visakh

download visakh

of 46

Transcript of visakh

  • 8/3/2019 visakh

    1/46

    An Actuator Failure Tolerant

    Control Scheme for on UnderwaterRemotely Operated Vehicle

    Guide:Vinod.B.R

    Presented by,VISAKH.VM1 AEIRoll No 12

  • 8/3/2019 visakh

    2/46

    5/1/20122

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode Control Design

    a) General Caseb) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

    References

  • 8/3/2019 visakh

    3/46

    INTRODUCTION

    What is an ROV?

    What are the challenges?

    Actuator Failure Tolerant Control Scheme Usual Modules

    How this paper is organized?

    5/1/20123

  • 8/3/2019 visakh

    4/46

    5/1/20124 5/1/20124

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode Control Designa) General Case

    b) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

  • 8/3/2019 visakh

    5/46

    Mathematical Model of ROV

    5/1/20125

  • 8/3/2019 visakh

    6/46

    M Vehicle mass

    m - Addition mass

    Iz - Vehicle inertia moment around the z axis

    iz - Addition inertia moment

    Mc Resistance moment of the cable.

    5/1/20126

  • 8/3/2019 visakh

    7/46

    5/1/20127

    Forces produced by the cable traction corresponding to asubmarine current of velocity Vc with

    L cable length

    Tv - vehicle weight in the water

    W - weight for unit length of cablew - water density

    Cdc - drag coefficient of the cable

    Dc cable diameter

  • 8/3/2019 visakh

    8/46

    Rx and Ry are the drag forces along the x and y axes

    Cdi drag coefficient of the ith side wall

    Cri the packing coefficient

    Si area of the ith side wall

    5/1/20128

  • 8/3/2019 visakh

    9/46

    Md and Mr are the components of the drag torque around thez axis produced by the vehicle rotation and by the current

    Cd drag coefficient of rotation

    Cr - packing coefficient of rotation

    S - equivalent area of rotation

    d1,d2,d3 vehicle dimensions along xa, ya and za axes

    cangle between x axis and the velocity direction of current

    5/1/20129

  • 8/3/2019 visakh

    10/46

    Substituting (2) to (5) in (1),

    where the coefficients pi are tied to the physicalcharacteristics of the vehicle as given in table 1.

    5/1/201210

  • 8/3/2019 visakh

    11/46

    State Space ROV Model

    5/1/201211

  • 8/3/2019 visakh

    12/46

    5/1/201212

  • 8/3/2019 visakh

    13/46

    5/1/201213 5/1/201213

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode ControlDesign

    a) General Caseb) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

  • 8/3/2019 visakh

    14/46

    Input DecouplingTransformation

    What is sliding mode control?

    General Case

    5/1/201214

  • 8/3/2019 visakh

    15/46

    5/1/201215

    For the transformed system

  • 8/3/2019 visakh

    16/46

    Theorem 3

    5/1/201216

  • 8/3/2019 visakh

    17/46

    5/1/201217

  • 8/3/2019 visakh

    18/46

    Which implies asymptotic vanishing of the tracking error.

    In order to achieve sliding mode on (18) . The following

    inequality needs to be imposed. It can

    be fulfilled imposing separately v inequalities. Each

    inequality gives

    5/1/201218

  • 8/3/2019 visakh

    19/46

    ROV : Nonlinear StateTransformation

    5/1/201219

    Rewriting 9 by fixing kth thruster, uk is the input

    Nonlinear change of coordinates

  • 8/3/2019 visakh

    20/46

    5/1/201220

    Applying transformation one gets the following equation

  • 8/3/2019 visakh

    21/46

    5/1/201221

    With k=1 we will get the following equation

  • 8/3/2019 visakh

    22/46

    ROV: Sliding Mode Control Law

    5/1/201222

    The result in theorem3 will be applied here with k=1. Thecontrol law is aimed at solving the regulation problemfor z1,z2,z3 with respect to their references.

    Define

  • 8/3/2019 visakh

    23/46

    5/1/201223

    The achievement of sliding motion on (18)requires the following condition:

  • 8/3/2019 visakh

    24/46

    5/1/201224

    The following control law for T2:

  • 8/3/2019 visakh

    25/46

    5/1/201225 5/1/201225

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode Control Designa) General Case

    b) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

  • 8/3/2019 visakh

    26/46

    Fault Tolerant Control Scheme

    1. A FD unit based on residual analysis

    2. A FI unit monitoring the three decoupled sliding

    surfaces, each of which is affected by a uniquethruster.

    3. A supervisor, in charge of performing the controlreconfiguration among the available set of redundantinputs.

    4. A robust sliding mode based control law designed on adecoupled model of the ROV.

    5/1/201226

  • 8/3/2019 visakh

    27/46

    Abrupt Fault

    Incipient Fault

    Assumption:Only one of the four thrusters can undergo a

    fault. i.e, multiple thruster faults cannot be admitted.

    5/1/201227

  • 8/3/2019 visakh

    28/46

    5/1/201228 5/1/201228

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode Control Designa) General Case

    b) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

  • 8/3/2019 visakh

    29/46

    Fault Detection: The ResidualGenerator Module

    This module uses Structural Analysis.

    X Subset of the unknown variables

    K Subset of the known variables

    5/1/201229

  • 8/3/2019 visakh

    30/46

    5/1/201230

  • 8/3/2019 visakh

    31/46

    315/1/2012

  • 8/3/2019 visakh

    32/46

    5/1/201232

  • 8/3/2019 visakh

    33/46

    5/1/201233

    The CUSUM algorithm is chosen to design the decisionmodule of the failure detection system of the ROV.

  • 8/3/2019 visakh

    34/46

    5/1/201234 5/1/201234

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode Control Designa) General Case

    b) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

  • 8/3/2019 visakh

    35/46

    Fault Isolation

    Sliding Mode Controller can be exploited to performfault isolation

    If |si| 0 , then Ti is failed.

    5/1/201235

  • 8/3/2019 visakh

    36/46

    5/1/201236 5/1/201236 5/1/201236

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode Control Designa) General Case

    b) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

  • 8/3/2019 visakh

    37/46

    Control Reconfiguration

    5/1/201237

    Control is reconfigured by fixing the failed thruster and by

    using the other three healthy actuators.

  • 8/3/2019 visakh

    38/46

    38 5/1/2012

    CONTENTS

    Introduction

    Mathematical Model of the ROV

    a) ROV Nonlinear Model

    b) State Space ROV Model

    Input Decoupling Transformation and Sliding Mode Control Designa) General Case

    b) ROV Case Study : The Nonlinear State Transformation

    c) ROV Case Study : Sliding Mode Control Law

    Fault Tolerant Control Scheme

    Fault Detection : The Residual Generator Module

    Fault Isolation

    Control Reconfiguration

    Simulation Results

  • 8/3/2019 visakh

    39/46

    Simulation Results

    5/1/201239

    Abrupt fault

  • 8/3/2019 visakh

    40/46

    5/1/201240

  • 8/3/2019 visakh

    41/46

    5/1/201241

  • 8/3/2019 visakh

    42/46

    Incipient Fault

    5/1/201242

  • 8/3/2019 visakh

    43/46

    5/1/201243

  • 8/3/2019 visakh

    44/46

    5/1/201244

  • 8/3/2019 visakh

    45/46

    References M. Blanke, H. Niemann, and T. Lorentzen, Structural analysisA case

    study of the rmer satellite, in Proc. IFAC Safeprocess,Washington,DC, 2003.

    V. Cocquempot, R. Izadi-Zamanabadi,M.Staroswiecki,andM.Blanke,Residual generation for the ship benchmark usingstructural approach,in Proc. UKACCInt. Conf. (Conf. Publ. 455), 1998,pp. 14801485.

    V. Utkin, Sliding Modes in Control Optimization. Berlin,Germany:Springer Verlag, 1992.

    Sliding Mode Control: Theory and Applications by ChristopherEdwards, and Sarah K. Spurgeon.

    Applied Nonlinear Control by Jean-Jacques E.Slotine , and WeipingLi.

    5/1/201245

  • 8/3/2019 visakh

    46/46

    5/1/201246