Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

10
60 |  Solutions  |  November-December 2015 |  www.thesolutionsjournal.org Feature In Brief The newly agreed upon global  Sustainable Development Goals  (Agenda 2030) call for poverty  reduction, equity, and sustainable  development. Lack of sanitation  undermines these through pre- ventable illness that takes people  out of schools and the workplace  and uses up ill-affordable  household income on medica- tions; through inequitable access  for the poorest countries and  poorest people of the world and  inequitable burdens on women,  the elderly, and those with physi- cal infirmities; and pollutes the  environment with germ-ridden  fecal waste. Almost 2.4 billion  people in the world today do not  have access to proper sanitation  facilities, mainly because of the  cost of providing infrastructure  and the education required to  change behaviors. Waste to  Wealth is an integrated and  holistic business approach to help  close the financing gap and incen- tivize toilet use in order to aid in  expansion of sanitation services,  poverty reduction, elimination  of inequities, and environmental  improvements. by Corinne J. Schuster-Wallace Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns A ccess to sanitation has proved  to be one of the toughest  nuts to crack in interna- tional development, as evidenced  by the fact that the Millennium  Development Goal (MDG) target for  sanitation, to reduce the number of  people in low and middle-income  countries without access to adequate  sanitation by 50 percent, was the fur- thest off track of any MDG at the end  of 2015. Slightly less than one billion  people around the world practice open  defecation—that is, they do not use  any toilet facilities—and 2.4 billion do  not have access to improved sanitation  facilities. 1 This has environmental,  social, and economic implications.  Environmental implications are a  result of pathogens and nutrients in  feces, which are aesthetically unpleas- ant and contaminate water sources.  In large water bodies, these nutrients  cause eutrophication, an overgrowth  of algae that eventually deoxygenates  the water, leaving it as a dead zone  for fish and other aquatic animals.  This ‘dead zone’ is referred to as  hypoxia, which is increasing in lakes  and oceans are increasing because of  sewage contamination, in addition  to agricultural runoff and water  temperature changes linked to climate  change. 2 Social impacts include lack of  dignity, respect, and safety, particularly  for women and girls. The lack of toilets  appropriate for menstrual hygiene in  schools means that post-pubescent  girls and female teachers can be absent  up to one week every month, affecting  their educational achievement. For  650 million people around the world  without access to improved drinking  water sources, or the almost two bil- lion without access to potable water, 1,3 pathogens in water cause significant  burdens of diarrheal and nematode  diseases that affect cognitive and phys- ical development in young children,  affecting school attendance, individual  productivity (whether at school or  work), and creating a preventable  burden on the healthcare system. As  a result, economic costs have been  estimated at USD$260 billion annually  (1.5 percent of global GDP) in the  countries that are most significantly  affected by lack of sanitation. 4 There are three main reasons for  lagging progress towards the 2015  MDG sanitation target: 1) sanita- tion and managing bodily wastes is  not appealing to some donors who  would prefer to invest in “sexier”  development infrastructure; 5 2) many  national governments cannot afford  to invest in scaling up sanitation at  the level required to meet this target;  and 3) sanitation is not simply an  infrastructure issue but also a behavior  Schuster-Wallace, C.J. (2015). Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns. Solutions 6(6): 60–69. https://thesolutionsjournal.com/2015/6/waste-to-wealth-helping-to-close-the-sanitation-financing-gap-in-rural-communities-and-small-towns

description

Feature, Volume 6, Issue 6

Transcript of Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

Page 1: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

60  |  Solutions  |  November-December 2015  |  www.thesolutionsjournal.org

Feature

In BriefThe newly agreed upon global Sustainable Development Goals (Agenda 2030) call for poverty reduction, equity, and sustainable development. Lack of sanitation undermines these through pre-ventable illness that takes people out of schools and the workplace and uses up ill-affordable household income on medica-tions; through inequitable access for the poorest countries and poorest people of the world and inequitable burdens on women, the elderly, and those with physi-cal infirmities; and pollutes the environment with germ-ridden fecal waste. Almost 2.4 billion people in the world today do not have access to proper sanitation facilities, mainly because of the cost of providing infrastructure and the education required to change behaviors. Waste to Wealth is an integrated and holistic business approach to help close the financing gap and incen-tivize toilet use in order to aid in expansion of sanitation services, poverty reduction, elimination of inequities, and environmental improvements.

by Corinne J. Schuster-Wallace

Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

Access to sanitation has proved    to be one of the toughest       nuts to crack in interna-

tional development, as evidenced by the fact that the Millennium Development Goal (MDG) target for sanitation, to reduce the number of people in low and middle-income countries without access to adequate sanitation by 50 percent, was the fur-thest off track of any MDG at the end of 2015. Slightly less than one billion people around the world practice open defecation—that is, they do not use any toilet facilities—and 2.4 billion do not have access to improved sanitation facilities.1 This has environmental, social, and economic implications. Environmental implications are a result of pathogens and nutrients in feces, which are aesthetically unpleas-ant and contaminate water sources. In large water bodies, these nutrients cause eutrophication, an overgrowth of algae that eventually deoxygenates the water, leaving it as a dead zone for fish and other aquatic animals. This ‘dead zone’ is referred to as hypoxia, which is increasing in lakes and oceans are increasing because of sewage contamination, in addition to agricultural runoff and water temperature changes linked to climate change.2 Social impacts include lack of dignity, respect, and safety, particularly 

for women and girls. The lack of toilets appropriate for menstrual hygiene in schools means that post-pubescent girls and female teachers can be absent up to one week every month, affecting their educational achievement. For 650 million people around the world without access to improved drinking water sources, or the almost two bil-lion without access to potable water,1,3 pathogens in water cause significant burdens of diarrheal and nematode diseases that affect cognitive and phys-ical development in young children, affecting school attendance, individual productivity (whether at school or work), and creating a preventable burden on the healthcare system. As a result, economic costs have been estimated at USD$260 billion annually (1.5 percent of global GDP) in the countries that are most significantly affected by lack of sanitation.4

There are three main reasons for lagging progress towards the 2015 MDG sanitation target: 1) sanita-tion and managing bodily wastes is not appealing to some donors who would prefer to invest in “sexier” development infrastructure;5 2) many national governments cannot afford to invest in scaling up sanitation at the level required to meet this target; and 3) sanitation is not simply an infrastructure issue but also a behavior 

Schuster-Wallace, C.J. (2015). Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns. Solutions 6(6): 60–69.https://thesolutionsjournal.com/2015/6/waste-to-wealth-helping-to-close-the-sanitation-financing-gap-in-rural-communities-and-small-towns

Page 2: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

www.thesolutionsjournal.org  |  November-December 2015  |  Solutions  |  61

change issue; and 4) large gaps exist between data on access to and use of toilet facilities. A final challenge in providing sanitation facilities is what to do with the end product—human waste, consisting of urine and fecal sludge. Urine contains large amounts of nitrogen, phosphorous, and potas-sium. When diluted, it makes an excellent fertilizer and is ready to use fairly quickly, as it contains few, if any, pathogens. The problem here lies in separating urine from the fecal sludge, and one solution is to separate the two at the source. EcoSan (ecological sanitation) toilets use this principle of urine diversion to maximize the use of both urine and fecal sludge. Fecal sludge is also high in nutrients, but most pathogens in human waste are shed through it, making it extremely dangerous to human health when first excreted. In EcoSan solutions, this solid waste is captured and stored for several months, with a significant period of this time spent out in the sun in order to kill off pathogens through heat and solar processes. After this process is complete, the waste product is used as fertilizer. To reduce health concerns, the World Health Organization (WHO), as well as many countries have guidelines and laws on pathogen levels for human-waste fertilizer and the types of crops that can be grown with it. While patho-gens can be removed, heavy metals and chemical contaminants, which can be mixed with human waste in some wastewater effluents, are more difficult to remove, and become an additional threat to human health.

A Proven SolutionAnaerobic digestion (AD) is a technol-ogy that has been commercialized for decades. Many large urban centers in Europe and North America use AD in municipal wastewater treatment plants. The process of AD is relatively straightforward: waste is captured in a sealed container that prevents any oxygen from entering, thus creating 

anaerobic conditions. The waste is then broken down (digested) by bacte-ria that flourish in these oxygen-free environments. The by-products of this process are a gas that is approximately 60 to 70 percent methane (biogas) and a liquid slurry that is high in nutri-ents and low in pathogens. In large municipal treatment plants, the gas is used to generate electricity in order to offset the energy costs associated with treatment. More and more, this type of technology is being developed for household use, particularly in small rural communities where families raise cows and grow crops. In this context, animal manure is utilized 

as the primary feedstock for AD, and the gas produced is used directly for cooking and lighting, replacing wood-based fuels, while the slurry is used to fertilize crops.

Several countries in Asia have embarked on large-scale programs for biogas production, including China, India, and Nepal.5 These systems vary in size from small household AD units to large-scale units that use a variety of feedstocks as a source of biomass. The development of the biogas sector in Nepal is particularly instructive.5 With financial support from the Netherlands Directorate-General for International Cooperation, a Biogas Support Program was started 

in Nepal in 1992. In the beginning, there was only one, state-owned company producing biogas and only one state-owned financial institution providing loans to biogas entrepre-neurs. However, by the end of 2007, over 180,000 units had been installed in Nepal, attributable to the following developments:

•  Establishment of the Nepal Biogas Promotion Association in 1994 to promote commercial interests

•  Establishment of an apex body under the Ministry of Science and Technology in 1996 to support biogas and other alternative energy applications in Nepal at a policy level

•  More than 60 qualified private biogas installation companies operating by the end of 2007.

•  15 qualified biogas appliances manufacturers

•  120 financial institutions (in addition to the state-owned bank) deliver loans to biogas entrepreneurs

•  30 local and international nongovernmental organizations (NGOs) promoting biogas technologies in Nepal

In India, biogas plants are set up at the domestic (family) level, com-munity level, and in large industrial facilities. Feedstocks vary from animal manure and food waste (used primar-ily in family units), to agriculture and forestry waste, food processing waste, and municipal wastewater. By 2010, 4.3 million small domestic biogas plants (1–10 m3) had been set up in India under the National Biogas Manure Management Program.7 Also by 2010, there were 14 large biogas fertilizer plants operating in India, col-lectively producing more than 23,000 m3 of biogas per day.6 This represents an energy equivalent of 138,000 kWh per day. A portion of this energy is lost when converted to electricity, but according to the World Energy 

Key Concepts

• Human waste contains significant amounts of organic material that can be digested by specific bacteria in oxygen-free environments.

• The byproducts from this digestion process can be used as energy for cooking, lighting, and generating electricity.

• Revenue or savings from the sale or use of these products provides financing to pay back up-front capital costs.

Page 3: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

62  |  Solutions  |  November-December 2015  |  www.thesolutionsjournal.org

Council, global average annual house-hold consumption is just over 3,000 kWh. Even if two-thirds of energy is lost in converting to electricity, the daily capacity will satisfy annual demand for 30 average households. In countries with the lowest annual energy demand, such as Nepal, it would satisfy annual demand for more than 300 households. Biogas genera-tion in India is augmented by over 200 community-based public toilet biogas plants of intermediate size that are currently operating in India that were commissioned by Sulabh International.5 The “Sulabh Model” is an intermediate capacity biogas plant (35–60 m3) that uses human fecal material as the primary feedstock.

While AD has proven success-ful in Asia, the story is different in Africa. A review of biogas generation facilities in Africa indicates that while there are small-scale biogas systems in many African countries, a relatively small proportion of these are operational.8 There are large-scale biogas generation facilities (i.e. >100 m3) with a high level of technology development in a small number of sub-Saharan African countries, including Burundi, Kenya, Mali, Rwanda, Tanzania, and South Africa. These AD systems utilize a variety of feedstocks, including slaughterhouse waste, waste from sugar factories, water hyacinths, animal dung, and human fecal waste. Medium-scale 

biodigestors have been installed in chicken and dairy farms in Burundi, a public latrine block in Kibera, Kenya, prisons in Rwanda, and health clinics and hospitals in Tanzania. Some of the challenges to biogas com-mercialization in Africa include the following:7

•  Lack of experienced contractors and consultants for construction, operation, maintenance, and repair

•  Lack of reliable information to reduce investment risks for financial institutions

•  Absence of resources and supporting infrastructure (academic, bureaucratic, legislative, and commercial)

SuSanA Secretariat Moses Wakala opened an EcoSan shop in Bungoma, Kenya, where he provides sanitary ware and technical expertise in the construction of EcoSan sanitation facilities.

Page 4: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

www.thesolutionsjournal.org  |  November-December 2015  |  Solutions  |  63

•  Lack of community acceptance and responsible ownership

•  Lack of appropriate government energy policies to support the sector

•  Lack of pilot, demonstration, and full-scale systems

Thus, notwithstanding technical capacity, it appears that the keys to success in the biogas sector are not based on technology alone, 

but are dependent on having the right organizational, financial, and governance structures in place to support the development of the sector. Affordability was a key barrier addressed in India through multiple options to secure loans, which has not been replicated in Africa. Both finan-cial and technical capacities require government interventions that do not appear to have been as concerted in Africa to date.

The Uganda ContextIn Uganda, about 80 percent of the population lives in rural areas, and more than 70 percent of the national disease burden results from diseases linked to poor sanitation and hygiene.8 This is tied to the fact that 70 percent of Ugandans do not have access to proper toilet facilities. Diarrhea associ-ated with this lack of sanitation kills approximately 23,000 Ugandans every year, with 85 percent being children under five years of age.1 In addition, more than 90 percent of the citizens of Uganda use wood, charcoal, or animal dung for cooking and heating, which contributes to high rates of pneumonia and acute respiratory infections—additional child killers.9 The annual social and health care costs associated with poor sanitation in Uganda are estimated to be 389 billion Ugandan shillings or USD$177 million.10

A lack of toilets and wastewater treatment also results in poor water quality in lakes and rivers. This threatens improvements in drinking water access, especially for Ugandans who depend on untreated sources for domestic needs. Meanwhile, tree cover reduction to create firewood and charcoal and increased land area under agricultural cultivation continues in Uganda at unsustainable rates, further affecting water quality as well as degrading soils. In a country where more than three quarters of the population depend on agriculture for their main source of livelihood,11 this threatens health and financial wellbe-ing as well as the environment.

A critical barrier to progress is the insufficient funding currently avail-able to achieve both the MDG targets (and therefore universal access to drinking water and sanitation as called for under the proposed Sustainable Development Goals) and National Development Plan objectives, espe-cially given rapid population growth.10 In order to increase access to drinking water and sanitation facilities, the 

SuSanA Secretariat An EcoSan toilet in West Hanahai, Botswana provides privacy.

Page 5: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

64  |  Solutions  |  November-December 2015  |  www.thesolutionsjournal.org

Ministry of Water and Environment in Uganda is encouraging the imple-mentation of community self-supply models, wherein management of the water and/or sanitation facilities is borne by the community. However, even when management is devolved to the community, finding sufficient funds for upfront capital costs can be prohibitive to national governments and rural communities alike.

Waste to WealthTo address these issues, Waste to Wealth is a Ugandan initiative created in partnership with the Ministry of Water and Environment, its water and wastewater utility (the National Water and Sewerage Corporation), and other government, NGO, and academic partners. The concept is simple—to use modern bioenergy technologies 

to convert human and other organic wastes into resources that will provide economic benefits and improved environment and human health. The biogas and slurry left from energy conversion will be used as a resource with economic value to provide a return on the investment in AD tech-nology. The concept is an innovative and transformative technology-based approach to managing human wastes and providing sanitation services in low income countries. The approach is innovative because it harnesses the revenue from waste by-products to finance the operation, maintenance, and expansion of sanitation services. Further, it is transformative because it involves the creation of a new national economic sector through multistakeholder collaboration using technologies that have been tested and 

proven in other developing countries. A recent application to assess the global value in waste calculated that the energy from the annual waste of those practicing open defecation alone (2.4 billion people) would be sufficient to power 10 million homes for a year, and is valued at more than USD$200 million (natural gas equivalent on the global market).12

One potential barrier to uptake of AD byproduct use, particularly when the feedstock is human waste, is the associated “yuck” factor, a fear of food contamination, and cultural taboos. In a limited survey conducted by UNU–INWEH within a cross-section of the public in the Lyantonde District of Uganda, about 40 percent of respondents did not own their own sanitation or toilet facilities. Among the respondents, there was interest 

SuSanA Secretariat Instructions demonstrate how to use an EcoSan toilet, as displayed in a classroom in Kenya.

Page 6: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

www.thesolutionsjournal.org  |  November-December 2015  |  Solutions  |  65

in using a community-based sanita-tion facility, especially if access was provided for free, and even more so if the users received residue byproducts (e.g. briquettes and fertilizer/com-post) as a benefit of using the facility. The respondents also expressed a strong interest in producing the byproducts as a source of employ-ment. It is not clear whether there would be widespread acceptance by the public for the use of the dried slurry as a solid fuel. There was initial skepticism among respondents about the use of the solid byproducts from 

AD, but acceptance improved once safety issues were directly addressed by the interviewer. Any marketing strategy for the residual byproducts of biogas production would thus have to include a public education component to ensure acceptance of the products.

Currently, the partners are working to catalyze the development of the Ugandan water and sanitation subsec-tor implementation of the national decentralized (on site) fecal waste management framework in order to contribute to bridging the finance gap 

for sanitation. Ultimately, it is antici-pated that the initiative will progress to the development of a decentralized system for wastewater management and sanitation in Uganda that will require little direct government investment.

A Business OpportunityThe business opportunities for the bioenergy sector are varied, depending upon the feedstocks that are available for use in bioenergy conversion, the size of the AD facilities, the level of investment in infrastructure, and access to markets. For instance, entrepreneurs could use relatively small AD systems to produce biogas from human waste that generates electricity for charging cell phones or car batteries on a local fee-for-service basis. Entrepreneurs or community cooperatives that have access to investment capital could develop larger AD systems that use human waste, food waste, industrial waste (e.g. brewery or dairy waste), and animal waste to generate suf-ficient amounts of biogas to purify, compress, and bottle for distribution to markets far from the site of genera-tion. The economic benefits of AD systems at large institutions would mainly be from offsets against the costs of fuel and electricity within the facilities.

The business case for marketing of the residual slurry also varies, depending upon the AD generation scenario. The simplest business opportunity is to sell residual material for use as fertilizer on agricultural land, but this market generates little revenue and there are cultural barriers to the use of this resource. With an additional investment in infrastructure, the residue can be dried and pressed into solid fuel briquettes that could then be used for industrial purposes (e.g. brick making) or as an alternative to charcoal or wood for domestic cook-ing and heating.

SuSanA Secretariat Workers construct a biogas digester at a school in Kampala, Uganda.

Page 7: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

66  |  Solutions  |  November-December 2015  |  www.thesolutionsjournal.org

Currently, based on established business models (Table 1), there is ongoing pre-development for pilot-scale facilities at three locations in Uganda, which will demonstrate the range of business opportunities that can be exploited as well as the economic feasibility of these strate-gies. However, the scope of business opportunities within the sector will ultimately be driven by the creativity, drive, and business acumen of the entrepreneurial sector within Uganda.

BenefitsWhen human waste is broken down through the anaerobic digestion process, the resulting energy and fertilizer prod-ucts possess more than simply financial value. While the financial value drives the innovation-in-sanitation business models, it is the accrual of additional environmental, health, and economic benefits (Figure 1) that makes this a truly sustainable development solution. Benefits include the following:

•  Green energy, reduced greenhouse gas emissions, and a reduced dependency on wood fuels

•  Improved soil quality and crop productivity through use of the slurry as fertilizer

•  A cleaner environment and healthier people through proper disposal of human waste

The resulting revenue and health benefits increase economic productiv-ity and also relieve burdens currently placed on women, including vulner-abilities associated with finding a safe and dignified location to relieve themselves. The bottom line is that, through Waste to Wealth, we can cata-lyze and finance social development and economic growth through imple-mentation of AD as a sector response to current challenges facing Uganda and other countries (Figure 1).

Anaerobic digestion, as a source of renewable energy and fertilizer prod-ucts, is seen to be part of the solution 

to the linked problems associated with sanitation, energy, and agriculture. In this manner, we see AD as a solution for rural growth areas and small towns—a modular, decentralized approach to providing sanitation facilities, incentiv-izing the use and maintenance of those facilities, and providing livelihood opportunities in these settings. More importantly, Waste to Wealth is a busi-ness case demonstration of integrated sustainable development implementa-tion under Agenda 2030, balancing and benefitting the three P’s of a green economy—people, profit (economy), and planet (environment). It is a strategy to improve energy security 

and waste management while reduc-ing environmental degradation. The benefits to Uganda include improved community health, environment, and economy, and income-generating opportunities. 

AcknowledgementsThis paper would not have been possible without financial support from a Government of Canada-funded Grand Challenges Canada Rising Stars in Global Health award. The authors thank Chris Wild for his help in business plan development and Sena Amewu and others for their reviews of the original manuscript.

25% Volatile Solids (VS) 40% VSb

Capex

Total Capital Cost ($) $ 327,290.00 $ 327,290.00

OPEX

Yearly operating expense -$ 36,010.67 -$ 36,010.67

Savings and Revenues

Ice maker savings -$ 217,753.52 -$ 217,753.52

Biogas revenue $ 221,654.39 $ 264,566.31

Briquette revenue $ 63,713.23 $ 63,713.23

Fertilizer revenue

NET OPEX

$ 31,603.43 $ 74,515.36

Payback (Years) 10.36 4.39

Table 1. Business case for a fishing village in Uganda.a

a Human waste, fish waste, and water hyacinth are used as feedstock for the digester. Human waste is collected from a stand of 50 public toilets near the fish-landing site. Biogas is used to manufacture ice for fish transportation in boats and vehicles, saving the local beach management unit from purchasing ice in urban centers located several hours away. The slurry is dried and converted to fuel briquettes for local sale. Partial profits will be used to reinvest in community water and sanitation improvements and expansion.b Pilot tests in Uganda suggest VS values of 30–40%.

Page 8: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

www.thesolutionsjournal.org  |  November-December 2015  |  Solutions  |  67

References1.  UNICEF and WHO. Progress on sanitation and 

drinking water: 2015 update and MDG Assessment 

[online] (2015) http://www.wssinfo.org/fileadmin/

user_upload/resources/JMP-Update-report-2015_

English.pdf.

2.  Scientific and Technical Advisory Panel. Hypoxia 

and nutrient reduction in the coastal zone: advice 

for prevention, remediation and research [online] 

(2011) https://www.thegef.org/gef/sites/thegef.org/

files/publication/STAP_Hypoxia_low.pdf.

3.  Onda, K., J. LoBuglio and J. Bartram. Global access 

to safe water: accounting for water quality and the 

resulting impact on MDG progress. World Health

& Population 14(3), 32–44 (2013) (doi:10.12927/

whp.2013.23437).

4.  Water and Sanitation Program. Economics of 

Sanitation Initiative [online] (2012) http://www.wsp.

org/content/economic-impacts-sanitation#top.

5.  Harvey, F. Donor aversion to ‘unsexy’ water projects 

threatens development goal. The Guardian [online] 

(2011) http://www.theguardian.com/global-

development/poverty-matters/2011/jun/27/donor-

aversion-water-projects.

6.  Sharma, S. and A. Sanghal. Rapid market 

assessment: waste-derived energy products. 

Emergent Ventures (2013) (doi: 10.13140/

RG.2.1.1335.3129).

7.  Amigun, B., W. Parawira, J.K. Musango, A.O. 

Aboyade and A.S. Badmos, in Biogas (ed. Kumar, S.) 

Ch. 2 (InTech, Croatia, 2012).

8.  Government of the Republic of Uganda. Uganda 

Vision 2040 [online] (2014) http://npa.ug/wp-

content/themes/npatheme/documents/vision2040.

pdf.

9.  Okello, C., S. Pindozzi, S. Faugno and L. Boccia. 

Development of bioenergy technologies in Uganda: 

a review of progress. Renewable and Sustainable

Energy Reviews 18, 55–63 (2013).

10. Water and Sanitation Program. Economic impacts 

of poor sanitation in Africa: Uganda [online] (2012) 

http://water.worldbank.org/sites/water.worldbank.

org/files/publication/WSP-ESI-Uganda.pdf.

11. FAO. Uganda and FAO: building resilience and food 

and nutrition security [online] (2015) http://www.

fao.org/3/a-au755e.pdf.

12. Schuster-Wallace, C.J., C. Wild and C. Metcalfe. 

Valuing human waste as an energy resource: a 

research brief assessing the global wealth in waste. 

UNU-INWEH [online] (2015) http://inweh.unu.edu.

13. Schuster-Wallace, C.J., K. Cave, C. Metcalfe, M. 

Theodoulou and V. Yargeau. From waste to wealth: 

sustainable wastewater management framework. 

UNU-INWEH [online] (2014) http://inweh.unu.edu/

waste-to-wealth/.

SuSanA Secretariat The results of using EcoSan fertilizer on maize in South Nyanza, Kenya. No fertilizer was used on the left, while fertilizer from EcoSan toilet systems was used on the right. Both sections of maize were planted at the same time.

Page 9: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

68  |  Solutions  |  November-December 2015  |  www.thesolutionsjournal.org

Authors Figure 1. Summary of benefits associated with Waste to Wealth.13

NSF Stimulus Funding

Slurry

Solid Fuel Solid Fuel Sales

Gas for Goods Production Manufacturing (non Ag)

Domestic Use

Gas

Gas Sales

Gas for Goods Production

FertilizerFertilizer Sales

Cash Crops

Domestic Use Surplus Crop Sales

Manufacturing (non Ag)

Domestic Use (cooking, lighting)

Anaerobic Digestion

Organic Matter Collection

Organic Excreta Collection

increased jobs

improve sanitation

incomefrom sold

gas

incomefrom sold

goods

incomefrom

fertilizer

savedincome

savedincome

incomefrom fuel

incomefrom crops

incomefrom crops

reduced pathogens

reduced diseases

reduced physical burden

reduced physical burden

increased nutrition

improved wellbeing

private sector

growth

profitskilled labour

jobs

reducedsmell

= less flies

decreasedair pollution

(smell)

reduced wood

use

decreased land

degradation

decreased land

degradation

decreased land

degradation

improved water quality

& quantity

improved water quality

& quantity

improved water quality

& quantity

reduced chemical pollution

reduced wood

use

increased crop

productionincreased soil

quality

forestconservation

increased soil quality

forest conservation

skilled labour

jobs

time for economic

labour

skilledlabour jobs

increased human

productivity

increased human

productivity

researchsector

growth

women: time for economic

labour

R&D

reduced water

pollution

reduced organic

pollution

reduceddrinking watertreatment costs

reduced water related illness

reduced foodwater andrespiratory

diseases; improved safety

reduced diseasesand improved

community healthreduced

drinking watertreatment costs

reduceddrinking watertreatment costs

Consumer

incomefrom sold

goods

skilledlabour jobs

Consumer

Consumer

AD Technology Benefits Flow ChartProcess Underpinned by a National Supporting Framework (NSF) Improved INCOME/PROFITImproved ECONOMY

Improved ENVIRONMENT Improved COMMUNITY HEALTH

Page 10: Waste to Wealth: Helping to Close the Sanitation Financing Gap in Rural Communities and Small Towns

www.thesolutionsjournal.org  |  November-December 2015  |  Solutions  |  69

Authors Figure 1. Summary of benefits associated with Waste to Wealth.13

NSF Stimulus Funding

Slurry

Solid Fuel Solid Fuel Sales

Gas for Goods Production Manufacturing (non Ag)

Domestic Use

Gas

Gas Sales

Gas for Goods Production

FertilizerFertilizer Sales

Cash Crops

Domestic Use Surplus Crop Sales

Manufacturing (non Ag)

Domestic Use (cooking, lighting)

Anaerobic Digestion

Organic Matter Collection

Organic Excreta Collection

increased jobs

improve sanitation

incomefrom sold

gas

incomefrom sold

goods

incomefrom

fertilizer

savedincome

savedincome

incomefrom fuel

incomefrom crops

incomefrom crops

reduced pathogens

reduced diseases

reduced physical burden

reduced physical burden

increased nutrition

improved wellbeing

private sector

growth

profitskilled labour

jobs

reducedsmell

= less flies

decreasedair pollution

(smell)

reduced wood

use

decreased land

degradation

decreased land

degradation

decreased land

degradation

improved water quality

& quantity

improved water quality

& quantity

improved water quality

& quantity

reduced chemical pollution

reduced wood

use

increased crop

productionincreased soil

quality

forestconservation

increased soil quality

forest conservation

skilled labour

jobs

time for economic

labour

skilledlabour jobs

increased human

productivity

increased human

productivity

researchsector

growth

women: time for economic

labour

R&D

reduced water

pollution

reduced organic

pollution

reduceddrinking watertreatment costs

reduced water related illness

reduced foodwater andrespiratory

diseases; improved safety

reduced diseasesand improved

community healthreduced

drinking watertreatment costs

reduceddrinking watertreatment costs

Consumer

incomefrom sold

goods

skilledlabour jobs

Consumer

Consumer

AD Technology Benefits Flow ChartProcess Underpinned by a National Supporting Framework (NSF) Improved INCOME/PROFITImproved ECONOMY

Improved ENVIRONMENT Improved COMMUNITY HEALTH