Water treatment-lecture-7-eenv

17
Islamic University of Gaza Environmental Engineering Department Water Treatment Water Treatment EENV 4331 Lecture 7: Disinfection Dr. Fahid Rabah 1

Transcript of Water treatment-lecture-7-eenv

Page 1: Water treatment-lecture-7-eenv

Islamic University of Gaza  ‐Environmental Engineering Department

Water TreatmentWater TreatmentEENV 4331

Lecture 7:   Disinfection

Dr.   Fahid Rabah

1

Page 2: Water treatment-lecture-7-eenv

7. Disinfection in water Treatment

f f f7.1    Definition of Disinfection : Disinfection is the destruction of pathogenic microorganisms.Disinfection is the destruction of pathogenic microorganisms.

7.2   Disinfection methods :

A. Chemical disinfection: Chlorination Chlorination Ozonation

B. Non chemical disinfection: Heat Ultra  Violet radiation  (UV)

2

( )

Page 3: Water treatment-lecture-7-eenv

7. Disinfection in water Treatment

7.3    Definition Microorganisms of concern include:g

Microorganisms of concern include:

Type                                                       Size, μmViruses                                                        0.01 to 0.1 Bacteria                                                      0.1 to 5 Cryptosporidium oocysts 3 to 5 Giardia cysts                                              6 to 10 Protozoan                                                  10 to 25 

Indicator organisms are often used to assess the presence or absence of               pathogens  Common indicator organisms are coliforms‐E‐coli

3

Page 4: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorinationy

7.4.1    Introduction on Chlorination:

Chlorine is the most widely used disinfectant because it is effective at low concentrations, cheap and forms residual if applied in sufficient dosage.The principal chlorine compounds used in water treatment are:The principal chlorine compounds used in water treatment are:

*Chlorine (Cl2), *Sodium hypochlorite (NaOCl), *C l i h hl it [C (OCl) ] d*Calcium hypochlorite [Ca(OCl)2], and *chlorine dioxide (ClO2).

‐Chlorine (Cl2) can be used in gas or liquid form.( 2) g q‐The Cl2 gas is liquefied  by high pressure (5‐10 atm) to the liquid form.

4

Page 5: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorinationy

7.4.2    Chemistry of Chlorine in water:

Chlorine gas reacts readily with water to form hypochlorous acid andChlorine gas reacts readily with water to form hypochlorous acid and hydrochloric acid:

Cl2+H2O    →  HOCl + HClTh d d h hl id h di i i ld h hl i iThe produced hypochlorous acid then dissociates to yield hypochlorite ion:

HOCl →  H+  +  OCl‐

The relative distribution of  HOCl and OCl‐ is a function of pH and temperaturesee (Fig 7.1). Both HOCl and OCl‐ are excellent disinfectants but HOCl is more effective.Both HOCl & OCl‐ react with ammonia if exists in water to produce chloramines:p

NH3 + HOCl→ NH2Cl + H2O       (monochloramine)NH2Cl + 2HOCl → NHCl2 + H2O  (dichloramine)NHCl2 + 3HOCl→ NCl3 + H2O (Trichloramine)NHCl2 + 3HOCl → NCl3 + H2O     (Trichloramine)Note: Chloramines are good disinfectants

Both HOCl & OCl‐ react with reducing compounds such as Fe+2, Mn+2, NO‐2 , and the chlorine will be reduced to the non effective chlorid ion Cl‐

5

and the chlorine will be reduced to the  non effective chlorid ion Cl .

Page 6: Water treatment-lecture-7-eenv

6

Relative amount of HOCl and OCl‐ as a function of pH at 0o and 20o.Figure 7.1

Page 7: Water treatment-lecture-7-eenv

Both HOCl & OCl‐ react with reducing natural organic maters producingtrihalomethanes (THMs) including:

*Chloroform (CHCl3) , *Bromoform (CHBr3),* bromodichloromethane (CHCl2Br), b o od c o o e a e ( 2 ),*dibromochloromethane (CHClBr2). 

The THMs are carcinogenic compounds andThe THMs are carcinogenic compounds and their total concentration in drinking water should not be more than 0.1 mg/l.

THMs are one of the disinfection by products DBPs that should be minimized orTHMs are one of the disinfection by products DBPs that should be minimized orremoved  before supplying the water to the consumers.Another dangerous DBPs is the halogenated acetic acids HAAs as it may causecancer.THMs and HAAs can be minimized by removing the organic matter before disinfection. THMs and HAAs can be removed from water by GAC. 

7

Page 8: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorinationy

7.4.3    Break point chlorination :

‐As illustrated in the previous section, chlorine reacts with the substances existingin water. Figure 7.2 shows the stages of these reactions.‐On Fig 7.2, The chlorine dosage is presented on the x‐axis and the residualO g , e c o e dosage s p ese ed o e a s a d e es duachlorine is presented on the y‐axis.‐When chlorine is added it reacts first with the reducing compounds such as Fe+2 Mn+2 NO‐2 and the chlorine will be reduced to the none effectiveFe , Mn , NO , and the chlorine will be reduced to the  none effective chloride ion Cl‐ (from zero to point A on the figure).

‐When adding more chlorine it will react with NH3 to form chloramines as shownin the chlorine chemistry ( from point A to B)in the chlorine chemistry ( from point A to B).

‐When adding more chlorine some chloramines are oxidized to nitrogen gas and the chlorine is reduced to the none effective Cl‐ ion.( from point B to C).

d dd f hl ll d d f l bl hl ( )‐Continued  addition of chlorine will produced free available chlorine (at point C). point C is called the break point.

8

Page 9: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorinationy

9

Break‐point chlorinationFigure 8.2

Page 10: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorinationy

‐The chlorine added is called the dosage.The amount used to oxidize the materials existing in water is called the demand‐ The amount used to oxidize the materials existing in water is called the demand.

‐ The Free residual = dosage – demand‐The residual between points A to C is called combined residual because the hl i i i h f f hl i d hl ichlorine is in the form of chloramines and chloro‐organics. 

‐From point C and up a free residual chlorine start to appear.in water in addition to the combined residual. 

‐The free Chlorine residual is composed of un‐reacted forms of chlorine HOCl and OCl‐.

‐The total residual after the break point =  free + combined. p‐Since the free residual is much more effective in disinfection, all the regulationsrequire a free residual of at least  0.20 mg/l at the farthest tap in the system. The residual chlorine in the produced water is typically 2 – 5 mg/l just at the outletresidual chlorine in the produced water is typically 2  5 mg/l just at the outlet of the treatment .‐ since free residual appears only after the breakpoint, so we need to decide the breakpoint dosage Thus the required dosage = breakpoint dosage + free residual

10

breakpoint dosage. Thus the required dosage = breakpoint dosage + free residual

Page 11: Water treatment-lecture-7-eenv

Example 7.1:Referring to the Figure, if a dosage of 1.8 mg/L is applied, determine:(1 ) The amount free chlorine residual (2 )The amount of combined residual(1. ) The amount free chlorine residual (2. )The amount of combined residual, (3. )The amount of total residual, (4.) What is the chlorine demand?

Destruction of Chloramines and Presence of

0.5

chlorine residualby reducingcompounds

Chloramines andchloro-organiccompounds

Presence ofchloro-organiccompounds notdestroyed

0.4

g/L

)

Formation of chloro-organic

0.3

sidu

al (m

g compounds and chloramines free residual

0.2

hlor

ine

res

BreakpointCombined residual

0.1

0

C

Combined residual

0 0.8 1.0 1.2 1.4 1.6 1.8 2.00.60.40.2

Chlorine added (mg/L)

Page 12: Water treatment-lecture-7-eenv

From the figure:

1. The of free chlorine residual at a dosage of 1.80 mg/L= 0.40 mg/L.

2. The combined residual at the breakpoint = 0.21 mg/L.

3. The Total residual = 0.40 + 0.21 mg/L = 0.61 mg/L.g g

4. Chlorine demand = 1.40 mg/L

Page 13: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorinationy

7.4.4    CT   concept :

h hl ff d d h lThe chlorination efficiency is determined using the CT value. C  =  Free residual chlorine concentration in the chlorination tank, mg/L

T = contact time in the storage tank, min.  The chlorination efficiency is determined according to the value C*TSee the USEPA  Table  for the required values of CT to achieve certain value of microorganisms inactivation.g for example,  a CT value of  67  (min*mg/L)  is needed at  20 oC and a pH  of 7.5  and a residual chlorine  of  1 mg/L  to achieve  3 log inactivation of Giardia cysts In this case T = (67/1) = 67 minGiardia cysts.  In this case  T   (67/1)   67 min. The disinfection is achieved inside the chlorination tank. To increase the contact time or (the detention time) in the tank, baffle walls are usually used This will increase the CT value available in the tank and achieve theused. This will increase the CT value available in the tank and achieve the design CT value. 

13

Page 14: Water treatment-lecture-7-eenv

illustration of the inactivation units

10 n log inactivation  =   N0/Nr

Or  →     n Log  Inactivation =  log N0 ‐ Log Nr

Where, 

n = number of log inactivationn = number of log inactivation

N0 = initial concentration of microorganism in water, Cells/100ml (before treatment)

Nr = Remaining concentration of microorganism in water, Cells/100ml (A after treatment)

Page 15: Water treatment-lecture-7-eenv

Example 7.2 

The  Initial number  of  Gardia cycts in water is = 106 Cell/100 ml.  Calculate the nlog inactivation for the given  remaining  concentration  at each inactivation logs.

A ) N = 104A )   Nr = 10

n Log  Inactivation =  log N0 – Log Nr 

= log106 – log 104

= 6‐4 = 2  log inactivation

B )   Nr = 2.3 X 103

L I i i l N L NnLog Inactivation =  log N0 – Log Nr 

= log106 – log (2.3X103 ) 

= 6‐3.362 = 2.638 log inactivation 6 3.362   2.638  log inactivation

Page 16: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorinationy

7.4.5    Predicting  chlorination efficiency:

N

The efficiency of chlorination can be predicted using Chick’s  Watson formula: 

tCk'

0

t n

eNN

/infectantdofionconcentratCconstantoffdiek'

Lmges

100/(t)timeatorganismsofnumberNdilutionoftcoefficienn

/infectant,dofionconcentratC

mlCell

Lmges

itit tt100/organisms,ofnumberN

100/(t),timeatorganismsofnumberN

0

t

mlCellinitialmlCell

16

mintime,contactt

Page 17: Water treatment-lecture-7-eenv

7.4 Disinfection by chlorination7.4.5 Predicting chlorination efficiency:7.4.5    Predicting  chlorination efficiency:

Example 7.3 :  The concentration of Giardia cysts in drinking water is 104/ 100 ml.  A free chlorine Residual of 1 2 mg/L has been created in the chlorination tank The detention time in theResidual of 1.2 mg/L has been created in the chlorination tank.  The detention time in thechlorination tank is 57 min. What is the final concentration of Giardia cysts ? What is the Inactivation percent and the Log‐ inactivation in this case? . Take n = 1.0 , and k = 0.103.

lC llN

e

100/71010*071*10

10*07.1eNN

34

3684.057*2.1*10.0

0

t

NNNoninactivatiPercent

mlCellsN

t

t

%9.99999.010

7.1010

100/7.1010*07.1*10

4

40

34

mlCellNNNoninactivatiLogoninactivatin

N

100/99897101097.27.10log10loglog

10

4

40

mlCellNN

mlCellNNN

oninactivatinremoved

tremoved

100/998910

111010

11

100/99897.1010

97.24

log0

0

17