Wall Final Calcs

9
7/23/2019 Wall Final Calcs http://slidepdf.com/reader/full/wall-final-calcs 1/9 Euroget Wall Steel Estimation Input Data ck  20 MPa Cylinder Concrete Characteristic Strength Concrete tensile strength  ctm  0.3 f ck  MPa  1 2 3  1  MPa  ctm  2.21MPa Reinf. Yield Strength  yk  250 MPa Conc. partial safety factor   c  1.5 Steel partial safety factor   s  1.15 Concrete Modulus (evaluated)  E c  5000 MPa  ck  MPa  1  E c  2.236 10 10  Pa Steel Modulus E s  200 GPa  E s  2 10 11  Pa cd  ck   c 1 Concrete design Strength  cd  1.333 10 7  Pa yd  yk   s 1  yd  2.174 10 8  Pa Steel design strength yd  yk   s  E s  1 yd  1.087 10  3 Steel yield design strain Minimum beam reinforcement ratio   min 0.5 f ctm yk  min  0.442 % Wall height  hs  5000 mm  b s  3000 mm Real wall width (buttress to buttress) Per meter wall run  b w  1000 mm Cover to main reinf.  cv 75 mm Thickness of wall  thk 150 mm Effective depth  d thk cv  d 0.075 m

Transcript of Wall Final Calcs

Page 1: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 1/9

Euroget Wall Steel Estimation

Input Data

f ck    20 MPaCylinder Concrete Characteristic Strength

Concrete tensile strength   f ctm   0.3 f  ck  MPa  1

2 3

  1

  MPa   f ctm   2.21 MPa

Reinf. Yield Strength   f yk    250 MPa

Conc. partial safety factor    c   1.5

Steel partial safety factor    s   1.15

Concrete Modulus (evaluated)   Ec   5000 MPa   f ck  MPa  1

  Ec   2.236 1010

  Pa

Steel Modulus Es   200 GPa   Es   2 1011

  Pa

f cd   f ck  c1

Concrete design Strength   f cd   1.333 10

7   Pa

f yd   f yk  s1

  f yd   2.174 108

  PaSteel design strength

yd   f yk   s Es   1

yd   1.087 10  3

Steel yield design strain

Minimum beam reinforcement ratio   min

0.5 f ctm

f yk 

min   0.442 %

Wall height   hs   5000 mm

 bs   3000 mmReal wall width (buttress to buttress)

Per meter wall run   bw   1000 mm

Cover to main reinf.   cv 75 mm

Thickness of wall   thk 150 mm

Effective depth  d thk cv   d 0.075 m

Page 2: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 2/9

Unit weight of concrete   gw 24 kN   m  3

pga acceration   ag 0.15 g

spectral amplification ratio   rSa 2.5

Sag rSa ag   Sag 0.375 gbase spectral acceleration

fAc 2 Average amplification factor 

 Average acceleration over wall   Sa_C fAc Sag   Sa_C 0.75 g

Weight of wall   Ww bs thk    hs   gw   Ww 54 kN

Mass of wall   mw Ww g  1

  mw 5.506 s

2

mkN

Fc mw Sa_C   Fc 40.5 kNSeismic lateral force

Corresponding distributed lateral pressure   fcc Fc hs bs   1

  fcc 2.7kPa

Moment Estimations

Wall is assumed to be bounded on all three sides with a distributed load imposed on it.

Two cases are analyzed using the Yield line theory approach:

Case 1: The bottom is fixed and the sides are also fixed

Case 2: The bottom is fixed and the sides are pin supported

 

The equations are taken from Reference [1],

Kennedy G, Goodchild, GH, Practical Yield Line Design, The Concrete Centre, UK, 2004.

 

Page 3: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 3/9

Case 1:

nab fccDistributed load

No line load loads, thus line load factors = 0   pa 0   pb 0

 pa pa nab bs   1

 pa 0  pb pb nab hs   1

 pb 0

Edge fixity ratio

Side ratios   i1 1   i3 1 bottom ratio   i2 1

Possibility 1, Separate Yield Line Case

 br 2 bs

1 i1   1 i3

Kh2 hs   1 3  pb

3 br    1    pa 2  pb   hH

hs

Kh Kh2   i2 br    Kh

2 hs   1

 br 2.121 m   Kh 1.571   hH 1.42 m

h1 hH 1 i1   h1 2.008 m   h3 hH 1 i3   h3 2.008 m

Combined horizontal distances greater than total width, NOT a valid possibility,

mabnab hs   br    1    pa   2  pb

8i2 br 

4 hs

hs

hH

 

 

 

 

mab 0.987

  kN m

m

m1 mab   m3 mab   m2 mab

Possibility 2, Combined Yield Line Case

 Nab nab 1    pb  pa   Ap br     Ap 2.121 m

Bp2 hs

1 i2

1    pb   2  pa

1 3  pa

Bp 7.071 m

Page 4: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 4/9

mba  Nab Ap   Bp

8 1  Bp

Ap

  Ap

Bp 

   

mba 1.093

 kN m

m

h1  br 

21 i1   h3

  br 

21 i3   h2

  6 mba   1 i2( )

nab 1 3  pa

h1 1.5 m   h3 1.5 m   h2 2.204 m

m1 mba   m3 mba   m2 mba

M1end if mab mba   mab   mba( )   M1end 1.093 kN m

m

M1side mbaM1side 1.093

 kN m

m

Case 2:

Edge fixity ratio

Side ratios   i1 0   i3 0 bottom ratio   i2 1

Possibility 1, Separate Yield Line Case

 br 2 bs

1 i1   1 i3

Kh2 hs   1 3  pb

3 br    1    pa 2  pb   hH

hs

Kh Kh2   i2 br    Kh

2 hs   1

 br 3 m   Kh 1.111   hH 1.843 m

h1 hH 1 i1   h1 1.843 m   h3 hH 1 i3   h3 1.843 m

Combined horizontal distances greater than total width, NOT a valid possibility

mabnab hs   br    1    pa   2  pb

8i2 br 

4 hs

hs

hH

 

 

 

 

mab 1.768

 kN m

m

Page 5: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 5/9

m2 mab

Possibility 2, Combined Yield Line Case

 Nab nab 1    pb  pa   Ap br     Ap 3 m

Bp2 hs

1 i2

1    pb   2  pa

1 3  pa

Bp 7.071 m

mba   Nab Ap   Bp8 1

  Bp

Ap

  Ap

Bp 

   

mba 1.893

 kN mm

h1  br 

21 i1   h3

  br 

21 i3   h2

  6 mba   1 i2( )

nab 1 3  pa

h1 1.5 m   h3 1.5 m   h2 2.901 m

m2 mba

M2end if mab mba   mab   mba( )   M2end 1.893 kN m

m

Summary of Moments

 As noted in Ref [1], yield line moments should be increased by 10% to account for the

approach producing an upper bound solution

incfact 1.1

Maximum base moment, from pinned case   Mbase incfact M2end   Mbase 2.083 kN m

m

Maximum side moments, from fixed case   Mside incfact M1side   Mside 1.202 kN m

m

Page 6: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 6/9

FLEXURAL DESIGN

Limiting depth ratio   xdlim 0.448

Stress block factors     0.85   0.8

c   0.0035Maximum concrete strain

Wall design

Minimum reinforcement Af    0.26 f ctm   f yk 1

  Afmin   if Af    0.15%   0.15%   Af 

Asmin   Afmin bw   d   Asmin   172.413 mm2

Minimum steel Provide R10 @ 450 mm Aspv_min   174  mm

2

m

Positive moment per meter    Mpm Mbase 1   m   Mpm 2.083 kN m

Balanced moment capacity ratio   mlim    xdlim   1    xdlim   mlim   0.23

Normalized moment ratio   mk Mpm bw d2

  f cd1

  mk 0.033

Steel area, zero means need compression reinforcement

Asl if mk mlim   1 1 2 mk    bw d   f cd

f yd

  0

Asl 129.899 mm

2

Provide R10@300   Aspv 262  mm

2

m

Provided steel in wall As_wall = R12@150   As_wall 753  mm

2

m

Page 7: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 7/9

Buttess Loads Estimation

Buttress size (width)   Ts 400 mm

Cover to main reinf.   cv 30 mm

Effective depth   d Ts cv   d 0.37 m

From above, distributed lateral pressure   fcc Fc hs bs   1

  fcc 2.7kPa

UDL estimation on the buttress   fh fcc bs   fh 8.1kN m   1

Moment at base of buttress   Mb 0.5 fh   hs2

  Mb 101.25kN m

Shear at the base   Fb fh hs   Fb 40.5kN

Minimum reinforcement Af    0.26 f ctm   f yk 1

  Afmin   if Af    0.15%   0.15%   Af 

Asmin   Afmin bw   d   Asmin   850.569 mm

2

Minimum steel Provide 3R20 Aspv_min   942 mm2

Positive moment   Mpm Mb   Mpm 101.25kN m

Balanced moment capacity ratio   mlim    xdlim   1    xdlim   mlim   0.23

Normalized moment ratio   mk Mpm bw d2

  f cd1

  mk 0.065

Steel area, zero means need compression reinforcement

Asl if mk mlim   1 1 2 mk    bw d   f cd

f yd

  0

Asl 1.303 10

3

  mm

2

Page 8: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 8/9

Provide 4R20   Aspv 1256 mm2

Not far from that required.

Shear + Torsion Design

Torsional moment per meter for design   mt Mside   mt 1.202 kN m

m

Torsional moment at the base   Mt mt hs   Mt 6.009 kN m

 Area of section   A_but Ts2

  A_but 0.16 m2

Circumference of section   C_but 2 Ts Ts( )   C_but 1.6m

Thickness of box section   t_but A_but C_but  1

  t_but 0.1m

 Area within centre line   A_tors Ts t_but( )2

  A_tors 0.09m2

Perimeter of centreline   C_ctr 4 Ts t_but( )   C_ctr 1.2m

B: Crushing strength of concrete

g   22  Angle in radians   rg   g   180  1

  cot   cot rg

1   0.6 1 f  ck   250 MPa( )   1 1   0.552

VRdmx

0.9 Ts   d 1   f cd

cot rg   tan rg   VRdmx   340.505 kN

Maximum Shear possible

Maximum Torsion possible   TRdmx

1.33  1   f ck    A_tors   C_ctr 

cot rg   tan rg   TRdmx   550.79 kN m

Page 9: Wall Final Calcs

7/23/2019 Wall Final Calcs

http://slidepdf.com/reader/full/wall-final-calcs 9/9

Check shear-torsion interaction equation

STratFb

VRdmx

Mt

TRdmx

  STrat   0.13 We are ok

Shear reinforcment ratio   AswS Fb 0.78d f  yk    cot   1

  AswS 0.227 mm

2

mm

Torsional reinf. ratio   AsTS Mt A_tors 0.87   f yk    cot   1

  AsTS 0.124 mm

2

mm

Total link reinforcement   AsLS AswS AsTS   AsLS 0.351 mm

2

mm

Use R8@275 mm   AsLpv 0.3658  mm

2

mm

Link spacing should be based on longitudinal steel size to stop buckling

Use R8@150 mm as steel to be used. Note that we must have crossing links

since Torsion is an issue

Longitudinal Torsional steel

As_Tor   Mt C_ctr    cot

2 A_tors   0.87   f yk    As_Tor 455.905 mm

2

Need to add 4R12 to the longitudinal steel at the corners to account for Torsion.