Vortex de Mexico Rodriguez

download Vortex de Mexico Rodriguez

of 15

Transcript of Vortex de Mexico Rodriguez

  • 8/10/2019 Vortex de Mexico Rodriguez

    1/15

    VENTILATIONSYSTEMDESIGNFORAROADWAYTUNNELINACAPULCO,MXICO

    Alejandro Rodrguez, Arturo Palacio, Andrs AramayoInstituto de Ingeniera de la UNAM

    ap. post. 7!"7#, $oyoacan, M%ico &.'., "()

    &ate* +uly )-$omputer and operating system used* P/7(, P!U0 .(P12NI$3 4ersion #.)

    Abstract

    56ere are se4eral industrial met6ods or tunnel 4entilation system design. Inparticular, or tunnels 86ere a%ial lo8 ans are applica9le, t6ere are specializedcomputer programs t6at calculate t6e 4arious pressure drops t6at consider 8allriction and local losses due to signs and appurtenances, and considering 4e6icleemission actors 9ased on up!6ill or do8n!6ill conditions, determine t6e num9er oa%ial ans t6at satisy t6e tunnel 4entilation re:uirements. ;ased on drag coeicientactors, t6ey can also estimate t6e eect o a4oura9le or ad4erse traic lanedirection.

    m tunnel t6at 8ould reduce access time to t6e port city o Acapulco,Me%ico, rom ) 6 to ) minutes, a P12NI$3 simulation 8as perormed t6at 8ould

    optimize t6e num9er and distri9ution o a%ial lo8 ans.

    56e model 8as set up or t6e prototype dimensions o t6e Acapulco 5unnel andsimulations 8ere perormed 9ased on ma%imum $1 concentration criterion,considering t6ree lane traic 8it6 t8o ad4erse and one a4oura9le 8it6 t6e a%ial anlo8. ;ased on t6e analysis o results, t6e num9er o ans implemented in t6eoperating tunnel 8as signiicantly reduced rom a design deri4ed rom t6eaorementioned computer programs.

    Objective of work

    56e main o9jecti4e o t6e 8or> presented 8as to determine t6e num9er andarrangement o jet ans to 9e installed in t6e Acapulco 5unnel t6at 8ill ensure an air:uality t6at meets international standards or 4e6icle occupants.

    &uring t6e design stage o t6e 4entilation system or t6is tunnel, :uestions arose as86et6er to apply a cement coating inis6 on t6e 8alls to reduce t6e suraceroug6ness, and 86et6er t6e re:uired num9er o ans as speciied 9y t6e specialisedprograms e%ceeded t6e design constraints.

  • 8/10/2019 Vortex de Mexico Rodriguez

    2/15

    Description of phenomenon simulated

    56e ne8 sc6emes or tunnel 4entilation are more suited or t6e longitudinal systems

    since t6ey are generally s6orter or 6a4e 9een 9uilt as t8in!tu9es or one!8ay traic,86ere t6e piston eect o t6e traic 8ill com9ine 8it6 t6e ans to produce t6e re:uired4entilation lo8. ?ongitudinal 4entilation oers a relati4ely simple and c6eap met6odor 4entilating road tunnels. 'urt6er, t6is arrangement oers t6e 9est response to t6emost eared o tunnel incidents t6at is a ire. A semi or ully trans4erse system oerst6e most positi4e met6od o smo>e remo4al rom a tunnel. In a longitudinal systemt6e smo>e must 9e remo4ed along t6e traic space and t6ereore operationalprocedures or t6e tunnel must 9e prepared to ensure ma%imum saety or users.

    no8n :uantity in most longitudinal 4entilation systemdesigns. 1pposing 8inds 8ill slo8 do8n t6e tunnel airlo8. In any design suicientans are to 9e pro4ided to create an ade:uate air supply on all 9ut t6ose occasions86en traic congestion coincides 8it6 strong ad4erse 8inds. Measurement o t6e4elocity and direction or t6e 8ind e%terior to t6e tunnel 8ould 9e ideal, 9ut unlesst6ere is suicient data accumulated to deri4e t6e eects on t6e tunnel air!lo8, t6isapproac6 8ill 9e rustrated 9y local tur9ulence.

    $urrent design practice allo8s a ma%imum $1 concentration o )( ppm asrecommended 9y t6e PIAR$ Permanent International Association o Road$ongressesB or lo8ing traic. It s6ould 9e remar>ed t6at 6ea4y smo>ers aree%posed to muc6 6ig6er concentrationsC t6e air e%6aled is around )-( ppm o $1,concentration in t6e smo>e in6aled is e4en 6ig6er. 56is is t6e most signiicantparameter or t6e saety o 4e6icle passengers. 56e ot6er design parameter is4isi9ility t6at is mainly aected 9y particle emissions rom diesel engines, 9ut t6is isnot a signiicant pro9lem in longitudinal 4entilation tunnels as t6ey are limited in t6ema%imum tunnel lengt6.

    Dualitati4e

    56e induced lo8 in a tunnel 9y t6e stream o a jet an is a conse:uence o t6emomentum e%c6ange o t6e 6ig6 speed jet 8it6 t6e air lo8 in t6e tunnel section int6e pro%imity o t6e an, in a similar as6ion as it is eected in a jet!pump. 58oimportant e%c6ange zones can 9e distinguis6ed* in t6e output region o t6e an 86eret6e pro%imity o t6e tunnel ceiling allo8s or a 6ig6 momentum sin> due to riction,and do8nstream 9et8een ans 86ere most o t6e mi%ing ta>es place. Ideally t6e4elocity deceleration increases t6e static pressure in t6e tunnel 86ic6 in turn dri4es

    t6e lo8 against t6e riction pressure loss. o8e4er, t6ere are t8o actors t6at

  • 8/10/2019 Vortex de Mexico Rodriguez

    3/15

    decrease t6e eiciency o t6is momentum transer process* tur9ulent dissipation int6e jet mi%ing process and lo8 separation zones in t6e 4icinity o t6e an. 5o :uantiyt6ese eects proper grid resolution is re:uired in t6e Enear ieldE o t6e an inlet andoutlet.

    2%perimental data regarding t6e inluence o 8all pro%imity on an jet to tunnel airmomentum e%c6ange is limited, 9ut t6ere is an attac6ment o t6e jet to t6is 9oundaryt6at tends to increase t6e riction losses gi4en t6e 6ig6 speed o t6e jet. Ad4antagescan t6ereore 9e ound in an optimum jet a%is inclination to t6e 6orizontal direction.

    Anot6er source o momentum source/sin> is t6e Fpiston eectF induced 9y t6e 4e6icledrag.

  • 8/10/2019 Vortex de Mexico Rodriguez

    4/15

    kc==

    2t

    t "B

    86ere c6as a constant 4alue o .C and t6e 3c6midt num9er or t6e concentration o

    car9on mono%ide COis cG ).

    @all unctions or t6e logarit6mic 4elocity proile are used in all solid suraces o t6etunnel 9oundaries, 86ere it is assumed t6at tur9ulence is in local e:uili9rium. 5unnelinlet and outlet 9oundary conditions are a prescri9ed reerence pressure t6at is t6e9arometric pressure i.e. zero gage pressureB. A local loss o one 6al t6e calculateddynamic pressure at t6e inlet is also prescri9ed.

    56e jet ans are simulated as i%ed momentum sources 8it6 a prescri9ed design

    4elocity 4alue at its outlet, 86ile solid 9oundaries are speciied or t6e an casing.He6icle drag as a source o sin> o momentum is depicted as t8o 6orizontal and t8o4ertical mo4ing plates or eac6 o t6e t6ree traic lanes t6at 6a4e a i%ed 4elocity o >m/6. Regarding traic direction, t6e most ad4erse case is considered 86ere in t8olanes traic direction is against t6e air lo8 and one lane is in t6e air lo8 directioninduced 9y t6e jet ans.

    'or car9on mono%ide $1B concentration, it is assumed t6at t6e air at t6e inlet 6as zeroconcentration and zero gradient at t6e outlet. He6icle emissions 8it6in t6e tunnel isrepresented as a line source o (.( ppm/m=sB per lane J;aug6 et al )-7BK, 86ic6corresponds to t6e design 4e6icular density o ),=-) p4/6 p4 *G passenger 4e6icleB per

    lane 8it6 an emission actor o $1G ) m=/6.p4B. It s6ould 9e remar>ed t6at t6e U.3.emission actor standard or )- 8as . m=/6.p4B and #.) m=/6.p4B in )7.Preliminary calculations s6o8 t6at ) air 4olume c6anges per 6our 8ould allo8suicient dilution o t6e $1 gas so t6at t6e ma%imum concentration 8ould 9e )( ppm.56is is a lo8 rate o 7) m=/s. $onsidering t6e tunnel lengt6 and cross section area,t6e speciic lo8 rate is #"= m=/s.>mB, and t6e a4erage air 4elocity is -.# m/s.

    5o o9tain t6is airlo8, t6e num9er o jet!ans and t6eir arrangement 8it6in t6e tunnel8as in4estigated. 56e "( >@ rating jet!ans 6a4e a t6rust o #.- >N considering an airdensity o ).) >ga/m

    =, a jet area at t6e e%it o #.-" m #, and an e%it 4elocity o =" m/s.56e supplier o t6e ans 6ad proposed t6at rom =( to " jet!ans 8ere re:uired toguarantee suicient dilution o $1 emissions, 9ut preliminary calculations 8it6 t6edesign 4alues s6o8ed t6at t6ese num9ers 8ere o4er rated. 58o dierent arrangementso #) or #" jet!ans 8ere t6ereore numerically simulated. 56e ans 8ere distri9utedalong t6e tunnel in our groups, 8it6 t8o or t6ree in t6e cross section o t6e tunnel,

    56e geometrical c6aracteristics o t6e Acapulco 5unnel are a lengt6 o #,"7 m, a crosssectional area o -7."" m#, 8it6 a 6ydraulic diameter o . m. 56e cross section o t6etunnel is appro%imated 9y a rectangular s6ape 8it6 7 9y cells in t6e 0 and Ldirections 8idt6 4ersus 6eig6tB, and )( in t6e direction. 56e computational domainis t6ereore di4ided into ,7- 4olume cells. 5o 6a4e a good resolution o t6e

  • 8/10/2019 Vortex de Mexico Rodriguez

    5/15

    momentum transer in t6e near!ield o t6e jet!ans, t6e grid 8as made iner t6erein, andcoarser in t6e tunnel region 9et8een t6e groups o jet!ans.

    56e D) input ile is included in t6e appendi%, and t6ere 8as no modiication o t6e

    standard ground. ile. 5ypical rela%ation parameters 8ere implemented to o9taincon4ergence 8it6 a mac6ine run time o " 6ours "( minutes.

    resentation of results

    14er4ie8 o cases presented

    'or t6e case o cement inis6ed tunnel 8alls 8it6 a surace roug6ness o =mm, t6ere8as an impro4ed perormance or #" jet!ans o4er #), 8it6 = ans in t6e cross sectionas $1 concentrations 8ere lo8er t6an ) ppm in t6e last ( m o t6e tunnel, 8it6

    lo8 rates o 7 o4er 7) m=/s. $onsidering #) jet!ans t6ere 8as a small increaseo lo8 rate 8it6 = ans in t6e cross section instead o #, i.e. 7) o4er 7) m =/s. 56elo8 rate decreased to -7 m=/s or # jet!ans, # in t6e cross section.

    5o 6a4e more realistic results, anot6er simulation 8as eected t6at considered t6emomentum source and sin> t6at is due to t6e 4e6icle drag in t6e t6ree tunnel lanes.An increase in 8all!roug6ness 8as also considered due to tunnel appurtenancessuc6 as signs, ca9le ducts, or 86ic6 a riction actor o .#( 8as implemented t6atcorresponds to an e:ui4alent 8all roug6ness o #.( cm.

    In t6is case t6e lo8 rate o9tained 8it6 #" jet!ans, # in t6e cross section, 8as "m=/s, a =7 reduction. o8e4er, t6e ma%imum $1 concentration 8as )"- ppm nearground le4el at ## m rom t6e e%it portal, 86ic6 is under t6e )( ppm design limit.56e momentum sin> or t6e t8o counterlo8 lanes 8as ##.#( >N, 86ile t6emomentum source or t6e concurrent lane 8as =.# >N.

    Results selected or discussion

    56e results presented are in a 4ertical plane along t6e tunnel lengt6 t6e L! planeB.'or t6e @ 4elocity contours t6e 4ertical planes correspond to t6e location o t6e jet!ans and t6e central planeC 86ile or t6e $1 concentration contours, t6e 4ertical

    planes correspond to t6e t6ree 4e6icle lanes. It s6ould 9e noted t6e 4ertical scale isampliied # times gi4en t6e lengt6 to 6eig6t aspect ratio o t6e tunnel.

    'igure ) s6o8s t6e @!4elocity contours 86ere JaK is in t6e plane o concurrent planetraic lo8, J9K is in t6e central plane 8it6 a countercurrent lane, and JcK is in t6e planeo t6e countercurrent lane nearest t6e tunnel 8all. 56e jet momentum transer can 9eappreciated in t6e upper part o t6e tunnel, as can 9e seen in JaK and JcK. 1nly incertain regions is t6e a4erage 4elocity o (." m/s o9ser4ed. 'urt6er, it can 9e seent6at near ground le4el or t6e t8o counterlo8 lanes, J9K and JcK, t6ere is a negati4e4elocity o O m/s, 86ic6 cause recirculation zones at t6is le4el and across t6e tunnel8idt6. In t6e plane o t6e counterlo8 lanes t6ere is a signiicant 4ertical 4elocity

    gradient in t6e 9ottom 6al o t6e tunnel, 86ic6 is a9sent in t6e concurrent lo8 lane,

  • 8/10/2019 Vortex de Mexico Rodriguez

    6/15

    as can 9e seen in JaK. 56e momentum source or t6is lane is =.# >N, 86ile t6emomentum sin> or t6e counterlo8 lanes is ##.#( >N.

    'ig. ) 5unnel a%ial 4elocity contours in t6e 4ertical planes o t6e concurrenttraic lo8 lane JaK, and t6e t8o countercurrent traic lo8 lanes, J9K

    and JcK. 56e jet!ans are in t6e planes o JaK and JcK.

    56e eect o aerodynamics generated 9y t6e jet!ans on t6e spatial distri9ution o $1concentration is depicted in 'ig. #, 86ere again ground le4el 4ertical gradients aresigniicant, and on t6e top 6al o t6e tunnel t6ey are small. 56ese contourscorrespond to t6e same lanes as in 'ig. ), and it is in t6e concurrent lane t6at t6ema%imum concentration le4el o )"- ppm is reac6ed near ground le4el at a distance## m rom t6e e%it portal. 56is is due to t6e assumption t6at t6e t8o countercurrentlanes entrain res6 air into t6e tunnel, and t6ereore t6e concentration in t6ese t8olanes is lo8er near t6e e%it. It can 9e appreciated t6at in t6e second 6al o t6e

  • 8/10/2019 Vortex de Mexico Rodriguez

    7/15

    tunnel, ground le4el concentrations are 6ig6er t6at ) ppm, 9ut t6e sectiona4eraged concentrations are lo8er.

    'ig. # 5unnel a%ial $1 concentration contours in t6e same 4ertical planes asin t6e pre4ious igure. In t6e 9ottom 6al o t6e tunnel t6econcentration gradients are signiicant in t6e 4ertical direction, 86ile in

    t6e top 6al t6ey are in t6e 6orizontal direction.

    56is is o9ser4ed in 'ig. = 86ere t6e $1 concentration contours are s6o8n or atrans4ersal plane ## m orm t6e tunnel e%it portal 86ere t6e 6ig6est 4alue 8ascalculated, )"- ppm. Practically 7( o t6is area 6as a concentration 9et8een ))and )# ppm in t6e upper part o t6e tunnel. 56e eect o res6 air entrainment o t6et8o countercurent traic lo8 lanes is clearly seen near ground le4el. 56ese resultsimply t6at t6ere is not muc6 trans4ersal mi%ing 9et8een t6e opposing direction lanes.

  • 8/10/2019 Vortex de Mexico Rodriguez

    8/15

    'ig. = $ar9on dio%ide concentration contours in a trans4ersal 4ertical planet6at is located ## m rom t6e e%it portal, 86ere t6e ma%imum tunnelconcentration 8as calculated. It is assumed t6at t6e t8ocountercurrent traic lo8 lanes depicted on t6e let sideB entrain res6air rom t6e e%it portal.

    Discussion of results

    2%cept or t6e last # m, t6e calculations s6o8 t6at t6e pressure in t6e tunnel isnegati4e, and t6e pressure gradient is around )) Pa/>m. In terms o t6e momentum9alance t6e jet!an input is consumed in riction "B and 4e6icle drag B.

    Alt6oug6 t6ere is a good mi%ing eect 9y t6e air jets in t6e top part o tunnel, t6ereare 6ig6er concentration gradients in t6e 9ottom 6al t6at is caused 9y t6ecounterlo8 traic lanes 86ic6 considera9ly aect t6e a%ial 4elocity 8it6 recirculationzones.

    I t6e tunnel is unidirectional i.e. t6e t6ree lanes are 8it6 concurrent traic lo8B t6enor t6e same po8er input t6ere 8ould 9e a ( increase in t6e lo8 rate and a # decrease in t6e ma%imum $1 concentration.

    An eect t6at 8as not considered in t6e simulations 9ut t6at 8as o9ser4ed during aninspection o t6e operating Acapulco 5unnel, 8as t6e pressure dierence across t6etunnel e%it and entrance portals t6at induces an air lo8 in t6e tunnel. 56us t6e portal8ind eect tends to a9ate t6e $1 concentration pro9lem 86ic6 6as re:uiredoperation o t6e jet ans only or 4ery congested conditions. 56e jet!ans are

    re4ersi9le so t6at t6e portal pressure dierence can al8ays 9e used to ad4antage.

  • 8/10/2019 Vortex de Mexico Rodriguez

    9/15

    56e calculations perormed consider a $1 emission actor o ) m =/6.p4B 86ic6 is aconser4ati4e estimate o 4e6icle emission or t6e a4erage me%ican 4e6icular par>.

    Conclusions and )ecommendations

    A airly straig6tor8ard model t6at calculates t6e re:uired num9er o jet!ans or ana%ially 4entilated road8ay tunnel 6as 9een implemented in P12NI$3. 56e optimumdesign can 9e in4estigated 9ased on t6e spatially calculated car9on mono%ideconcentration distri9ution.

    56e o4erall eect o 4e6icle drag or countercurrent traic lanes is considera9leC andalt6oug6 it 8as 6erein simpliied 9y mo4ing platesQ t6e results are conser4ati4e t6uspro4iding a saety actorQ or t6e ma%imum ground le4el $1 concentrations allo8ed.

    56e calculations deri4ed orm an integral approac6 are 9ased on a 4ery roug6estimate o t6e o4erall riction actor, and t6e drag coeicient t6at is e%perimentallyderi4ed or one 4e6icle. 56e o4erall result 8ould tend to o4erestimate t6e re:uirednum9er o jet!ans.

    56e intermittent nature o 4e6icle drag eect s6ould 9e urt6er in4estigated to 6a4e amore realistic mi%ing eect o t6e ground le4el 4e6icle emissions, and or t6e anpo8er re:uirements or a design airlo8 rate.

    56e interaction o t6e 8ind on t6e tunnel portals and traic!induced airlo8s s6ouldalso 9e urt6er in4estigated in order to deri4e 8orst!case scenarios.

    56e present model can also 9e used to in4estigate a jet!an operational policy in caseo a ire inside t6e tunnel to ensure ma%imum saety or trapped 4e6icle passengere4acuation as 8ell as or ire ig6ters.

    *iterature )eferences

    ;aug6, +., @. Ray, '. ;lac> )-7B Motor 4e6icle emissions under reduced am9ient

    temperature idle operating conditions. Atmospheric +nvironment, #) )B,)"(!)(-.;erner, M., +.R. &ay ))B. Alternati4e met6ods or 4entilating long road tunnels.

    unnels - unnellin.Hol #= )B pp. "7!"-.$ory, ;., +. ?o8ndes, R. Matt6e8s )#B. 56e aerodynamics o tunnel lo8s

    induced 9y jet ans. unnels - unnellin.Hol #" )B pp. =)!==., +.M. et al )(B 'luid Mec6anics =rd 2dition, ?ongman 3cientiic and

    5ec6nical. U.S.?aunder, ;.2. y &.;. 3palding )7"B 56e Numerical $omputation o 5ur9ulent

    'lo8. $omp. Met6 in Appl. Mec6. and 2ng. =, p. #.?ud8ig, +.$., Din, .D., and 3palding, &.;. )B 56e P12NI$3 Reerence

    Manual or 4ersion ).(, $AM 5R/#, $AM ?td, ?ondon

  • 8/10/2019 Vortex de Mexico Rodriguez

    10/15

    Patan>ar, 3.H., and 3palding, &.;. )7#B A $alculation Procedure or eat, Massand Momentum 5ranser in 56ree!dimensional Para9olic 'lo8s, /nt' 0' of eatand ass ransfer, Hol. )(, )7-7!)-

    Pra, +. )-B. 56e design o long road tunnels* an o4er4ie8 unnels - unnellin.

    Hol #) )B pp. )7!).5Tnel Acapulco ! $lculo de la HentilaciVn )(B. Inorme de I$A INGENIERA, e9rero!

    mayo.

    Appendix

    D) input ile

    TALK=f;RUN( 1, 1);VDU=X11-TERM

    IRUNN = 1 ;LIBREF = 0

    ************************************************************

    Group 1 Ru! T"#$%TEXT( &' %#-f!, & "! %+#"o!; & $!% ----)

    ************************************************************

    Group & Tr!"%!+%

    TEAD. = T

    ************************************************************

    Group /, ', Gr" I!for2#"o!

    * 34%r$$ !u25%r of +%$$, RET(M,NX,N.,N6,#o$%r!+%)

    RET(M,7,8,19)

    * %# o4%r$$ o2"! %:#%!#

    * :u$# $# !2%

    XI= 1&&0E?01;.I= 7178E?00;6I= &9'7E?0/;RET(D,TUNEL )

    * %# o5@%+# :0

  • 8/10/2019 Vortex de Mexico Rodriguez

    11/15

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B19 )

    X3= '8E?00;.3= '88E?00;63= 1''E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&0 )

    X3= 778'E?00;.3= '88E?00;63= 1''E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&1 )

    X3= //&E?00;.3= '88E?00;63= 198'E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&& )

    X3= '8E?00;.3= '88E?00;63= 198'E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&/ )

    X3= 778'E?00;.3= '88E?00;63= 198'E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&' )

    X3= //&E?00;.3= '88E?00;63= &0'E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B& )

    X3= '8E?00;.3= '88E?00;63= &0'E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&8 )

    X3= 778'E?00;.3= '88E?00;63= &0'E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&7 )

    X3= //&E?00;.3= '88E?00;63= &'/7E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B& )

    X3= 778'E?00;.3= '88E?00;63= &'/7E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B&9 )

    X3= '8E?00;.3= '88E?00;63= &'/7E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B/0 )

    X3= //&E?00;.3= '88E?00;63= &7E?0/XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B/1 )

    X3= '8E?00;.3= '88E?00;63= &7E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B/& )

    X3= 778'E?00;.3= '88E?00;63= &7E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B// )

    X3= //&E?00;.3= '88E?00;63= &877E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B/' )

    X3= '8E?00;.3= '88E?00;63= &877E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B/ )

    X3= 778'E?00;.3= '88E?00;63= &877E?0/

    XI= 110E?00;.I= 110'E?00;6I= '000E?00;RET(B,B/8 )

    X3= 000E?00;.3= 000E?00;63= 000E?00

    XI= 1&&0E?01;.I= 000E?00;6I= &9'7E?0/;RET(B,I3 )

    X3= 000E?00;.3= 7178E?00;63= 000E?00

    XI= 1&&0E?01;.I= 000E?00;6I= &9'7E?0/;RET(B,TEC3 )

    X3= 1&&0E?01;.3= 000E?00;63= 000E?00XI= 000E?00;.I= 7178E?00;6I= &9'7E?0/;RET(B,RD1 )

    X3= 000E?00;.3= 000E?00;63= 000E?00

    XI= 000E?00;.I= 7178E?00;6I= &9'7E?0/;RET(B,RD& )

    X3= 000E?00;.3= 000E?00;63= &0E?0/

    XI= 1&&0E?01;.I= 7178E?00;6I= /'90E?0&;RET(B,B'1 )

    RET(6,1,7,1000E?00)

    RET(6,&,&,1000E?00)

    RET(6,/,,1000E?00)

    RET(6,',&,1000E?00)

    RET(6,,,1000E?00)

    RET(6,8,&,1000E?00)

    RET(6,7,&&,1000E?00)

    RET(6,,&,1000E?00)

    RET(6,9,,1000E?00)

    RET(6,10,&,1000E?00)

    RET(6,11,,1000E?00)

    RET(6,1&,&,1000E?00)

    RET(6,1/,/7,1000E?00)

    RET(6,1',&,1000E?00)

    RET(6,1,,1000E?00)

    RET(6,18,&,1000E?00)

    RET(6,17,,1000E?00)

    RET(6,1,&,1000E?00)

    RET(6,19,17,1000E?00)

    RET(6,&0,&,1000E?00)

    RET(6,&1,,1000E?00)

    RET(6,&&,&,1000E?00)

    RET(6,&/,,1000E?00)

    RET(6,&',&,1000E?00)

    RET(6,&,1&,1000E?00)

    ************************************************************

    Group 8 Bo

  • 8/10/2019 Vortex de Mexico Rodriguez

    12/15

    Group 7 Vr"5$% T3RE,3LVE,NAME

    3NE = T

    * No!-%fu$# 4r"5$% !2%

    NAME('7) =N3R ; NAME(') =M

    NAME('9) =DEN1 ; NAME(0) =ENUT

    * o$4% 4r"5$% $"#

    3LVE(1 ,U1 ,V1 ,1 ,KE ,E ,M )

    * #or% 4r"5$% $"#

    T3RE(ENUT,DEN1,N3R)

    * A"#"o!$ o$4%r op#"o!

    3LUTN(1 ,.,.,.,N,N,.)

    3LUTN(KE ,.,.,N,N,N,N)

    3LUTN(E ,.,.,N,N,N,N)

    ************************************************************

    Group T%r2 D%4"+%

    TERM (KE ,N,.,.,.,.,N)

    TERM (E ,N,.,.,.,.,N)

    NEENT = T

    ************************************************************

    Group 9 rop%r#"%

    R31 = 119E?00

    EL1 = GRND'

    ENUL = 1''E-0 ;ENUT = GRND/

    RT (E ) = 1/1'E?00 ************************************************************

    Group 10I!#%r-% Tr!f%r ro+%%

    ************************************************************

    Group 11I!"#"$"% VrHoro"#< F"%$

    FIINIT(KE ) = &000E-0' ;FIINIT(E ) = &//&E-0

    FIINIT(N3R) = 1000E?00

    No ATC% u% for #" Group

    RTGRD = F

    INIADD = F

    ************************************************************

    Group 1& Co!4%+#"o! ! "ffu"o! @u#2%!#

    ************************************************************

    Group 1/ Bou!r< p%+"$ our+%

    ATC (KE3URCE,AEM,1,7,1,8,1,19,1,1)

    C3VAL (KE3URCE,KE , GRND' , GRND' )

    C3VAL (KE3URCE,E , GRND' , GRND' )

    ATC (I3 ,ALL ,1,7,1,1,1,&,1,1)

    C3VAL (I3 ,U1 , GRND& , 000E?00)

    C3VAL (I3 ,1 , GRND& , 000E?00)

    C3VAL (I3 ,KE , GRND& , GRND& )

    C3VAL (I3 ,E , GRND& , GRND& )

    ATC (CARRIL1 ,ALL , &, &, &, &, 1,19,1,1)

    C3VAL (CARRIL1 ,1 , GRND& ,-1/E?00)

    C3VAL (CARRIL1 ,KE , GRND& , GRND& )

    C3VAL (CARRIL1 ,E , GRND& , GRND& )

    ATC (CARRIL& ,ALL , ', ', &, &, 1,19,1,1)

    C3VAL (CARRIL& ,1 , GRND& ,-1/E?00)

    C3VAL (CARRIL& ,KE , GRND& , GRND& )

    C3VAL (CARRIL& ,E , GRND& , GRND& )

    ATC (CARRIL/ ,ALL , 8, 8, &, &, 1,19,1,1)

    C3VAL (CARRIL/ ,1 , GRND& , 1/E?00)

    C3VAL (CARRIL/ ,KE , GRND& , GRND& )

    C3VAL (CARRIL/ ,E , GRND& , GRND& )

    ATC (CARRIL1,!ALL , &, &, 1, 1, 1,19,1,1)

    C3VAL (CARRIL1,1 , GRND& ,-1/E?00)

    C3VAL (CARRIL1,KE , GRND& , GRND& )

    C3VAL (CARRIL1,E , GRND& , GRND& )

    ATC (CARRIL&,!ALL , ', ', 1, 1, 1,19,1,1)

    C3VAL (CARRIL&,1 , GRND& ,-1/E?00)

    C3VAL (CARRIL&,KE , GRND& , GRND& )

  • 8/10/2019 Vortex de Mexico Rodriguez

    13/15

    C3VAL (CARRIL&,E , GRND& , GRND& )

    ATC (CARRIL/,!ALL , 8, 8, 1, 1, 1,19,1,1)

    C3VAL (CARRIL/,1 , GRND& , 1/E?00)

    C3VAL (CARRIL/,KE , GRND& , GRND& )

    C3VAL (CARRIL/,E , GRND& , GRND& )

    ATC (CARRoL1,%ALL , &, &, 1, 1, 1,19,1,1)

    C3VAL (CARRoL1,1 , GRND& ,-1/E?00)

    C3VAL (CARRoL1,KE , GRND& , GRND& )

    C3VAL (CARRoL1,E , GRND& , GRND& )

    ATC (CARRoL&,%ALL , ', ', 1, 1, 1,19,1,1)

    C3VAL (CARRoL&,1 , GRND& ,-1/E?00)

    C3VAL (CARRoL&,KE , GRND& , GRND& )

    C3VAL (CARRoL&,E , GRND& , GRND& )

    ATC (CARRoL/,%ALL , 8, 8, 1, 1, 1,19,1,1)

    C3VAL (CARRoL/,1 , GRND& , 1/E?00)

    C3VAL (CARRoL/,KE , GRND& , GRND& )

    C3VAL (CARRoL/,E , GRND& , GRND& )

    ATC (CARRoL15,>ALL , &, &, 1, 1, 1,19,1,1)

    C3VAL (CARRoL15,1 , GRND& ,-1/E?00)C3VAL (CARRoL15,KE , GRND& , GRND& )

    C3VAL (CARRoL15,E , GRND& , GRND& )

    ATC (CARRoL&5,>ALL , ', ', 1, 1, 1,19,1,1)

    C3VAL (CARRoL&5,1 , GRND& ,-1/E?00)

    C3VAL (CARRoL&5,KE , GRND& , GRND& )

    C3VAL (CARRoL&5,E , GRND& , GRND& )

    ATC (CARRoL/5,>ALL , 8, 8, 1, 1, 1,19,1,1)

    C3VAL (CARRoL/5,1 , GRND& , 1/E?00)

    C3VAL (CARRoL/5,KE , GRND& , GRND& )

    C3VAL (CARRoL/5,E , GRND& , GRND& )

    ATC (TEC3 ,NALL ,1,7,/,/,1,&,1,1)

    ATC (TEC3 ,NALL ,1,7,/,/,1,&,1,1)

    C3VAL (TEC3 ,U1 , GRND& , 000E?00)C3VAL (TEC3 ,1 , GRND& , 000E?00)

    C3VAL (TEC3 ,KE , GRND& , GRND& )

    C3VAL (TEC3 ,E , GRND& , GRND& )

    ATC (RD1 ,EALL ,7,7,1,/,1,&,1,1)

    C3VAL (RD1 ,V1 , GRND& , 000E?00)

    C3VAL (RD1 ,1 , GRND& , 000E?00)

    C3VAL (RD1 ,KE , GRND& , GRND& )

    C3VAL (RD1 ,E , GRND& , GRND& )

    ATC (RD& ,ALL ,1,1,1,/,1,&,1,1)

    C3VAL (RD& ,V1 , GRND& , 000E?00)

    C3VAL (RD& ,1 , GRND& , 000E?00)

    C3VAL (RD& ,KE , GRND& , GRND& )

    C3VAL (RD& ,E , GRND& , GRND& )

    ATC (MEX ,L3 ,1,7,1,/,1,1,1,1)

    C3VAL (MEX ,1 , 1000E?00, 000E?00)

    C3VAL (MEX ,KE , 000E?00, AME )

    C3VAL (MEX ,E , 000E?00, AME )

    ATC (ACA ,IG ,1,7,1,/,&,&,1,1)

    C3VAL (ACA ,1 , FIXVAL , 000E?00)

    C3VAL (ACA ,KE , 000E?00, AME )

    C3VAL (ACA ,E , 000E?00, AME )

    C3VAL (ACA ,M , 000E?00, AME )

    C3VAL (ACA ,M , 000E?00, 000E?00)

    ATC (FN01 ,IG ,&,&,,,9,9,1,1)

    C3VAL (FN01 ,1 , FIXVAL , /'00E?01)

    ATC (FN0& ,IG ,&,&,,,18,18,1,1)

    C3VAL (FN0& ,1 , FIXVAL , /'00E?01)

  • 8/10/2019 Vortex de Mexico Rodriguez

    14/15

    ATC (FN0/ ,IG ,&,&,,,&/,&/,1,1)

    C3VAL (FN0/ ,1 , FIXVAL , /'00E?01)

    ATC (FN0' ,IG ,&,&,,,'7,'7,1,1)

    C3VAL (FN0' ,1 , FIXVAL , /'00E?01)

    ATC (FN0 ,IG ,&,&,,,',',1,1)

    C3VAL (FN0 ,1 , FIXVAL , /'00E?01)

    ATC (FN08 ,IG ,&,&,,,81,81,1,1)

    C3VAL (FN08 ,1 , FIXVAL , /'00E?01)

    ATC (FN07 ,IG ,&,&,,,100,100,1,1)

    C3VAL (FN07 ,1 , FIXVAL , /'00E?01)

    ATC (FN0 ,IG ,&,&,,,107,107,1,1)

    C3VAL (FN0 ,1 , FIXVAL , /'00E?01)

    ATC (FN09 ,IG ,&,&,,,11',11',1,1)

    C3VAL (FN09 ,1 , FIXVAL , /'00E?01)

    ATC (FN10 ,IG ,&,&,,,1//,1//,1,1)

    C3VAL (FN10 ,1 , FIXVAL , /'00E?01)

    ATC (FN11 ,IG ,&,&,,,1'0,1'0,1,1)

    C3VAL (FN11 ,1 , FIXVAL , /'00E?01)

    ATC (FN1& ,IG ,&,&,,,1'7,1'7,1,1)

    C3VAL (FN1& ,1 , FIXVAL , /'00E?01)

    ATC (FB01 ,IG ,8,8,,,9,9,1,1)

    C3VAL (FB01 ,1 , FIXVAL , /'00E?01)

    ATC (FB0& ,IG ,8,8,,,18,18,1,1)

    C3VAL (FB0& ,1 , FIXVAL , /'00E?01)

    ATC (FB0/ ,IG ,8,8,,,&/,&/,1,1)

    C3VAL (FB0/ ,1 , FIXVAL , /'00E?01)

    ATC (FB0' ,IG ,8,8,,,'7,'7,1,1)

    C3VAL (FB0' ,1 , FIXVAL , /'00E?01)

    ATC (FB0 ,IG ,8,8,,,',',1,1)

    C3VAL (FB0 ,1 , FIXVAL , /'00E?01)

    ATC (FB08 ,IG ,8,8,,,81,81,1,1)

    C3VAL (FB08 ,1 , FIXVAL , /'00E?01)

    ATC (FB07 ,IG ,8,8,,,100,100,1,1)

    C3VAL (FB07 ,1 , FIXVAL , /'00E?01)

    ATC (FB0 ,IG ,8,8,,,107,107,1,1)

    C3VAL (FB0 ,1 , FIXVAL , /'00E?01)

    ATC (FB09 ,IG ,8,8,,,11',11',1,1)

    C3VAL (FB09 ,1 , FIXVAL , /'00E?01)

    ATC (FB10 ,IG ,8,8,,,1//,1//,1,1)

    C3VAL (FB10 ,1 , FIXVAL , /'00E?01)

    ATC (FB11 ,IG ,8,8,,,1'0,1'0,1,1)

    C3VAL (FB11 ,1 , FIXVAL , /'00E?01)

    ATC (FB1& ,IG ,8,8,,,1'7,1'7,1,1)

    C3VAL (FB1& ,1 , FIXVAL , /'00E?01)

    ATC (CCC1 ,V3LUME,&,&,1,1,1,19,1,1)

    C3VAL (CCC1 ,M , FIXFLU , 00E?00)

    ATC (CCC& ,V3LUME,8,8,1,1,1,19,1,1)

    C3VAL (CCC& ,M , FIXFLU , 00E?00)

  • 8/10/2019 Vortex de Mexico Rodriguez

    15/15

    ATC (CCC/ ,V3LUME,',',1,1,1,19,1,1)

    C3VAL (CCC/ ,M , FIXFLU , 00E?00)

    ALLA = &00E-0& ;ALLB = 000E?00

    ************************************************************

    Group 1' Do>!#r%2 r%ur% For ARAB

    ************************************************************

    Group 1 T%r2"!#% >%%p

    LEE = 000

    r%#r#($$)

    ELREF = F

    REFAC = 1000E-0&

    ************************************************************

    Group 18 T%r2"!#% I#%r#"o!

    ENDIT (1 ) = 1000E-0/ ;ENDIT (U1 ) = 1000E-0/

    ENDIT (V1 ) = 1000E-0/ ;ENDIT (1 ) = 1000E-0/

    ENDIT (KE ) = 1000E-0/ ;ENDIT (E ) = 1000E-0/

    ENDIT (M ) = 1000E-0/

    ************************************************************

    Group 17 R%$:#"o!

    RELAX(1 ,LINRLX, 1000E?00)

    RELAX(KE ,FALDT, 100E?00)

    RELAX(E ,FALDT, 100E?00)

    RELAX(M ,FALDT, 100E?0&)KELIN = 0

    ************************************************************

    Group 1 L"2"#

    ************************************************************

    Group 19 EART C$$ To GR3UND ##"o!

    GENK = T

    ************************************************************

    Group &0 r%$"2"!r< r"!#ou#

    EC3 = T

    ************************************************************

    Group &1 r"!#-ou# of Vr"5$%

    ************************************************************

    Group && Mo!"#or r"!#-3u#

    IXM3N = ' ;I.M3N = / ;I6M3N = 1/

    TT = -

    ************************************************************ Group &/F"%$ r"!#-3u# $o# Co!#ro$

    ITABL = 1

    No ATC% u% for #" Group

    ************************************************************

    Group &' Du2p For R%#r#

    ************************************************************

    MENAV(,RELX,DEF,11980E?00,10000E-0,0)

    MENAV(,R3,DEF,&00,0,1190E?00,1''0E-0)

    MENAV(,FLR,DEF,K-E,C3NTANT)

    T3