amine drug

    Compare 50/50 ACN/ H2O

    to additive stream signal

    (triplicates) blank, matrix, blank

    p gremoval of suppression

    S f t t

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    72/82

    2004 Waters Corporation2004 Waters Corporation

    250 300 350 400 450 500 550 600 650 700 750 800 850 900 950m/z0

    100

    %

    0

    100

    %

    Scan ES+

    6.41e9

    354.4

    291.3

    669.78609.6

    581.71

    472.6

    411.4

    537.60

    485.6

    713.74

    757.83

    801.86

    845.88

    889.91933.93

    977.95

    Scan ES+7.38e9354.4

    260.2

    291.3

    609.6

    485.6472.6

    411.4

    591.6

    260.2

    260.2 - 80 %

    291.3 - 38 %

    354.4 - 13 %

    411.4 - 78 %472.6 - 59 %

    485.6 - 80 %

    591.6 - 71 %

    609.6 - 63 %

    50/50 water/ACN Blank

    0.5 % Triton X 100

    260.2 Propranolol

    291.3 Trimethoprim

    354.4 Pipenzolate *

    411.4 Resperidone472.6 Terfenadine

    485.6 Methoxy-Verapamil

    591.6 Benextramine

    609.6 Reserpine

    * Quaternary amine molecule

    250 300 350 400 450 500 550 600 650 700 750 800 850 900 950m/z0

    100

    %

    0

    100

    %

    Scan ES+

    6.41e9

    354.4

    291.3

    669.78609.6

    581.71

    472.6

    411.4

    537.60

    485.6

    713.74

    757.83

    801.86

    845.88

    889.91933.93

    977.95

    Scan ES+7.38e9354.4

    260.2

    291.3

    609.6

    485.6472.6

    411.4

    591.6

    260.2

    260.2 - 80 %

    291.3 - 38 %

    354.4 - 13 %

    411.4 - 78 %472.6 - 59 %

    485.6 - 80 %

    591.6 - 71 %

    609.6 - 63 %

    50/50 water/ACN Blank

    0.5 % Triton X 100

    260.2 Propranolol

    291.3 Trimethoprim

    354.4 Pipenzolate *

    411.4 Resperidone472.6 Terfenadine

    485.6 Methoxy-Verapamil

    591.6 Benextramine

    609.6 Reserpine

    * Quaternary amine molecule

    250 300 350 400 450 500 550 600 650 700 750 800 850 900 950m/z0

    100

    %

    250 300 350 400 450 500 550 600 650 700 750 800 850 900 950m/z0

    100

    %

    0

    100

    %

    Scan ES+

    6.41e9

    354.4

    291.3

    669.78609.6

    581.71

    472.6

    411.4

    537.60

    485.6

    713.74

    757.83

    801.86

    845.88

    889.91933.93

    977.95

    0

    100

    %

    Scan ES+

    6.41e9

    354.4

    291.3

    669.78609.6

    581.71

    472.6

    411.4

    537.60

    485.6

    713.74

    757.83

    801.86

    845.88

    889.91933.93

    977.95

    Scan ES+7.38e9354.4

    260.2

    291.3

    609.6

    485.6472.6

    411.4

    591.6

    354.4

    260.2

    291.3

    609.6

    485.6472.6

    411.4

    591.6

    260.2

    260.2 - 80 %

    291.3 - 38 %

    354.4 - 13 %

    411.4 - 78 %472.6 - 59 %

    485.6 - 80 %

    591.6 - 71 %

    609.6 - 63 %

    50/50 water/ACN Blank

    0.5 % Triton X 100

    260.2 Propranolol

    291.3 Trimethoprim

    354.4 Pipenzolate *

    411.4 Resperidone472.6 Terfenadine

    485.6 Methoxy-Verapamil

    591.6 Benextramine

    609.6 Reserpine

    * Quaternary amine molecule

    Surfactant

    A idi Additi

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    73/82

    2004 Waters Corporation2004 Waters Corporation

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    609.6354.4

    260.3

    291.3

    485.6472.6

    411.5 591.7

    Scan ES+354.3

    260.3

    291.2

    609.6

    485.6472.6

    411.4

    591.7

    50/50 Water/ACN + 0.5 % FA

    50/50 Water/ACN

    260.3 + 5 %

    291.3 - 5 %

    354.4 - 5 %

    411.5 - 54 %

    472.6 - 7 %

    485.6 - 2 %

    591.7 - 52 %

    609.6 + 17 %

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    609.6354.4

    260.3

    291.3

    485.6472.6

    411.5 591.7

    Scan ES+354.3

    260.3

    291.2

    609.6

    485.6472.6

    411.4

    591.7

    260 280 300 320 340 360 380 400 420 440 460 480260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    609.6354.4

    260.3

    291.3

    485.6472.6

    411.5 591.7

    Scan ES+354.3

    260.3

    291.2

    609.6

    485.6472.6

    411.4

    591.7

    50/50 Water/ACN + 0.5 % FA

    50/50 Water/ACN

    260.3 + 5 %

    291.3 - 5 %

    354.4 - 5 %

    411.5 - 54 %

    472.6 - 7 %

    485.6 - 2 %

    591.7 - 52 %

    609.6 + 17 %

    Acidic Additive

    B i Additi

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    74/82

    2004 Waters Corporation2004 Waters Corporation

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620

    m/z0

    100

    %

    0

    100

    %

    Scan ES+354.5

    260.3291.4

    471.6

    411.5

    609.6

    485.6 591.7

    Scan ES+354.4

    260.3291.3

    609.6

    485.6472.6

    411.6

    591.7

    260.3 + 10 %

    294.4 + 4 %

    354.4 0 %

    411.5 + 16 %

    471.6 + 57 %485.6 + 46 %

    594.7 + 37 %

    609.6 - 6 %

    50/50 Water/ACN + 0.5 % NH4OH

    50/50 Water/ACN

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620

    m/z0

    100

    %

    0

    100

    %

    Scan ES+354.5

    260.3291.4

    471.6

    411.5

    609.6

    485.6 591.7

    Scan ES+354.4

    260.3291.3

    609.6

    485.6472.6

    411.6

    591.7

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620

    m/z0

    100

    %

    500 520 540 560 580 600 620

    m/z0

    100

    %

    0

    100

    %

    Scan ES+354.5

    260.3291.4

    471.6

    411.5

    609.6

    485.6 591.7

    Scan ES+354.4

    260.3291.3

    609.6

    485.6472.6

    411.6

    591.7

    260.3 + 10 %

    294.4 + 4 %

    354.4 0 %

    411.5 + 16 %

    471.6 + 57 %485.6 + 46 %

    594.7 + 37 %

    609.6 - 6 %

    50/50 Water/ACN + 0.5 % NH4OH

    50/50 Water/ACN

    Basic Additive

    Ion Pairing Reagent

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    75/82

    2004 Waters Corporation2004 Waters Corporation

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660

    m/z0

    100

    %

    Scan ES+1.95e8

    354.44

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660m/z0

    100

    %

    Scan ES+7.38e9354.44

    260.28

    291.31

    609.55

    485.62472.57

    411.49591.66

    591.66

    50/50 Water/ACN Blank

    50 mM Tetraethylammonium hydroxide

    260.2 - 100 %

    291.3 - 100 %354.4 - 88 %

    411.4 - 100 %

    472.5 - 100 %

    485.5 - 100 %

    591.6 - 94 %

    609.5 - 100 %

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660

    m/z0

    100

    %

    Scan ES+1.95e8

    354.44

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660m/z0

    100

    %

    Scan ES+7.38e9354.44

    260.28

    291.31

    609.55

    485.62472.57

    411.49591.66

    591.66

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660

    m/z0

    100

    %

    Scan ES+1.95e8

    Scan ES+1.95e8

    354.44

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620 640 660m/z0

    100

    %

    Scan ES+7.38e9354.44

    260.28

    291.31

    609.55

    485.62472.57

    411.49591.66

    591.66

    50/50 Water/ACN Blank

    50 mM Tetraethylammonium hydroxide

    260.2 - 100 %

    291.3 - 100 %354.4 - 88 %

    411.4 - 100 %

    472.5 - 100 %

    485.5 - 100 %

    591.6 - 94 %

    609.5 - 100 %

    Ion-Pairing Reagent

    Salt Adducts

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    76/82

    2004 Waters Corporation2004 Waters Corporation

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    291.3260.3

    591.7

    472.6411.5485.6 609.6

    Scan ES+354.4

    260.3

    291.3

    609.6

    485.6472.6

    411.5591.7

    50/50 Water/ACN + 0.1M NaCl

    50/50 Water/ACN

    260.3 - 93 %

    291.3 - 95 %

    354.4 - 37 %

    411.5 - 62 %

    472.6 - 71 %485.6 - 84 %

    591.7 - 45 %

    609.6 - 95 %

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    291.3260.3

    591.7

    472.6411.5485.6 609.6

    Scan ES+354.4

    260.3

    291.3

    609.6

    485.6472.6

    411.5591.7

    260 280 300 320 340 360 380 400 420 440 460 480260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    291.3260.3

    591.7

    472.6411.5485.6 609.6

    Scan ES+354.4

    260.3

    291.3

    609.6

    485.6472.6

    411.5591.7

    50/50 Water/ACN + 0.1M NaCl

    50/50 Water/ACN

    260.3 - 93 %

    291.3 - 95 %

    354.4 - 37 %

    411.5 - 62 %

    472.6 - 71 %485.6 - 84 %

    591.7 - 45 %

    609.6 - 95 %

    Salt Adducts

    Rat Plasma

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    77/82

    2004 Waters Corporation2004 Waters Corporation

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    591.7

    354.4 518.6

    472.6 546.6

    609.6

    Scan ES+354.4

    260.2

    291.2

    609.6

    485.6472.6

    411.4 591.6

    .

    50/50 Water/ACN

    260.3 - 98 %

    291.3 - 98 %

    354.4 - 87 %

    411.4 - 94 %

    472.6 - 92 %

    485.6 - 95 %

    591.7 - 42 %

    609.6 - 94 %

    50/50 Water/ACN + rat plasma supernatant

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    591.7

    354.4 518.6

    472.6 546.6

    609.6

    Scan ES+354.4

    260.2

    291.2

    609.6

    485.6472.6

    411.4 591.6

    .

    260 280 300 320 340 360 380 400 420 440 460 480260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    591.7

    354.4 518.6

    472.6 546.6

    609.6

    Scan ES+354.4

    260.2

    291.2

    609.6

    485.6472.6

    411.4 591.6

    .

    50/50 Water/ACN

    260.3 - 98 %

    291.3 - 98 %

    354.4 - 87 %

    411.4 - 94 %

    472.6 - 92 %

    485.6 - 95 %

    591.7 - 42 %

    609.6 - 94 %

    50/50 Water/ACN + rat plasma supernatant

    Rat Plasma

    Human Plasma

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    78/82

    2004 Waters Corporation2004 Waters Corporation

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    591.7

    354.4 518.5472.6 485.5 609.6

    Scan ES+354.4

    260.2

    291.3

    609.6

    485.6472.6

    411.5 591.6

    50/50 Water/ACN + human plasma supernatant

    50/50 Water/ACN

    260.2 - 97 %

    291.2 - 96 %

    354.4 - 86 %

    411.4 - 93 %

    472.6 - 93 %485.6 - 95 %

    591.6 - 89 %

    609.5 - 93 %

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    591.7

    354.4 518.5472.6 485.5 609.6

    Scan ES+354.4

    260.2

    291.3

    609.6

    485.6472.6

    411.5 591.6

    50/50 Water/ACN + human plasma supernatant

    50/50 Water/ACN

    260 280 300 320 340 360 380 400 420 440 460 480260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    591.7

    354.4 518.5472.6 485.5 609.6

    Scan ES+354.4

    260.2

    291.3

    609.6

    485.6472.6

    411.5 591.6

    50/50 Water/ACN + human plasma supernatant

    50/50 Water/ACN

    260.2 - 97 %

    291.2 - 96 %

    354.4 - 86 %

    411.4 - 93 %

    472.6 - 93 %485.6 - 95 %

    591.6 - 89 %

    609.5 - 93 %

    Human Plasma

    Reversed Phase SPE

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    79/82

    2004 Waters Corporation2004 Waters Corporation

    Condition/Equilibrate

    1.0 mL methanol / 1.0 mL water

    Load

    1.0 mL plasma

    Wash

    1.0 mL 5% methanol in water

    Elute

    0.5 mL MeOH

    Dilute with 0.5 ml water

    Plasma Sample

    * 30 mg HLB 96 plate

    Reversed Phase SPE

    Reversed Phase SPE Rat Plasma

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    80/82

    2004 Waters Corporation2004 Waters Corporation

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    260.1 291.2

    591.6

    472.5

    411.4

    485.5

    609.5

    Scan ES+354.2

    260.2

    291.2

    609.5

    485.4472.5

    411.4

    591.6

    50/50 Water/ACN + rat plasma HLB 1D extract

    50/50 Water/ACN

    260.2 - 41 %

    291.2 - 26 %

    354.4 - 9 %

    411.4 - 32 %

    472.6 - 23 %485.6 - 38 %

    591.6 + 26 %

    609.5 - 49 %

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    260.1 291.2

    591.6

    472.5

    411.4

    485.5

    609.5

    Scan ES+354.2

    260.2

    291.2

    609.5

    485.4472.5

    411.4

    591.6

    50/50 Water/ACN + rat plasma HLB 1D extract

    50/50 Water/ACN

    260 280 300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600 620m/z0

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    260.1 291.2

    591.6

    472.5

    411.4

    485.5

    609.5

    Scan ES+354.2

    260.2

    291.2

    609.5

    485.4472.5

    411.4

    591.6

    50/50 Water/ACN + rat plasma HLB 1D extract

    50/50 Water/ACN

    260.2 - 41 %

    291.2 - 26 %

    354.4 - 9 %

    411.4 - 32 %

    472.6 - 23 %485.6 - 38 %

    591.6 + 26 %

    609.5 - 49 %

    Reversed Phase SPE - Rat Plasma

    Mixed Mode Cation Exchange SPE

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    81/82

    2004 Waters Corporation2004 Waters Corporation

    Condition/Equilibrate

    1.0 mL methanol / 1.0 mL water

    Load

    1.0 mL plasma

    Prepare Sample Solution

    Wash 2

    1.0 mL MeOH

    Elute

    0.5 mL MeOH + 2% NH4OH

    Dilute with 0.5 ml water

    Wash 1

    1.0 mL Water + 2 % FALocks basic drug

    on ion exchanger

    Removes polar

    interferences

    * 30 mg Oasis MCX 96 well plate

    Mixed Mode Cation-Exchange SPE

    Mixed Mode SPE Rat Plasma

  • 8/12/2019 Waters LCMSWaters LCMS Troubleshooting

    82/82

    260.2 - 9 %

    291.2 - 11%

    354.4 - 0.5 %

    411.4 - 13 %

    472.6 - 9 %

    485.6 - 2 %

    591.6 - 8 %

    609.5 - 8 %

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    291.3260.3

    609.6

    472.6

    411.5

    485.6

    591.7

    Scan ES+354.4

    260.3

    291.3

    609.6

    485.6

    472.6

    411.5 591.7

    50/50 Water/ACN + rat plasma MCX extract

    50/50 Water/ACN

    260.2 - 9 %

    291.2 - 11%

    354.4 - 0.5 %

    411.4 - 13 %

    472.6 - 9 %

    485.6 - 2 %

    591.6 - 8 %

    609.5 - 8 %

    100

    %

    0

    100

    %

    Scan ES+

    354.4

    291.3260.3

    609.6

    472.6

    411.5

    485.6

    591.7

    Scan ES+354.4

    260.3

    291.3

    609.6

    485.6

    472.6

    411.5 591.7

    50/50 Water/ACN + rat plasma MCX extract

    50/50 Water/ACN100

    %

    0

    100

    %

    Scan ES+

    354.4

    291.3260.3

    609.6

    472.6

    411.5

    485.6

    591.7

    Scan ES+354.4

    260.3

    291.3

    609.6

    485.6

    472.6

    411.5 591.7

    50/50 Water/ACN + rat plasma MCX extract

    50/50 Water/ACN

    Mixed Mode SPE Rat Plasma