W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

42
W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics

Transcript of W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Page 1: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

W. HofmannMPI für KernphysikHeidelberg

Instrumentation forAstroparticle Physics

Page 2: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Grav. waves

Axions

Mono-poles

Electromagneticradiation -> 100 TeV

Cosmic rayparticles -> 1020 eV

Neutrinos(MeV: sun, SNGeV: atmospherePeV: CR accerators)

Dark matter

Page 3: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

State of the field: a charming infant

Radio

Optical

UV

X-Ray

Gamma

IR

1

100

10000

1000000

100000000

101210610010-6

Energy [eV]

Peak detected fluxDetection threshold

Neutrinos (?)1

10

100

1000

10000

100000

1960 1970 1980 1990 2000 2010

Num

ber

of s

ourc

es

Year

Gamma (GeV)

Gamma (TeV)

Uhuru

Einstein

Ginga

Rosat

CGRO

COS-B

SAS-2

GLAST

Cherenkovtelescopes

X-Ray (keV)

Radio

Optical X-Ray

Gamma

100

101210610010-6

Energy [eV]

Angular resolution [degr.]

10-2

10-4

10-6

Neutrinos

Fluxsensitivity

Fluxsensitivity

Angularresolution

Angularresolution

Numberof sources

Numberof sources

Astrophysicswith gamma raysand neutrinos

Astrophysicswith gamma raysand neutrinos

Page 4: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Gamma rays and cosmic rays

Electromagneticradiation -> 100 TeV

Cosmic rayparticles -> 1020 eV

Page 5: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

The big issues in cosmic-ray physics

• at low (GeV – TeV) energy: antiparticles in cosmic rays? AMS• at medium (PeV) energy elemental composition, change in composition at knee? (KASKADE,…)• at high (EeV) energy spectrum, particles beyond GKZ cutoff? AUGER

• Sources of cosmic rays traced in the light of (secondary) gamma rays

-yield = CR density x target density EGRET~ 100 MeV

eV

Page 6: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Propagation of electromagnetic radiation

In the Earth’satmosphere

In space

Horizondue to inter- actions

100

101102

103104

105106

107108

1010 1011 1012 1013 1014 1015 1016 1017R

ange

[kpc

]E [eV]

Size of Milky Way

Nearest galaxy

Mkn 501

Gam

ma r

ay

X-R

ay

Ult

ravio

let

Infr

are

d

Radio

Sea level

500 km

100 km

10 kmV

isib

leAir shower Fluorescence light Radio waves Cherenkov light Particles at ground level

similar effect: Cosmic-ray propagationcuts off at 1020 eV

Page 7: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

GeV/TeV CR: Alpha Magnetic Spectrometer

AMS-01 (1998) AMS-02 on ISS

Page 8: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

GLAST: -rays in the GeV energy range

Page 9: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Che

renk

ov-L

ight

Image of the shower in the PMT camera

Effectivedetection area:~ 50000 m2

~ 120 m

~ 120 m

VHE air shower detectors: Cherenkov telescopes

100 photons/m2 TeVwithin a few ns

~ 1o

ImageOrientation shower directionIntensity energy of primaryShape type of primary

Page 10: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Telling -rays from hadronic cosmic rays

p (?)

p (?)x x

x x

z z

y y

Page 11: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

The imaging atmospheric Cherenkov technique

Pioneered by theWHIPPLE group

Perfectioned in CAT telescope

WHIPPLE490 PMTcamera

Stereoscopywith HEGRA

Page 12: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Four eyes see better than one: H.E.S.S. (and VERITAS, CANGAROO, …)

12 m Cherenkov telescopesunder construction in Namibia

Combine Stereoscopy from HEGRA telescopes• improved angular resolution• enhanced background suppressionTrigger and fine pixels from CAT telescopesMonitoring from Durham telescopes

• 100 m2 mirror• 15 m focal length• 960 PMT camera• 1 GHz analog pipeline• 50 GeV threshold• 10 times improved sensitivity cf. HEGRA

Page 13: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Source hunting with MAGIC

• 17 m dish, 220 m2 active mirror• low weight fast positioning• high-speed optics and electronics• initial PMT camera• later GaAsP and APD detectors 10 GeV threshold

Aluminum mirrors

PMT with hemispherical windowand optical signal transmission

Page 14: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Sensitivity and limitations of the technique

Angular resolution, cosmic-ray rejection limited by• Shower fluctuations• Earth magnetic fieldAlso, light yield depends on height!

Angular resolutionfor “ideal” detector

Side view of shower

Irreducible background• Cosmic-ray electronscan only be discriminated on the basis of shower direction.

Hard to go beyond mCrabsensitivities with the imaging Cherenkov technique …

Page 15: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Better vision – novel photon detectors

0

500

1000

1500

2000

2500

0 5 10 15 20 25

Co

st [

Eur

o]

Dish diameter [m]

Cost of dish

Cost of camera

Better photon detectorsfor Cherenkov telescopes• allow large savings• improve performanceneed m2 cathode area …

~ 15%

~ 22%

~ 62%

• Hybrid PMTs• GaAsP limited to few 100 mm2

• Si (APD) even smaller, QE below CCD

Page 16: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

An alternative approach: non-imaging detectors

STACEE

Large mirror area and hencelow energy threshold

Poor cosmic-ray rejectionSignificant learning curveCELESTE sees Crab at 50 GeV

Competitive in the long run?

CELESTE secondaryreflector and PMTs

Page 17: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Tail catchers: particle detectors

Tibet air shower array(Scintillators)

Milagro, Los Alamos(Water Cherenkov)

ARGO,Tibet(RPC array)

High altitude andlarge area coverage

Avantages• large solid angle • 100% duty cyleDisadvantages• TeV+ threshold• marginal (Crab-level) sensitivityComplementary to Cherenkov telescopes planned

Page 18: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

The ultimate experience: AUGER

Air shower detector• 3000 km2 area• two detector technologies particle detectors fluorescence telescopes• ~ 20000 events > 1019 eV• ~ 100 events > 1020 eV

1600 detectors1.5 km spacing

Page 19: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

AUGER fluorescence detectors

Page 20: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

AUGER performance

Detection area

Simulated spectrum

Page 21: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

The view from above: OWL

Threshold: 1019-1020 eVEff. area: few 106 km2sr

CR

106 pixel focal planeflat panel PMTs ? > 50o field of view

Page 22: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.
Page 23: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Neutrinos(MeV: sun, SNGeV: atmospherePeV: CR accerators)

Page 24: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

High-Energy Neutrino Astrophysics

Proton accelerators generate roughly equal numbersof gamma rays and neutrinos !

• Neutrinos are not absorbed in sources; they escape even from strong sources• Neutrinos do not interact during propagation

Background: atmospheric neutrinos

Signal from cosmic accelerators

Page 25: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Scientific AmericanExtreme Engineering Issue

Seven wonders of modern astronomy• The sharpest• The biggest• The farthest flung• The most extensive• The swiftest• The deadliest• The weirdest: AMANDA at the south pole

AMANDA II (2000)

4 strings

10 strings

19 strings, eff. area ~ 5x104 m2

Page 26: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Detection: Cherenkov light in water / ice

1 km deep under water / ice

ICE CUBE,ANTARES:1000000000 m3

~ 5000 PMTsThreshold ~ 1 TeV

Key difference:

Ice / AMANDA II: ~ 100 m absorption length, ~ 20 m scattering length diffusive component angular resolution 1.2o

Water / ANTARES, NESTOR ~ 60 m absorption length, ~ 200 m scattering length angular resolution 0.2o

Page 27: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Instrument R&D

• Optical module design• Deployment schemes• PMTs• Signal transmission• Digital modules

Module withoptical signaltransmission(AMANDA)

ARS 1 GHz analog ring sampler ASICwith digital signalprocession(ANTARES)

ANTARESDemonstrator

Page 28: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

AMANDA at the South Pole

-Sky (AMANDA ’97)

Page 29: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

ICECUBE

80 “Strings” of 60 PMTsin 1400 – 2300 m depth

Physics issues (ICECUBE, ANTARES, NESTOR):- neutrinos from CR accelerators- neutrinos from DM annihilation- atmospheric neutrinos, oscillations- magnetic monopoles- galactic supernovae- …

Page 30: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Solar neutrinos

Super-Kamiokande:the neutrino image of the sun

Page 31: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Detectors for solar (MeV) neutrinos

BOREXINO,KAMLAND(2):Liquid Scintillator

SuperKamiokandeWater Cherenkov

e

e

e

D p p

e

SNO: Heavy-Water Cherenkov

e

e

LENS:Liquid Scintillatorwith “Tag”

Yb Lu*

e e

pp

Be

pep

50 ns

-flavor no (NC) yes (CC) no (NC) yes (CC)-energy res.poor good poor goodthreshold 4-5 MeV 4-5 MeV 1 MeV 0.3 MeV

Page 32: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Alternative techniques

HERON: superfluid He;evaporation by photons/rotonsand scintillation

ICARUS: liquid argon DC

HELLAZ: TPC

air shower

delta-ray

Page 33: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Darkmatter

Page 34: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

The dark side of the universe

CMB (Boomerang, Maxima)High-z Supernovae, BBN

~ 1.0M ~ 0.2-0.3B ~ 0.03 – 0.05

most matter is dark, nonbaryonic

Particle physics candidates, e.g.WIMPs, accumulate in the halo of galaxies (local density 0.3 GeV/cm3)

Page 35: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.

Searching for WIMPs

Principle: elastic scattering on nuclei

Typ. recoil: a few 100 eV / GeV WIMP massTyp. rate: a few events / kg / day

)cos1()( 2

2

Mm

Mmvm

W

WWRE

WIMPRecoil

Phonons

Ionization

Light

Page 36: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.
Page 37: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.
Page 38: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.
Page 39: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.
Page 40: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.
Page 41: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.
Page 42: W. Hofmann MPI für Kernphysik Heidelberg Instrumentation for Astroparticle Physics.