Viesmann VITOCAL

92
Viesmann VITOCAL Brine/water heat pumps 2-stage and 3-stage B0/W35: 56.6 to 144.9 kW W50/W90: 148.0 to 390.0 kW Brine/water heat pumps with electric drive for a wide applica- tion range in mono mode operation: Room heating, DHW, cooling functions, district heating net- works, waste heat utilisation and provision of industrial proc- ess water VITOCAL 350-HT PRO Types BW 352.AHT058PW to BW 353.AHT147PW With part winding starting system Types BW 352.AHT058SA to BW 353.AHT147SA With electronic soft starter PLC control unit with colour touchscreen (5.7") Up to 90 °C flow temperature Up to 50 °C primary source temperature Permissible operating pressure: Heating water 10 bar 5796 245 GB 7/2017 Technical guide

Transcript of Viesmann VITOCAL

Page 1: Viesmann VITOCAL

Viesmann VITOCALBrine/water heat pumps

2-stage and 3-stageB0/W35: 56.6 to 144.9 kW

W50/W90: 148.0 to 390.0 kW

Brine/water heat pumps with electric drive for a wide applica-tion range in mono mode operation:

Room heating, DHW, cooling functions, district heating net-works, waste heat utilisation and provision of industrial proc-ess water

VITOCAL 350-HT PRO Types BW 352.AHT058PW to BW 353.AHT147PW■ With part winding starting systemTypes BW 352.AHT058SA to BW 353.AHT147SA■ With electronic soft starterPLC control unit with colour touchscreen (5.7")Up to 90 °C flow temperatureUp to 50 °C primary source temperaturePermissible operating pressure: Heating water 10 bar

5796 245 GB 7/2017

Technical guide

Page 2: Viesmann VITOCAL

Index

1. Vitocal 350-HT Pro 1. 1 Product description ..................................................................................................... 4■ Benefits ................................................................................................................... 4■ Delivered condition ................................................................................................. 4

1. 2 Specification ............................................................................................................... 5■ Specification, Vitocal 350-HT Pro ........................................................................... 5■ Dimensions Vitocal 350-HT Pro .............................................................................. 9■ Application limits to EN 14511 (delivered condition) ............................................... 12■ Curves ..................................................................................................................... 14

2. Installation accessories 2. 1 Overview, installation accessories .............................................................................. 352. 2 Primary and secondary circuit .................................................................................... 38

■ Victaulic 2½" flange adaptor set (DN 65) to flange – short ..................................... 38■ Victaulic 2½" flange adaptor set long (DN 65) to flange – long ............................... 38■ Victaulic 3" flange adaptor set (DN 80) to flange – long ......................................... 38■ Victaulic 3" flange adaptor set (DN 80) to flange – short ........................................ 38■ Safety equipment block ........................................................................................... 39

2. 3 Primary circuit ............................................................................................................. 39■ Heat transfer medium "Tyfocor" .............................................................................. 39■ Filling station ........................................................................................................... 39■ Pressure switch (primary circuit) ............................................................................. 39

2. 4 Circulation pumps for primary and secondary circuit .................................................. 40■ Overview of the primary pumps and secondary pumps .......................................... 40■ Wilo high efficiency circulation pump curves .......................................................... 41

2. 5 Well circuit .................................................................................................................. 47■ Stainless steel drip pan for draining condensate .................................................... 47■ Flow switch set ........................................................................................................ 47

2. 6 Valves and lift drives ................................................................................................... 47■ Belimo lift drive comparison table ........................................................................... 47■ 2-way shut-off valve with flange connection ........................................................... 47■ 3-way valve with flange connection ........................................................................ 48■ Actuator NV24A-TPC .............................................................................................. 48■ Actuator EV24A-TPC .............................................................................................. 48■ Lift drive for mixer (EVC24A-MF) ............................................................................ 49■ Lift drive for mixer (NVC24A-MP-TPC) ................................................................... 49

2. 7 DHW heating with cylinder loading system ................................................................. 51■ Cylinder loading pump curves (on site) ................................................................... 51■ DHW circulation pump curves (on site) ................................................................... 53

2. 8 Cooling ........................................................................................................................ 53■ Contact humidistat 24 V .......................................................................................... 53

3. Design information 3. 1 Power supply and tariffs ............................................................................................. 54■ Application procedure ............................................................................................. 54

3. 2 Siting requirements ..................................................................................................... 54■ Casing ventilation .................................................................................................... 54■ Siting ....................................................................................................................... 55■ Minimum room volume ............................................................................................ 56

3. 3 Applicable regulations and standards ......................................................................... 573. 4 R1234ze refrigerant .................................................................................................... 57

■ Applying the EC regulation ..................................................................................... 57■ General information regarding R1234ze during operation and service .................. 58

3. 5 Power supply .............................................................................................................. 58■ Power-OFF ............................................................................................................. 58■ Required cables ...................................................................................................... 58

3. 6 Hydraulic connections ................................................................................................. 59■ General hydraulic scheme ...................................................................................... 59■ Connections to the heat pump ................................................................................ 60

3. 7 Minimum hydraulic requirements ................................................................................ 613. 8 Sizing the heat pump .................................................................................................. 61

■ Mono mode operation ............................................................................................. 61■ Mono energetic operation ....................................................................................... 62■ Dual mode operation ............................................................................................... 62■ Supplement for DHW heating in mono mode operation ......................................... 63■ Supplement for setback mode ................................................................................ 63

3. 9 Heat source geothermal probes ................................................................................. 63■ Frost protection ....................................................................................................... 63■ Geothermal probe ................................................................................................... 64■ Pump output supplements (percentage) for operation with Tyfocor ....................... 64■ Geothermal probe hydraulic connection ................................................................. 65

3.10 Heat source groundwater ........................................................................................... 65

Index

2 Viesmann VITOCAL

5796

245

GB

Page 3: Viesmann VITOCAL

■ Water quality ........................................................................................................... 66■ Calculating the required groundwater volume ........................................................ 67■ Approval for a brine/water heat pump as a groundwater/water heat pump system 67■ Sizing the separating heat exchanger ..................................................................... 68■ Hydraulic connection, groundwater ......................................................................... 69

3.11 Heat source waste heat/process water ....................................................................... 693.12 Central heating/central cooling ................................................................................... 70

■ Secondary circuit .................................................................................................... 703.13 Systems with heating water buffer cylinder ................................................................ 71

■ Cascade, heating water buffer cylinder ................................................................... 71■ Hydraulic connection of heating water buffer cylinder ............................................ 71■ Heating water buffer cylinder 1500 l ....................................................................... 72■ Heating water buffer cylinder 2000 l ....................................................................... 73■ Heating water buffer cylinder 2500 l ....................................................................... 74■ Heating water buffer cylinder 3000 l ....................................................................... 75■ Heating water buffer cylinder for optimised runtimes .............................................. 75■ Heating water buffer cylinder for bridging periods when the supply is blocked ...... 75

3.14 Water quality and heat transfer medium ..................................................................... 76■ DHW ....................................................................................................................... 76■ Heating water .......................................................................................................... 76■ Heat transfer medium, primary circuit (brine circuit) ............................................... 76

3.15 DHW heating .............................................................................................................. 76■ Function description regarding DHW heating ......................................................... 76■ Connection on the DHW side .................................................................................. 77■ Safety valve ............................................................................................................ 77■ Hydraulic connection, cylinder loading system ....................................................... 78■ Detail of DHW cylinder with external heat exchanger (cylinder loading system)

and electric booster heater ..................................................................................... 78■ Selecting a cylinder loading system ........................................................................ 79

3.16 Cooling mode .............................................................................................................. 80■ Types and configuration .......................................................................................... 80■ Cooling with groundwater ....................................................................................... 80■ Natural cooling function (NC) .................................................................................. 81■ Active cooling function (AC) .................................................................................... 82■ Hydraulic connection of coolant buffer cylinder ...................................................... 84■ Residual heat exchanger selection list .................................................................... 85■ Hydraulic connection, heat exchanger for residual heat ......................................... 85

4. Heat pump control unit 4. 1 PLC control unit .......................................................................................................... 87■ Design and functions .............................................................................................. 87■ Time switch ............................................................................................................. 87■ Outside temperature sensor ................................................................................... 87

4. 2 Control unit accessories ............................................................................................. 88■ Pt 1000 contact temperature sensor ....................................................................... 88■ Cylinder temperature sensor Pt1000 (also immersion temperature sensor) .......... 88■ BACnet module ....................................................................................................... 88■ Refrigerant sensor for R1234ze .............................................................................. 88■ Control unit accessories .......................................................................................... 89

5. Keyword index ............................................................................................................................................ 90

Index (cont.)

VITOCAL Viesmann 3

5796

245

GB

Page 4: Viesmann VITOCAL

1.1 Product description

Benefits

■ Wide application range in mono mode operation: Room heating,DHW, cooling functions, district heating networks, waste heat uti-lisation and provision of industrial process water

■ Flow temperatures up to max. 90 °C (brine inlet temperature 8 °C)for feeding into local heating networks and utilisation for high-tem-perature industrial process water

■ Up to max. 50 °C primary source temperature for optimum wasteheat utilisation with high COP and outputs at operating pointW50/W90

■ High COP of up to 4 (B0/W35) to EN 14511. Low operating costswith the highest efficiency at every operating point thanks to anelectronic expansion valve (EEV).

■ Futureproof R1234ze HFO refrigerant with low GWP (~ 1)

■ Low noise and vibration emissions through sound-optimised appli-ance design

■ PLC control unit with extensive range of basic and additional func-tions– Waste heat utilisation– Cylinder temperature controller with temperature maintaining

facility– Low end controller, primary side– DHW heating with target temperature control– Natural and active cooling control functions– Residual heat control for heat source and dry cooler– Use of geothermal probes– Use of well circuit/groundwater– Data communication with remote monitoring

Delivered condition■ Compact heat pump with part winding (PW) starting system or

electronic soft starter (SA).■ R1234ze refrigerant■ Evaporator and condenser as copper-brazed stainless steel plate

heat exchanger (1.4401)■ Electronic expansion valve, self-closing■ Easy handling due to compact dimensions, ready to connect■ Integral contactors for primary and secondary pumps, phase moni-

toring of piston compressor (types PW and SA) as well as optionalrotary field monitoring (type SA only)

■ Flow and return temperature sensors for primary circuit and secon-dary circuit included

■ Digital PLC control unit■ Programming unit with colour touchscreen (5.7") for intuitive oper-

ation and clear visualisation (supplied separately)

Vitocal 350-HT Pro

4 Viesmann VITOCAL

1

5796

245

GB

Page 5: Viesmann VITOCAL

1.2 Specification

Specification, Vitocal 350-HT Pro

Operation: Brine/water, 2-stage (B0/W35)Type BW 352.AHT058 352.AHT071 352.AHT084 352.AHT096 352.AHT119Performance data to EN 14511 (B0/W35,5 K spread) Rated heating output kW 56.6 72.4 83.2 96.6 116.8Cooling capacity kW 43.4 55.4 63.6 73.4 88.4Power consumption kW 13.2 17.0 19.6 23.2 28.4Rated current of compressors(total)

A 34.0 49.2 51.4 66.6 91.4

Coefficient of performance ε(COP)

4.3 4.3 4.2 4.2 4.1

Brine (primary circuit 30 %) Heat exchanger capacity l 13 18 22 33 39Nominal flow rate dT 3 K m3/h 13.6 17.4 20 23.1 27.8Pressure drop kPa 11 13 14 15 16Max. flow temperature at primaryinlet

°C 50 50 50 50 50

Min. flow temperature at primaryinlet

°C 0 0 0 0 0

Minimum flow rate m3/h 10.6 14.4 17.3 15.4 17.3Heating water (secondary circuit) Heat exchanger capacity l 10 13 15 17 20Nominal flow rate dT 5 K m3/h 9.8 13.4 14.4 16.7 20.2Pressure drop kPa 11 14 13 14 17Max. flow temperature at primaryinlet = 0 °C

°C 73 73 73 73 73

Min. flow temperature secondarycircuit

°C 20 20 20 20 20

Minimum flow rate m3/h 7.0 8.5 10.0 11.0 13.0

Operation: Brine/water, 3-stage (B0/W35)Type BW 353.AHT126 353.AHT147Performance data to EN 14511 (B0/W35, 5 K spread) Rated heating output kW 124.8 144.9Cooling capacity kW 95.4 110.1Power consumption kW 29.4 34.8Rated current of compressors (total) A 77.1 99.9Coefficient of performance ε (COP) 4.2 4.2Brine (primary circuit 30 %) Heat exchanger capacity l 42 50Nominal flow rate dT 3 K m3/h 30.0 34.6Pressure drop kPa 15 15Max. flow temperature at primary inlet °C 50 50Min. flow temperature at primary inlet °C 0 0Minimum flow rate m3/h 19.2 22.0Heating water (secondary circuit) Heat exchanger capacity l 23 28Nominal flow rate dT 5 K m3/h 21.6 25.1Pressure drop kPa 16 18Max. flow temperature at primary inlet = 0 °C °C 73 73Min. flow temperature secondary circuit °C 20 20Minimum flow rate m3/h 15.5 18.0

Operation: Water/water, 2-stage (W50/W90)Type BW 352.AHT058 352.AHT071 352.AHT084 352.AHT096 352.AHT119Output data (W50/W90, 5 K spread) Rated heating output kW 148 194.3 224.9 260 294.3Cooling capacity kW 104.6 137.5 157.5 181.6 205.9Power consumption kW 43.4 56.8 67.4 78.4 88.4Rated current of compressors(total)

A 74.0 99.4 115.2 135.4 165.8

Coefficient of performance ε(COP)

3.4 3.4 3.3 3.3 3.3

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 5

5796

245

GB

1

Page 6: Viesmann VITOCAL

Type BW 352.AHT058 352.AHT071 352.AHT084 352.AHT096 352.AHT119Water (primary circuit) Heat exchanger capacity l 13 18 22 33 39Nominal flow rate dT 5 K m3/h 18.2 24 27.5 31.7 35.9Pressure drop kPa 11.4 15.5 18.5 19.8 18.7Max. flow temperature at primaryinlet

°C 50 50 50 50 50

Min. flow temperature at primaryinlet

°C 0 0 0 0 0

Minimum flow rate m3/h 10.6 14.4 17.3 15.4 17.3Heating water (secondary circuit) Heat exchanger capacity l 10 13 15 17 20Nominal flow rate dT 10 K m3/h 13.1 17.2 19.8 23 26Pressure drop kPa 4.3 6.5 8.0 10.5 13Max. flow temperature at primaryinlet ≥ 12 °C

°C 90 90 90 90 90

Min. flow temperature secondarycircuit

°C 53 53 53 53 53

Minimum flow rate m3/h 7.0 8.5 10.0 11.0 13.0

Operation: Water/water, 3-stage (W50/W90)Type BW 353.AHT126 353.AHT147Output data (W50/W90, 5 K spread) Rated heating output kW 337.4 390Cooling capacity kW 236.3 272.4Power consumption kW 101.1 117.6Rated current of compressors (total) A 172.8 203.1Coefficient of performance ε (COP) 3.3 3.3Water (primary circuit) Heat exchanger capacity l 42 50Nominal flow rate dT 5 K m3/h 41.2 47.5Pressure drop kPa 20.9 20.4Max. flow temperature at primary inlet °C 50 50Min. flow temperature at primary inlet °C 0 0Minimum flow rate m3/h 19.2 22.0Heating water (secondary circuit) Heat exchanger capacity l 23 28Nominal flow rate dT 10 K m3/h 29.9 34.6Pressure drop kPa 16.7 22.3Max. flow temperature at primary inlet ≥ 12 °C °C 90 90Min. flow temperature secondary circuit °C 53 53Minimum flow rate m3/h 15.5 18.0

NoteOther output data than that described above may require recalcula-tion, such as flow rates among other things.

NoteParameters need to be adjusted in connection with external demand.Viessmann must be consulted.

Operation: Brine/water, 2-stage (B10/W35)Type BW 352.AHT058 352.AHT071 352.AHT084 352.AHT096 352.AHT119Performance data to EN 14511(B10/W35, 5 K spread) Rated heating output kW 84.4 107.4 123.0 141.6 172.0Cooling capacity kW 69.0 88.0 100.6 115.0 139.6Power consumption kW 15.4 19.4 22.4 26.6 32.4Rated current of compressors(total)

A 36.0 51.2 54.2 69.8 96.4

Coefficient of performance ε(COP)

5.5 5.5 5.5 5.3 5.3

Brine (primary circuit 21 %) Heat exchanger capacity l 13 18 22 33 39Nominal flow rate (spread 3 K) m3/h 20.3 25.9 29.7 33.9 41.1Pressure drop kPa 26.1 21.6 24.7 30 33.9Max. flow temperature at primaryinlet

°C 50 50 50 50 50

Min. flow temperature at primaryinlet

°C 0 0 0 0 0

Minimum flow rate m3/h 10.6 14.4 17.3 15.4 17.3

Vitocal 350-HT Pro (cont.)

6 Viesmann VITOCAL

1

5796

245

GB

Page 7: Viesmann VITOCAL

Type BW 352.AHT058 352.AHT071 352.AHT084 352.AHT096 352.AHT119Heating water (secondary circuit) Heat exchanger capacity l 10 13 15 17 20Nominal flow rate (spread 5 K) m3/h 14.6 18.6 21.3 21.3 29.8Pressure drop kPa 5.5 7.7 9.3 9.3 17Max. flow temperature at primaryinlet = 10 °C

°C 87 87 87 87 87

Min. flow temperature secondarycircuit

°C 24 24 24 24 24

Minimum flow rate m3/h 7.0 8.5 10.0 11.0 13.0

Operation: Brine/water, 3-stage (B10/W35)Type BW 353.AHT126 353.AHT147Performance data to EN 14511 (B10/W35, 5 K spread) Rated heating output kW 184.5 212.4Cooling capacity kW 150.9 172.5Power consumption kW 33.6 39.9Rated current of compressors (total) A 81.3 104.7Coefficient of performance ε (COP) 5.5 5.3Brine (primary circuit 21 %) Heat exchanger capacity l 42 50Nominal flow rate (spread 3 K) m3/h 44.5 50.8Pressure drop kPa 32.4 31.5Max. flow temperature at primary inlet °C 50 50Min. flow temperature at primary inlet °C 0 0Minimum flow rate m3/h 19.2 22.0Heating water (secondary circuit) Heat exchanger capacity l 23 28Nominal flow rate (spread 5 K) m3/h 32 37Pressure drop kPa 20 25.3Max. flow temperature at primary inlet = 10 °C °C 87 87Min. flow temperature secondary circuit °C 24 24Minimum flow rate m3/h 15.5 18.0

Note■ Output data to EN 14511 corresponds to a temperature spread of

3 K at a brine inlet temperature of 0 °C and brine outlet of –3 °C.■ The specified flow rates are rounded up or down.

2-stage (B0/W35)Type BW 352.AHT058 352.AHT071 352.AHT084 352.AHT096 352.AHT119Electrical values, heat pump Rated voltage, compressor 3/PE 400 V/50 HzCompressor starting current(part winding)

A 125 each 165 each 165 each 219 each 226 each

Compressor starting current (softstarter)

A 132 each 160 each 193 each 222 each 252 each

Max. cos Phi A 0.62 0.55 0.60 0.55 0.50Heat pump MCB/fuse protection A 125 125 160 160 200Max. operating current A 74 100 115 136 166IP rating IP 20 IP 20 IP 20 IP 20 IP 20Refrigerant circuit Refrigerant R1234ze R1234ze R1234ze R1234ze R1234zeRefrigerant charge (standard val-ue)*1

kg 22.5 30.0 36 42 49.5

Number of compressors, recipro-cating piston

Type 2 2 2 2 2

Permiss. operating pressure,high pressure side

bar 32 32 32 32 32

Permiss. operating pressure, lowpressure side

bar 19 19 19 19 19

Permiss. operating pressure Primary circuit bar 10 10 10 10 10Secondary circuit bar 10 10 10 10 10

*1 See type plate

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 7

5796

245

GB

1

Page 8: Viesmann VITOCAL

Type BW 352.AHT058 352.AHT071 352.AHT084 352.AHT096 352.AHT119Dimensions Total length mm 2153 2153 2153 2153 2153Total width mm 911 911 911 911 911Handling width mm 850 850 850 850 850Total height mm 1650 1650 1650 1650 1650Connections, Victaulic Primary circuit flow and return DN 65 80 80 80 80Heating flow and return DN 65 80 80 80 80Weight kg 1077 1195 1251 1357 1426Sound power (tested with refer-ence to EN ISO 9614-2) Weigh-ted total sound power level atB0±3 K/W35±5 K

At rated heating output withoutfan

dB(A) 60 63 65 65 65

Oil quantity l 11 11.5 11.5 11.5 11.5ErP Scop LT 3.94 3.91 3.92 3.86 3.82etas LT % 150 148 149 146 145Scop HT 3.11 3.13 3.21 3.11 3.07etas HT % 117 117 120 116 115

3-stage (B0/W35)Type BW 353.AHT126 353.AHT147Electrical values, heat pump Rated voltage, compressor 3/PE 400 V/50 HzCompressor starting current (part winding) A 165 each 219 eachCompressor starting current (soft starter) A 193 each 222 eachMax. cos Phi A 0.60 0.55Heat pump MCB/fuse protection A 200 250Max. operating current A 173 203IP rating IP 20 IP 20Refrigerant circuit Refrigerant R1234ze R1234zeRefrigerant charge (standard value)*1 kg 57 68Number of compressors, reciprocating piston 3 3Permiss. operating pressure, high pressure side bar 32 32Permiss. operating pressure, low pressure side bar 19 19Permiss. operating pressure Primary circuit bar 10 10Secondary circuit bar 10 10Dimensions Total length mm 2816 2816Total width mm 911 911Handling width mm 850 850Total height mm 1650 1650Connections, Victaulic Primary circuit flow and return DN 80 80Heating flow and return DN 80 80Weight kg 1779 1865Sound power (tested with reference to EN ISO 9614-2) Weighted total sound power levelat B0±3 K/W35±5 K

At rated heating output without fan dB(A) 65 65Oil quantity l 16.3 16.3ErP Scop LT 3.92 3.86etas LT % 149 146Scop HT 3.14 3.11etas HT % 118 117

Information on refrigerantThe EC safety datasheet for R1234ze can be obtained from theTechnical Services department of Viessmann Werke.

*1 See type plate

Vitocal 350-HT Pro (cont.)

8 Viesmann VITOCAL

1

5796

245

GB

Page 9: Viesmann VITOCAL

Dimensions Vitocal 350-HT Pro

Types BW 352.AHT058, BW 352.AHT071 and BW 352.AHT084

180

969

509

311525

1650

850

911

2153

230 V~400 V~

1365

A Air dischargeB Air intakeC Primary circuit flow (primary inlet)

D Primary circuit return (primary outlet)E Secondary circuit flowF Secondary circuit return

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 9

5796

245

GB

1

Page 10: Viesmann VITOCAL

Types BW 352.AHT096 and BW 352.AHT119

1305

487

380526

1650

850

911

2153

230 V~400 V~

947

582

1365 180

A Air outlet (fan diameter: 150 mm)B Air intakeC Primary circuit flow (primary inlet)

D Primary circuit return (primary outlet)E Secondary circuit flowF Secondary circuit return

Vitocal 350-HT Pro (cont.)

10 Viesmann VITOCAL

1

5796

245

GB

Page 11: Viesmann VITOCAL

Types BW 353.AHT126 and BW 353.AHT147

1305

487

380526

1650

850

911

2816

230 V~400 V~

947

582

1365 180

A Air outlet (fan diameter: 150 mm)B Air intakeC Primary circuit flow (primary inlet)

D Primary circuit return (primary outlet)E Secondary circuit flowF Secondary circuit return

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 11

5796

245

GB

1

Page 12: Viesmann VITOCAL

Application limits to EN 14511 (delivered condition)■ Secondary side spread: 5 K■ Primary side spread: 3 K

Requirement stages for meeting the injection valve application limits

Type BW 352.AHT058

Flow

tem

pera

ture

for s

econ

dary

circ

uit i

n °C

Primary circuit flow temperature in °C

20100

30

40

50

60

70

80

90

100

20 30 40 50

A Operation with two compressors

Type BW 352.AHT076

Flow

tem

pera

ture

for s

econ

dary

circ

uit i

n °C

Primary circuit flow temperature in °C

20100

30

40

50

60

70

80

90

100

20 30 40 50

A Operation with two compressors

Type BW 352.AHT084

20100

30

40

50

60

70

80

90

100

20 30 40 50

Flow

tem

pera

ture

for s

econ

dary

circ

uit i

n °C

Primary circuit flow temperature in °C

A Operation with two compressors

Type BW 352.AHT096

Flow

tem

pera

ture

for s

econ

dary

circ

uit i

n °C

Primary circuit flow temperature in °C

20100

30

40

50

60

70

80

90

100

20 30 40 50

A Operation with two compressors

Vitocal 350-HT Pro (cont.)

12 Viesmann VITOCAL

1

5796

245

GB

Page 13: Viesmann VITOCAL

Type BW 352.AHT119

Flow

tem

pera

ture

for s

econ

dary

circ

uit i

n °C

Primary circuit flow temperature in °C

20100

30

40

50

60

70

80

90

100

20 30 40 50

A Operation with two compressors

Type BW 353.AHT126

0

Flow

tem

pera

ture

for s

econ

dary

circ

uit i

n °C

Primary circuit flow temperature in °C

2010

30

40

50

60

70

80

90

100

20 30 40 50

A Operation with a minimum of two compressors

Type BW 353.AHT147

20Flow

tem

pera

ture

for s

econ

dary

circ

uit i

n °C

Primary circuit flow temperature in °C100

30

40

50

60

70

80

90

100

20 30 40 50

A Operation with three compressorsB Operation with a minimum of two compressors

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 13

5796

245

GB

1

Page 14: Viesmann VITOCAL

Curves

Type BW 352.AHT058

Primary inlet in °C

0 10 20 30 40 50

Coe

ff of

per

fC

OP

Elec

tric

pow

er c

onsu

mpt

ion

in k

WC

oolin

g ca

paci

ty in

kW

Hea

ting

outp

ut in

kW

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0

250

0

200

25

50

75

100

125

150

35°

55°

45°

65°

45°

60° 70°75°

80°85°90°

175

55°

65°

70°

75°

80°85°

90°

10

45

20

30

40

1.02.03.04.05.06.07.0

35°45°

55°

60°65°70°75°80°85°90°

35° 45° 55° 60° 65°

70°75°80°85°90°

60°

45°

35°

50

100

150

200

Vitocal 350-HT Pro (cont.)

14 Viesmann VITOCAL

1

5796

245

GB

Page 15: Viesmann VITOCAL

Note■ COP calculated with reference to EN 14511.■ Output data applies to new appliances with clean plate heat

exchangers.

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

20

40

60

80

100

40302010

A Brine primary circuit (30 % glycol content)B Brine primary circuit (21 % glycol content)C Water primary circuit

Flow rate in m³/h

Pres

sure

dro

p in

kPa

025

5

10

15

20

25

2015105

D Secondary circuit

Performance data, type BW 352.AHT058

Operating point Secondary outlet °C 35 Primary inlet °C 0 5 10 15 Heating output kW 56.6 69.6 84.4 101.4 Cooling capacity kW 43.4 55.2 69.0 85.4 Power consumption kW 13.2 14.4 15.4 16.0 Coefficient of perform-ance ε (COP)

4.3 4.8 5.5 6.3

Power consumption A 34.0 35.2 36.0 36.8

Operating point Secondary outlet °C 45 Primary inlet °C 0 5 10 15 20 25 Heating output kW 51.8 63.8 77.4 93.2 111.4 131.8 Cooling capacity kW 37.2 47.7 60.0 74.6 91.8 111.6 Power consumption kW 14.6 16.1 17.4 18.6 19.6 20.2 Coefficient of perform-ance ε (COP)

3.5 4.0 4.4 5.0 5.7 6.5

Power consumption A 35.4 36.9 38.4 39.6 40.6 41.4

Operating point Secondary outlet °C 55 Primary inlet °C 0 5 10 15 20 25 30 35 Heating output kW 46.6 57.8 70.4 85.0 101.6 120.4 141.8 156.1 Cooling capacity kW 30.8 40.2 51.0 64.0 79.2 96.8 117.2 131.1 Power consumption kW 15.8 17.6 19.4 21.0 22.4 23.6 24.6 25.0 Coefficient of perform-ance ε (COP)

2.9 3.3 3.6 4.0 4.5 5.1 5.8 6.3

Power consumption A 36.6 38.4 40.4 42.2 44.0 45.4 46.6 47.2

Operating point Secondary outlet °C 60 Primary inlet °C 0 5 10 15 20 25 30 35 40 Heating output kW 44.0 54.5 66.6 80.6 96.4 114.4 134.8 148.6 173.0 Cooling capacity kW 27.8 36.3 46.6 58.6 72.8 89.4 108.6 121.8 145.3 Power consumption kW 16.2 18.2 20.0 22.0 23.6 25.0 26.2 26.8 27.7 Coefficient of perform-ance ε (COP)

2.7 3.0 3.3 3.7 4.1 4.6 5.1 5.5 6.2

Power consumption A 36.8 39.1 41.4 43.4 45.4 47.6 49.0 49.8 50.8

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 15

5796

245

GB

1

Page 16: Viesmann VITOCAL

Operating point Secondary outlet °C 65 Primary inlet °C 0 5 10 15 20 25 30 35 40 45 Heating output kW 41.0 51.2 62.8 76.2 91.4 108.4 128.0 141.2 164.6 192.0 Cooling capacity kW 24.6 32.6 42.0 53.4 66.6 82.0 100.0 112.5 134.8 161.2 Power consumption kW 16.4 18.6 20.8 22.8 24.8 26.4 28.0 28.7 29.8 30.8 Coefficient of perform-ance ε (COP)

2.5 2.8 3.0 3.3 3.7 4.1 4.6 4.9 5.5 6.2

Power consumption A 37.2 39.5 42.0 44.6 47.0 49.2 51.4 52.4 53.8 55.2

Operating point Secondary outlet °C 70Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 38.0 47.7 58.8 71.6 86.2 102.4 121.0 133.6 156.1 182.2 206.2Cooling capacity kW 21.4 28.8 37.6 48.0 60.4 74.6 91.4 103.2 124.2 149.0 172.0Power consumption kW 16.6 18.9 21.2 23.6 25.8 27.8 29.6 30.4 31.9 33.2 34.2Coefficient of perform-ance ε (COP)

2.3 2.5 2.8 3.0 3.3 3.7 4.1 4.4 4.9 5.5 6.0

Power consumption A 37.4 39.9 42.8 45.4 48.2 50.8 53.4 54.7 56.7 58.6 60.0

Operating point Secondary outlet °C 75Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 35.0 44.2 55.0 67.0 80.6 96.2 114.0 126.0 147.2 172.4 195.2Cooling capacity kW 18.4 25.1 33.2 42.8 54.0 67.4 83.0 93.9 113.5 137.0 158.4Power consumption kW 16.6 19.1 21.8 24.2 26.6 28.8 31.0 32.1 33.7 35.4 36.8Coefficient of perform-ance ε (COP)

2.1 2.3 2.5 2.8 3.0 3.3 3.7 3.9 4.4 4.9 5.3

Power consumption A 37.4 40.1 43.2 46.4 49.4 52.6 55.4 57.0 59.4 61.8 63.6

Operating point Secondary outlet °C 80Primary inlet °C 5 10 15 20 25 30 35 40 45 50Heating output kW 40.7 50.8 62.2 75.2 89.8 106.6 112.1 131.2 153.5 173.9Cooling capacity kW 21.5 28.8 37.4 47.8 60.0 74.4 78.6 95.6 115.9 134.7Power consumption kW 19.2 22.0 24.8 27.4 29.8 32.2 33.5 35.6 37.6 39.2Coefficient of performance ε(COP)

2.1 2.3 2.5 2.7 3.0 3.3 3.3 3.7 4.1 4.4

Power consumption A 40.2 43.6 47.0 50.4 54.0 57.2 59.1 62.1 65.0 67.4

Operating point Secondary outlet °C 85Primary inlet °C 10 15 20 25 30 35 40 45 50Heating output kW 46.6 57.4 69.6 83.6 99.2 104.6 122.5 143.6 162.9Cooling capacity kW 24.4 32.2 41.6 52.8 65.8 69.8 85.3 104.2 121.5Power consumption kW 22.2 25.2 28.0 30.8 33.4 34.8 37.2 39.4 41.4Coefficient of performance ε (COP) 2.1 2.3 2.5 2.7 3.0 3.0 3.3 3.6 3.9Power consumption A 43.6 47.6 51.4 55.0 58.8 61.0 64.3 68.0 70.8

Operating point Secondary outlet °C 90Primary inlet °C 15 20 25 30 35 40 45 50Heating output kW 52.4 63.8 73.6 87.6 96.9 113.4 133.3 148.0Cooling capacity kW 27.0 35.4 42.2 53.2 60.9 74.9 92.1 104.6Power consumption kW 25.4 28.4 31.4 34.4 36.0 38.5 41.2 43.4Coefficient of performance ε (COP) 2.1 2.2 2.3 2.5 2.7 2.9 3.2 3.4Power consumption A 47.8 51.8 56.2 60.2 62.6 66.6 70.6 74.0

NoteThe flow rates should be considered separately.Ensure the minimum flow rates.Basis for calculating the operating points:

Secondary outlet Temperature spread< 70 °C 5 K≥ 70 °C 10 K

Primary inlet Temperature spread< 35 °C 3 K≥ 35 °C 5 K

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Vitocal 350-HT Pro (cont.)

16 Viesmann VITOCAL

1

5796

245

GB

Page 17: Viesmann VITOCAL

Type BW 352.AHT071

Primary inlet in °C

0 10 20 30 40 50

Coe

ff of

per

fC

OP

Elec

tric

pow

er c

onsu

mpt

ion

in k

WC

oolin

g ca

paci

ty in

kW

Hea

ting

outp

ut in

kW

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0

300

0

250

25

50

75

100

125

150

55°

45°

65°

45°

60° 70°75°

85°90°

20055°

65°70°

75°

80°85°

90°

10

60

20

30

50

1.02.03.04.05.06.07.0

35°

55°

60° 65°70°75°80°85°90°

35° 45° 55° 60° 65°

70°75°80°85°90°

60°

45°

35°

50

100

150

200

250

35°

80°

225

175

40

45°

Note■ COP calculated with reference to EN 14511.■ Output data applies to new appliances with clean plate heat

exchangers.

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

20

40

60

80

100

40302010

A Brine primary circuit (30 % glycol content)B Brine primary circuit (21 % glycol content)C Water primary circuit

Flow rate in m³/h252015105

Pres

sure

dro

p in

kPa

0

5

10

15

20

25

D Secondary circuit

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 17

5796

245

GB

1

Page 18: Viesmann VITOCAL

Performance data, type BW 352.AHT071

Operating point Secondary outlet °C 35 Primary inlet °C 0 5 10 15 Heating output kW 72.4 88.7 107.4 128.8 Cooling capacity kW 55.4 70.4 88.0 108.8 Power consumption kW 17.0 18.3 19.4 20.0 Coefficient of perform-ance ε (COP)

4.3 4.8 5.5 6.4

Power consumption A 49.2 50.4 51.2 51.8

Operating point Secondary outlet °C 45 Primary inlet °C 0 5 10 15 20 25 Heating output kW 65.4 80.9 98.6 118.8 142.0 168.2 Cooling capacity kW 47.0 60.5 76.4 95.2 117.2 142.8 Power consumption kW 18.4 20.4 22.2 23.6 24.8 25.4 Coefficient of perform-ance ε (COP)

3.6 4.0 4.4 5.0 5.7 6.6

Power consumption A 50.6 52.2 54.0 55.4 56.4 57.2

Operating point Secondary outlet °C 55 Primary inlet °C 0 5 10 15 20 25 30 35 Heating output kW 58.0 72.5 89.0 108.0 129.6 154.2 182.2 200.9 Cooling capacity kW 38.6 50.6 64.6 81.4 101.2 124.2 151.0 169.4 Power consumption kW 19.4 21.9 24.4 26.6 28.4 30.0 31.2 31.6 Coefficient of perform-ance ε (COP)

3.0 3.3 3.6 4.1 4.6 5.1 5.8 6.4

Power consumption A 51.4 53.7 56.2 58.4 60.6 62.4 63.8 64.3

Operating point Secondary outlet °C 60 Primary inlet °C 0 5 10 15 20 25 30 35 40 Heating output kW 54.2 68.1 84.0 102.2 123.0 146.8 173.6 192.0 224.3 Cooling capacity kW 34.4 45.6 58.8 74.4 93.0 114.8 140.0 157.6 189.0 Power consumption kW 19.8 22.5 25.2 27.8 30.0 32.0 33.6 34.3 35.3 Coefficient of perform-ance ε (COP)

2.7 3.0 3.3 3.7 4.1 4.6 5.2 5.6 6.4

Power consumption A 51.6 54.4 57.0 59.8 62.4 65.0 66.8 67.6 69.0

Operating point Secondary outlet °C 65 Primary inlet °C 0 5 10 15 20 25 30 35 40 45 Heating output kW 50.4 63.6 78.6 96.2 116.2 139.0 165.0 182.6 214.0 249.6 Cooling capacity kW 30.4 40.6 52.8 67.4 84.8 105.2 129.2 145.8 175.6 210.2 Power consumption kW 20.0 23.0 25.8 28.8 31.4 33.8 35.8 36.9 38.4 39.4 Coefficient of perform-ance ε (COP)

2.5 2.8 3.0 3.3 3.7 4.1 4.6 5.0 5.6 6.3

Power consumption A 51.8 54.6 57.6 61.0 64.0 67.2 69.6 71.0 73.1 74.4

Operating point Secondary outlet °C 70Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 46.4 58.9 73.4 90.0 109.2 131.0 156.0 173.0 203.3 237.8 268.6Cooling capacity kW 26.4 35.7 47.0 60.4 76.6 95.6 118.0 133.7 162.1 195.0 224.8Power consumption kW 20.0 23.2 26.4 29.6 32.6 35.4 38.0 39.3 41.2 42.8 43.8Coefficient of perform-ance ε (COP)

2.3 2.5 2.8 3.0 3.3 3.7 4.1 4.4 4.9 5.6 6.1

Power consumption A 51.8 55.0 58.4 61.8 65.6 69.2 72.4 74.2 76.9 79.2 80.6

Vitocal 350-HT Pro (cont.)

18 Viesmann VITOCAL

1

5796

245

GB

Page 19: Viesmann VITOCAL

Operating point Secondary outlet °C 75Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 42.2 54.2 68.0 83.8 102.0 122.8 146.8 163.1 192.1 225.4 255.2Cooling capacity kW 22.4 30.9 41.2 53.6 68.4 86.0 107.0 121.8 148.3 179.4 207.6Power consumption kW 19.8 23.3 26.8 30.2 33.6 36.8 39.8 41.4 43.8 46.0 47.6Coefficient of perform-ance ε (COP)

2.1 2.3 2.5 2.8 3.0 3.3 3.7 3.9 4.4 4.9 5.4

Power consumption A 51.6 54.9 58.8 62.6 66.8 70.8 74.8 77.1 80.4 83.8 85.8

Operating point Secondary outlet °C 80Primary inlet °C 5 10 15 20 25 30 35 40 45 50Heating output kW 49.4 62.4 77.4 94.6 114.6 137.2 145.0 171.0 200.8 227.5Cooling capacity kW 26.2 35.4 46.8 60.2 76.6 95.8 101.8 124.8 152.0 176.7Power consumption kW 23.2 27.0 30.6 34.4 38.0 41.4 43.2 46.2 48.8 50.8Coefficient of performance ε(COP)

2.1 2.3 2.5 2.8 3.0 3.3 3.4 3.7 4.1 4.5

Power consumption A 55.0 59.0 63.2 67.8 72.4 77.0 79.6 83.8 87.8 90.6

Operating point Secondary outlet °C 85Primary inlet °C 10 15 20 25 30 35 40 45 50Heating output kW 57.0 71.0 87.2 106.0 127.4 135.2 159.7 188.3 213.8Cooling capacity kW 30.0 40.0 52.2 67.0 84.6 90.3 111.4 136.7 159.8Power consumption kW 27.0 31.0 35.0 39.0 42.8 45.0 48.3 51.6 54.0Coefficient of performance ε (COP) 2.1 2.3 2.5 2.7 3.0 3.0 3.3 3.6 4.0Power consumption A 59.0 63.6 68.6 73.8 79.0 82.0 86.9 91.6 95.2

Operating point Secondary outlet °C 90Primary inlet °C 15 20 25 30 35 40 45 50Heating output kW 64.4 79.6 93.0 111.9 124.9 147.9 174.7 194.3Cooling capacity kW 33.4 44.2 53.4 68.1 78.7 97.8 120.9 137.5Power consumption kW 31.0 35.4 39.6 43.8 46.2 50.1 53.8 56.8Coefficient of performance ε (COP) 2.1 2.2 2.3 2.6 2.7 3.0 3.2 3.4Power consumption A 63.8 69.2 74.8 80.6 84.0 89.6 95.0 99.4

NoteThe flow rates should be considered separately.Ensure the minimum flow rates.Basis for calculating the operating points:

Secondary outlet Temperature spread< 70 °C 5 K≥ 70 °C 10 K

Primary inlet Temperature spread< 35 °C 3 K≥ 35 °C 5 K

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 19

5796

245

GB

1

Page 20: Viesmann VITOCAL

Type BW 352.AHT084

Primary inlet in °C

0 10 20 30 40 50

Coe

ff of

per

fC

OP

Elec

tric

pow

er c

onsu

mpt

ion

in k

WC

oolin

g ca

paci

ty in

kW

Hea

ting

outp

ut in

kW

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0

350

0

300

50

100

150

200

35°

55°

45°

65°

45°

70°75°80°85°90°

250

55°

65°

70°

75°

80°85°

90°

15

70

20

30

40

1.02.03.04.05.06.07.0

35°45°

55°

65°70°75°80°85°90°

35° 45° 55° 60° 65°

70°75°80°85°90°

60°

45°

35°

50

100

150

200

250

300 60°

25

35

4550556065

65°

Note■ COP calculated with reference to EN 14511.■ Output data applies to new appliances with clean plate heat

exchangers.

Flow rate in m³/hPr

essu

re d

rop

in k

Pa

050

20

40

60

80

100

40302010

A Brine primary circuit (30 % glycol content)B Brine primary circuit (21 % glycol content)C Water primary circuit

Flow rate in m³/h

Pres

sure

dro

p in

kPa

025

5

10

15

20

25

2015105

D Secondary circuit

Vitocal 350-HT Pro (cont.)

20 Viesmann VITOCAL

1

5796

245

GB

Page 21: Viesmann VITOCAL

Performance data, type BW 352.AHT084

Operating point Secondary outlet °C 35 Primary inlet °C 0 5 10 15 Heating output kW 83.2 101.6 123.0 147.4 Cooling capacity kW 63.6 80.5 100.6 124.0 Power consumption kW 19.6 21.1 22.4 23.4 Coefficient of perform-ance ε (COP)

4.2 4.8 5.5 6.3

Power consumption A 51.4 52.9 54.2 55.2

Operating point Secondary outlet °C 45 Primary inlet °C 0 5 10 15 20 25 Heating output kW 75.8 93.4 113.6 136.8 163.2 193.4 Cooling capacity kW 54.4 69.7 87.8 109.2 134.2 163.4 Power consumption kW 21.4 23.7 25.8 27.6 29.0 30.0 Coefficient of perform-ance ε (COP)

3.5 3.9 4.4 5.0 5.6 6.4

Power consumption A 53.0 55.5 57.8 59.8 61.4 62.4

Operating point Secondary outlet °C 55 Primary inlet °C 0 5 10 15 20 25 30 35 Heating output kW 67.6 84.2 103.2 125.0 149.8 178.0 210.0 231.6 Cooling capacity kW 45.0 58.6 74.8 93.8 116.4 142.6 173.0 194.0 Power consumption kW 22.6 25.6 28.4 31.2 33.4 35.4 37.0 37.6 Coefficient of perform-ance ε (COP)

3.0 3.3 3.6 4.0 4.5 5.0 5.7 6.2

Power consumption A 54.4 57.4 60.6 63.8 66.6 69.2 71.2 71.9

Operating point Secondary outlet °C 60 Primary inlet °C 0 5 10 15 20 25 30 35 40 Heating output kW 63.2 79.3 97.6 118.6 142.6 169.8 200.6 221.6 258.4 Cooling capacity kW 40.2 53.0 68.0 86.0 107.2 132.0 160.8 180.8 216.4 Power consumption kW 23.0 26.3 29.6 32.6 35.4 37.8 39.8 40.8 42.0 Coefficient of perform-ance ε (COP)

2.7 3.0 3.3 3.6 4.0 4.5 5.0 5.4 6.2

Power consumption A 54.8 58.3 61.8 65.6 69.0 72.2 75.0 76.3 78.0

Operating point Secondary outlet °C 65 Primary inlet °C 0 5 10 15 20 25 30 35 40 45 Heating output kW 58.8 74.2 91.8 112.0 135.0 161.2 191.0 211.2 247.0 287.8 Cooling capacity kW 35.6 47.3 61.4 78.2 98.0 121.2 148.4 167.4 201.3 240.8 Power consumption kW 23.2 26.9 30.4 33.8 37.0 40.0 42.6 43.8 45.7 47.0 Coefficient of perform-ance ε (COP)

2.5 2.8 3.0 3.3 3.6 4.0 4.5 4.8 5.4 6.1

Power consumption A 55.0 58.8 62.8 67.2 71.2 75.2 78.6 80.4 83.2 85.2

Operating point Secondary outlet °C 70Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 54.4 68.9 85.6 105.0 127.0 152.2 180.8 200.2 234.8 274.4 309.8Cooling capacity kW 31.0 41.7 54.6 70.2 88.6 110.4 135.8 153.7 185.8 223.4 257.4Power consumption kW 23.4 27.2 31.0 34.8 38.4 41.8 45.0 46.6 49.0 51.0 52.4Coefficient of perform-ance ε (COP)

2.3 2.5 2.8 3.0 3.3 3.6 4.0 4.3 4.8 5.4 5.9

Power consumption A 55.0 59.2 63.6 68.4 73.2 77.8 82.2 84.5 87.9 90.8 92.8

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 21

5796

245

GB

1

Page 22: Viesmann VITOCAL

Operating point Secondary outlet °C 75Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 49.6 63.6 79.4 97.8 118.8 142.8 170.2 188.8 222.2 260.4 294.4Cooling capacity kW 26.4 36.2 48.0 62.2 79.2 99.4 123.2 139.9 170.2 205.6 237.8Power consumption kW 23.2 27.4 31.4 35.6 39.6 43.4 47.0 48.9 52.0 54.8 56.6Coefficient of perform-ance ε (COP)

2.1 2.3 2.5 2.7 3.0 3.3 3.6 3.9 4.3 4.8 5.2

Power consumption A 55.0 59.4 64.2 69.4 74.6 80.0 85.2 87.8 92.2 96.4 99.0

Operating point Secondary outlet °C 80Primary inlet °C 5 10 15 20 25 30 35 40 45 50Heating output kW 58.2 73.4 90.6 110.6 133.2 159.2 168.1 197.9 232.3 262.8Cooling capacity kW 30.9 41.6 54.4 70.0 88.4 110.4 117.1 143.2 174.3 202.4Power consumption kW 27.3 31.8 36.2 40.6 44.8 48.8 51.1 54.7 58.0 60.4Coefficient of performance ε(COP)

2.1 2.3 2.5 2.7 3.0 3.3 3.3 3.6 4.0 4.4

Power consumption A 59.3 64.4 70.2 76.0 81.8 87.8 91.0 96.3 101.2 104.8

Operating point Secondary outlet °C 85Primary inlet °C 10 15 20 25 30 35 40 45 50Heating output kW 67.0 83.4 102.0 123.4 148.0 157.0 185.1 217.6 247.0Cooling capacity kW 35.2 46.8 60.6 77.4 97.4 103.9 127.9 156.6 183.0Power consumption kW 31.8 36.6 41.4 46.0 50.6 53.1 57.2 61.0 64.0Coefficient of performance ε (COP) 2.1 2.3 2.5 2.7 2.9 3.0 3.2 3.6 3.9Power consumption A 64.6 70.6 77.0 83.6 90.0 93.8 100.0 105.8 110.2

Operating point Secondary outlet °C 90Primary inlet °C 15 20 25 30 35 40 45 50Heating output kW 75.8 93.2 108.6 130.3 145.1 171.5 202.2 224.9Cooling capacity kW 39.2 51.4 61.8 78.5 90.4 112.2 138.4 157.5Power consumption kW 36.6 41.8 46.8 51.8 54.7 59.3 63.8 67.4Coefficient of performance ε (COP) 2.1 2.2 2.3 2.5 2.7 2.9 3.2 3.3Power consumption A 70.8 77.8 84.8 92.0 96.2 103.1 110.0 115.2

NoteThe flow rates should be considered separately.Ensure the minimum flow rates.Basis for calculating the operating points:

Secondary outlet Temperature spread< 70 °C 5 K≥ 70 °C 10 K

Primary inlet Temperature spread< 35 °C 3 K≥ 35 °C 5 K

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Vitocal 350-HT Pro (cont.)

22 Viesmann VITOCAL

1

5796

245

GB

Page 23: Viesmann VITOCAL

Type BW 352.AHT096

Primary inlet in °C

0 10 20 30 40 50

Coe

ff of

per

fC

OP

Elec

tric

pow

er c

onsu

mpt

ion

in k

WC

oolin

g ca

paci

ty in

kW

Hea

ting

outp

ut in

kW

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0

400

0

350

50

100

150

200

55°

45°

65°

45°

70°75°80°85°90°

25055°

65°

70°75°

80°85°

90°

20

80

30

40

50

1.02.03.04.05.06.07.0

35°

65°70°75°80°85°90°

35° 45° 55° 60° 65°70°75°80°85°90°

60°

45°

35°

50

100

150

200

250

300

60°

60

70

60°

350

35°

300

45°

55°

Note■ COP calculated with reference to EN 14511.■ Output data applies to new appliances with clean plate heat

exchangers.

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

20

40

60

80

100

40302010

A Brine primary circuit (30 % glycol content)B Brine primary circuit (21 % glycol content)C Water primary circuit

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

5

10

15

20

25

40302010

D Secondary circuit

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 23

5796

245

GB

1

Page 24: Viesmann VITOCAL

Performance data, type BW 352.AHT096

Operating point Secondary outlet °C 35 Primary inlet °C 0 5 10 15 Heating output kW 96.6 117.7 141.6 169.2 Cooling capacity kW 73.4 92.6 115.0 141.4 Power consumption kW 23.2 25.1 26.6 27.8 Coefficient of perform-ance ε (COP)

4.2 4.7 5.3 6.1

Power consumption A 66.6 68.3 69.8 70.8

Operating point Secondary outlet °C 45 Primary inlet °C 0 5 10 15 20 25 Heating output kW 89.4 109.5 132.4 158.8 188.6 222.6 Cooling capacity kW 63.8 81.2 101.6 125.8 154.0 186.6 Power consumption kW 25.6 28.3 30.8 33.0 34.6 36.0 Coefficient of perform-ance ε (COP)

3.5 3.9 4.3 4.8 5.5 6.2

Power consumption A 68.6 71.3 73.8 76.2 78.0 79.6

Operating point Secondary outlet °C 55 Primary inlet °C 0 5 10 15 20 25 30 35 Heating output kW 81.0 100.1 121.6 146.4 174.6 206.4 242.8 267.0 Cooling capacity kW 53.6 69.2 87.4 109.2 134.6 164.2 198.6 222.1 Power consumption kW 27.4 30.9 34.2 37.2 40.0 42.2 44.2 44.9 Coefficient of perform-ance ε (COP)

3.0 3.2 3.6 3.9 4.4 4.9 5.5 5.9

Power consumption A 70.4 74.0 77.4 80.8 84.0 87.0 89.2 90.2

Operating point Secondary outlet °C 60 Primary inlet °C 0 5 10 15 20 25 30 35 40 Heating output kW 76.6 94.9 115.8 139.6 166.8 197.6 232.6 256.1 297.7 Cooling capacity kW 48.4 63.0 80.2 100.6 124.6 152.6 185.2 207.6 247.7 Power consumption kW 28.2 31.9 35.6 39.0 42.2 45.0 47.4 48.5 50.0 Coefficient of perform-ance ε (COP)

2.7 3.0 3.3 3.6 4.0 4.4 4.9 5.3 6.0

Power consumption A 71.2 75.0 79.0 83.0 86.8 90.4 93.2 94.6 96.7

Operating point Secondary outlet °C 65 Primary inlet °C 0 5 10 15 20 25 30 35 40 45 Heating output kW 72.0 89.5 109.4 132.4 158.6 188.4 221.8 244.6 285.0 331.2 Cooling capacity kW 43.2 56.7 72.8 91.8 114.4 140.8 171.4 192.8 231.0 275.4 Power consumption kW 28.8 32.8 36.6 40.6 44.2 47.6 50.4 51.8 54.0 55.8 Coefficient of perform-ance ε (COP)

2.5 2.7 3.0 3.3 3.6 4.0 4.4 4.7 5.3 5.9

Power consumption A 71.6 75.9 80.2 84.8 89.4 93.6 97.4 99.2 102.1 104.4

Operating point Secondary outlet °C 70Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 67.0 83.8 103.0 124.8 150.0 178.4 210.8 232.6 271.6 316.4 356.4Cooling capacity kW 38.0 50.5 65.4 83.0 104.0 128.6 157.6 177.6 213.9 256.2 294.4Power consumption kW 29.0 33.3 37.6 41.8 46.0 49.8 53.2 55.0 57.7 60.2 62.0Coefficient of perform-ance ε (COP)

2.3 2.5 2.7 3.0 3.3 3.6 4.0 4.2 4.7 5.3 5.7

Power consumption A 72.0 76.6 81.4 86.4 91.6 96.6 101.0 103.4 106.9 110.2 112.4

Vitocal 350-HT Pro (cont.)

24 Viesmann VITOCAL

1

5796

245

GB

Page 25: Viesmann VITOCAL

Operating point Secondary outlet °C 75Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 62.2 78.2 96.2 117.2 141.2 168.2 198.8 219.9 257.2 300.6 339.2Cooling capacity kW 33.0 44.3 57.8 74.2 93.6 116.4 143.2 162.2 196.2 236.2 272.6Power consumption kW 29.2 33.9 38.4 43.0 47.6 51.8 55.6 57.8 61.0 64.4 66.6Coefficient of perform-ance ε (COP)

2.1 2.3 2.5 2.7 3.0 3.2 3.6 3.8 4.2 4.7 5.1

Power consumption A 72.2 77.1 82.4 87.8 93.6 99.0 104.2 107.0 111.4 115.6 119.0

Operating point Secondary outlet °C 80Primary inlet °C 5 10 15 20 25 30 35 40 45 50Heating output kW 72.4 89.4 109.4 131.8 157.4 186.8 196.5 229.6 268.5 303.5Cooling capacity kW 38.2 50.4 65.4 83.0 104.0 128.8 136.1 165.5 200.5 232.5Power consumption kW 34.2 39.0 44.0 48.8 53.4 58.0 60.4 64.1 68.0 71.0Coefficient of performance ε(COP)

2.1 2.3 2.5 2.7 2.9 3.2 3.3 3.6 3.9 4.3

Power consumption A 77.5 83.0 89.0 95.4 101.4 107.2 110.3 115.5 120.8 125.0

Operating point Secondary outlet °C 85Primary inlet °C 10 15 20 25 30 35 40 45 50Heating output kW 82.6 101.2 122.4 146.4 174.0 183.7 215.2 252.0 285.4Cooling capacity kW 43.2 56.4 72.4 91.4 114.2 121.2 148.2 180.6 210.6Power consumption kW 39.4 44.8 50.0 55.0 59.8 62.6 67.0 71.4 74.8Coefficient of performance ε (COP) 2.1 2.3 2.4 2.7 2.9 2.9 3.2 3.5 3.8Power consumption A 83.6 90.0 96.6 103.4 109.8 113.5 119.4 125.4 130.2

Operating point Secondary outlet °C 90Primary inlet °C 15 20 25 30 35 40 45 50Heating output kW 92.8 112.6 129.5 153.9 170.4 199.6 234.4 260.0Cooling capacity kW 47.6 61.8 73.3 92.3 105.8 130.2 160.0 181.6Power consumption kW 45.2 50.8 56.2 61.6 64.6 69.4 74.4 78.4Coefficient of performance ε (COP) 2.1 2.2 2.3 2.5 2.6 2.9 3.2 3.3Power consumption A 90.6 97.6 105.0 112.0 116.1 122.7 129.6 135.4

NoteThe flow rates should be considered separately.Ensure the minimum flow rates.Basis for calculating the operating points:

Secondary outlet Temperature spread< 70 °C 5 K≥ 70 °C 10 K

Primary inlet Temperature spread< 35 °C 3 K≥ 35 °C 5 K

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 25

5796

245

GB

1

Page 26: Viesmann VITOCAL

Type BW 352.AHT119

Primary inlet in °C

0 10 20 30 40 50

Coe

ff of

per

fC

OP

Elec

tric

pow

er c

onsu

mpt

ion

in k

WC

oolin

g ca

paci

ty in

kW

Hea

ting

outp

ut in

kW

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0

450

0

400

50

100

150

200

55°

45°

65°70°75°80°85°90°

250

55°

65°

70°

75°

80°

85°

90°

20

90

304050

1.02.03.04.05.06.07.0

35°

65°70°

80°85°90°

35° 45° 55° 60° 65°70°75°80°85°90°

60°

45°

35°

50

100

150

200

250

300

6070

350

300

45°55°

400

350

80

75°

60°

60°

45°

35°

Note■ COP calculated with reference to EN 14511.■ Output data applies to new appliances with clean plate heat

exchangers.

Flow rate in m³/hPr

essu

re d

rop

in k

Pa

050

10

20

30

40

50

40302010

A Brine primary circuit (30 % glycol content)B Brine primary circuit (21 % glycol content)C Water primary circuit

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

5

10

15

20

25

40302010

D Secondary circuit

Vitocal 350-HT Pro (cont.)

26 Viesmann VITOCAL

1

5796

245

GB

Page 27: Viesmann VITOCAL

Performance data, type BW 352.AHT119

Operating point Secondary outlet °C 35 Primary inlet °C 0 5 10 15 Heating output kW 116.8 142.5 172.0 206.4 Cooling capacity kW 88.4 111.9 139.6 172.4 Power consumption kW 28.4 30.6 32.4 34.0 Coefficient of perform-ance ε (COP)

4.1 4.7 5.3 6.1

Power consumption A 91.4 94.1 96.4 98.4

Operating point Secondary outlet °C 45 Primary inlet °C 0 5 10 15 20 25 Heating output kW 107.0 131.0 158.8 190.8 227.4 269.6 Cooling capacity kW 75.8 96.8 121.6 151.0 185.4 225.6 Power consumption kW 31.2 34.2 37.2 39.8 42.0 44.0 Coefficient of perform-ance ε (COP)

3.4 3.8 4.3 4.8 5.4 6.1

Power consumption A 94.8 98.7 102.4 106.0 109.0 111.6

Operating point Secondary outlet °C 55 Primary inlet °C 0 5 10 15 20 25 30 35 Heating output kW 96.2 118.4 144.0 173.6 207.4 245.8 289.6 319.2 Cooling capacity kW 63.0 81.4 103.2 129.2 159.6 195.2 236.4 264.8 Power consumption kW 33.2 37.0 40.8 44.4 47.8 50.6 53.2 54.4 Coefficient of perform-ance ε (COP)

2.9 3.2 3.5 3.9 4.3 4.9 5.4 5.9

Power consumption A 97.2 102.4 107.4 112.4 116.8 121.0 124.4 126.0

Operating point Secondary outlet °C 60 Primary inlet °C 0 5 10 15 20 25 30 35 40 Heating output kW 90.4 111.8 136.2 164.6 196.6 233.6 275.2 303.5 353.5 Cooling capacity kW 56.6 73.7 94.0 118.2 146.6 180.0 218.6 245.4 293.1 Power consumption kW 33.8 38.1 42.2 46.4 50.0 53.6 56.6 58.2 60.4 Coefficient of perform-ance ε (COP)

2.7 2.9 3.2 3.5 3.9 4.4 4.9 5.2 5.9

Power consumption A 98.2 103.8 109.6 114.8 120.0 124.6 128.6 130.6 133.7

Operating point Secondary outlet °C 65 Primary inlet °C 0 5 10 15 20 25 30 35 40 45 Heating output kW 84.4 105.0 128.4 155.2 185.8 220.8 260.6 287.5 335.2 391.8 Cooling capacity kW 50.2 66.1 85.0 107.4 133.8 164.8 201.0 226.1 270.9 324.6 Power consumption kW 34.2 38.9 43.4 47.8 52.0 56.0 59.6 61.4 64.3 67.2 Coefficient of perform-ance ε (COP)

2.5 2.7 3.0 3.2 3.6 3.9 4.4 4.7 5.2 5.8

Power consumption A 98.8 104.8 111.0 117.0 122.8 128.0 132.6 134.9 138.4 142.0

Operating point Secondary outlet °C 70Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 78.6 98.0 120.4 145.8 174.8 207.8 245.4 271.0 316.2 370.6 420.8Cooling capacity kW 44.0 58.6 76.0 96.6 121.0 149.6 183.2 206.6 248.6 299.2 346.2Power consumption kW 34.6 39.4 44.4 49.2 53.8 58.2 62.2 64.4 67.6 71.4 74.6Coefficient of perform-ance ε (COP)

2.3 2.5 2.7 3.0 3.2 3.6 3.9 4.2 4.7 5.2 5.6

Power consumption A 99.0 105.6 112.4 118.8 125.0 130.8 135.8 138.6 142.5 147.0 150.4

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 27

5796

245

GB

1

Page 28: Viesmann VITOCAL

Operating point Secondary outlet °C 75Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 72.6 91.1 112.0 136.0 163.4 194.6 229.8 253.9 296.6 348.4 396.6Cooling capacity kW 38.0 51.3 67.0 85.8 108.2 134.6 165.4 187.1 226.1 273.4 317.8Power consumption kW 34.6 39.8 45.0 50.2 55.2 60.0 64.4 66.8 70.5 75.0 78.8Coefficient of perform-ance ε (COP)

2.1 2.3 2.5 2.7 3.0 3.2 3.6 3.8 4.2 4.6 5.0

Power consumption A 99.2 106.0 113.2 120.2 127.0 133.0 138.6 141.5 146.0 151.0 155.4

Operating point Secondary outlet °C 80Primary inlet °C 5 10 15 20 25 30 35 40 45 50Heating output kW 83.9 103.6 126.2 151.8 180.8 213.8 224.6 262.3 308.1 351.2Cooling capacity kW 44.0 58.2 75.2 95.6 119.4 147.6 155.8 189.2 230.1 268.6Power consumption kW 39.4 45.4 51.0 56.2 61.4 66.2 68.8 73.1 78.0 82.6Coefficient of performance ε(COP)

2.1 2.3 2.5 2.7 2.9 3.2 3.3 3.6 3.9 4.3

Power consumption A 106.2 113.8 121.2 128.4 135.0 140.8 143.9 148.9 154.4 159.4

Operating point Secondary outlet °C 85Primary inlet °C 10 15 20 25 30 35 40 45 50Heating output kW 95.0 116.0 139.8 167.0 197.6 208.1 243.0 285.9 326.7Cooling capacity kW 49.4 64.6 82.8 104.4 129.8 137.5 167.8 205.3 241.1Power consumption kW 45.6 51.4 57.0 62.6 67.8 70.7 75.2 80.6 85.6Coefficient of performance ε (COP) 2.1 2.3 2.5 2.7 2.9 2.9 3.2 3.5 3.8Power consumption A 114.0 121.8 129.4 136.4 142.8 146.0 151.3 157.4 162.8

Operating point Secondary outlet °C 90Primary inlet °C 15 20 25 30 35 40 45 50Heating output kW 105.8 127.6 146.4 173.0 190.9 222.8 262.8 294.3Cooling capacity kW 54.2 70.0 83.0 104.0 118.9 145.9 180.0 205.9Power consumption kW 51.6 57.6 63.4 69.0 72.0 76.9 82.8 88.4Coefficient of performance ε (COP) 2.1 2.2 2.3 2.5 2.7 2.9 3.2 3.3Power consumption A 122.0 130.0 137.4 144.2 147.7 153.2 159.6 165.8

NoteThe flow rates should be considered separately.Ensure the minimum flow rates.Basis for calculating the operating points:

Secondary outlet Temperature spread< 70 °C 5 K≥ 70 °C 10 K

Primary inlet Temperature spread< 35 °C 3 K≥ 35 °C 5 K

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Vitocal 350-HT Pro (cont.)

28 Viesmann VITOCAL

1

5796

245

GB

Page 29: Viesmann VITOCAL

Type BW 353.AHT126

0 10 20 30 40 50Primary inlet in °C

0 10 20 30 40 50

Coe

ff of

per

fC

OP

Elec

tric

pow

er c

onsu

mpt

ion

in k

WC

oolin

g ca

paci

ty in

kW

Hea

ting

outp

ut in

kW

0 10 20 30 40 50

0 10 20 30 40 50

0

500

0

400

50

100

150

200

65°70°75°80°

85°90°

250

55°75°

80°

85°

90°

20

40

1.02.03.04.05.06.07.0

35°

65°70°

80°

90°

35° 45° 55° 60° 65°

70°75°80°85°90°

45°

35°

50

100

150

200

250

300

60

350

300

45°55°

400

350

80 75°

60°

35°

450

45°45°

55°60°

60°

65°70°

100

120

80°85°

Note■ COP calculated with reference to EN 14511.■ Output data applies to new appliances with clean plate heat

exchangers.

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

10

20

30

40

50

40302010

A Brine primary circuit (30 % glycol content)B Brine primary circuit (21 % glycol content)C Water primary circuit

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

5

10

15

20

35

40302010

25

30

D Secondary circuit

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 29

5796

245

GB

1

Page 30: Viesmann VITOCAL

Performance data, type BW 353.AHT126

Operating point Secondary outlet °C 35 Primary inlet °C 0 5 10 15 Heating output kW 124.8 152.4 184.5 221.1 Cooling capacity kW 95.4 120.8 150.9 186.0 Power consumption kW 29.4 31.7 33.6 35.1 Coefficient of perform-ance ε (COP)

4.2 4.8 5.5 6.3

Power consumption A 77.1 79.4 81.3 82.8

Operating point Secondary outlet °C 45 Primary inlet °C 0 5 10 15 20 25 Heating output kW 113.7 140.1 170.4 205.2 244.8 290.1 Cooling capacity kW 81.6 104.6 131.7 163.8 201.3 245.1 Power consumption kW 32.1 35.6 38.7 41.4 43.5 45.0 Coefficient of perform-ance ε (COP)

3.5 3.9 4.4 5.0 5.6 6.4

Power consumption A 79.5 83.3 86.7 89.7 92.1 93.6

Operating point Secondary outlet °C 55 Primary inlet °C 0 5 10 15 20 25 30 35 Heating output kW 101.4 126.3 154.8 187.5 224.7 267.0 315.0 347.4 Cooling capacity kW 67.5 87.9 112.2 140.7 174.6 213.9 259.5 291.0 Power consumption kW 33.9 38.4 42.6 46.8 50.1 53.1 55.5 56.4 Coefficient of perform-ance ε (COP)

3.0 3.3 3.6 4.0 4.5 5.0 5.7 6.2

Power consumption A 81.6 86.1 90.9 95.7 99.9 103.8 106.8 107.9

Operating point Secondary outlet °C 60 Primary inlet °C 0 5 10 15 20 25 30 35 40 Heating output kW 94.8 119.0 146.4 177.9 213.9 254.7 300.9 332.4 387.6 Cooling capacity kW 60.3 79.5 102.0 129.0 160.8 198.0 241.2 271.3 324.6 Power consumption kW 34.5 39.5 44.4 48.9 53.1 56.7 59.7 61.1 63.0 Coefficient of perform-ance ε (COP)

2.7 3.0 3.3 3.6 4.0 4.5 5.0 5.4 6.2

Power consumption A 82.2 87.6 92.7 98.4 103.5 108.3 112.5 114.5 117.0

Operating point Secondary outlet °C 65 Primary inlet °C 0 5 10 15 20 25 30 35 40 45 Heating output kW 88.2 111.3 137.7 168.0 202.5 241.8 286.5 316.7 370.5 431.7 Cooling capacity kW 53.4 71.0 92.1 117.3 147.0 181.8 222.6 251.0 302.0 361.2 Power consumption kW 34.8 40.4 45.6 50.7 55.5 60.0 63.9 65.7 68.6 70.5 Coefficient of perform-ance ε (COP)

2.5 2.8 3.0 3.3 3.6 4.0 4.5 4.8 5.4 6.1

Power consumption A 82.5 88.2 94.2 100.8 106.8 112.8 117.9 120.6 124.8 127.8

Operating point Secondary outlet °C 70Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 81.6 103.4 128.4 157.5 190.5 228.3 271.2 300.4 352.2 411.6 464.7Cooling capacity kW 46.5 62.6 81.9 105.3 132.9 165.6 203.7 230.5 278.7 335.1 386.1Power consumption kW 35.1 40.8 46.5 52.2 57.6 62.7 67.5 69.8 73.5 76.5 78.6Coefficient of perform-ance ε (COP)

2.3 2.5 2.8 3.0 3.3 3.6 4.0 4.3 4.8 5.4 5.9

Power consumption A 82.5 88.8 95.4 102.6 109.8 116.7 123.3 126.7 131.9 136.2 139.2

Vitocal 350-HT Pro (cont.)

30 Viesmann VITOCAL

1

5796

245

GB

Page 31: Viesmann VITOCAL

Operating point Secondary outlet °C 75Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 74.4 95.4 119.1 146.7 178.2 214.2 255.3 283.2 333.3 390.6 441.6Cooling capacity kW 39.6 54.3 72.0 93.3 118.8 149.1 184.8 209.8 255.3 308.4 356.7Power consumption kW 34.8 41.1 47.1 53.4 59.4 65.1 70.5 73.4 78.0 82.2 84.9Coefficient of perform-ance ε (COP)

2.1 2.3 2.5 2.7 3.0 3.3 3.6 3.9 4.3 4.8 5.2

Power consumption A 82.5 89.0 96.3 104.1 111.9 120.0 127.8 131.8 138.3 144.6 148.5

Operating point Secondary outlet °C 80Primary inlet °C 5 10 15 20 25 30 35 40 45 50Heating output kW 87.3 110.1 135.9 165.9 199.8 238.8 252.2 296.9 348.4 394.2Cooling capacity kW 46.4 62.4 81.6 105.0 132.6 165.6 175.6 214.8 261.4 303.6Power consumption kW 41.0 47.7 54.3 60.9 67.2 73.2 76.6 82.1 87.0 90.6Coefficient of performance ε(COP)

2.1 2.3 2.5 2.7 3.0 3.3 3.3 3.6 4.0 4.4

Power consumption A 89.0 96.6 105.3 114.0 122.7 131.7 136.6 144.5 151.8 157.2

Operating point Secondary outlet °C 85Primary inlet °C 10 15 20 25 30 35 40 45 50Heating output kW 100.5 125.1 153.0 185.1 222.0 235.5 277.6 326.4 370.5Cooling capacity kW 52.8 70.2 90.9 116.1 146.1 155.8 191.8 234.9 274.5Power consumption kW 47.7 54.9 62.1 69.0 75.9 79.7 85.8 91.5 96.0Coefficient of performance ε (COP) 2.1 2.3 2.5 2.7 2.9 3.0 3.2 3.6 3.9Power consumption A 96.9 105.9 115.5 125.4 135.0 140.8 150.0 158.7 165.3

Operating point Secondary outlet °C 90Primary inlet °C 15 20 25 30 35 40 45 50Heating output kW 113.7 139.8 162.8 195.4 217.7 257.2 303.3 337.4Cooling capacity kW 58.8 77.1 92.6 117.7 135.6 168.2 207.6 236.3Power consumption kW 54.9 62.7 70.2 77.7 82.0 89.0 95.7 101.1Coefficient of performance ε (COP) 2.1 2.2 2.3 2.5 2.7 2.9 3.2 3.3Power consumption A 106.2 116.7 127.2 138.0 144.3 154.7 165.0 172.8

NoteThe flow rates should be considered separately.Ensure the minimum flow rates.Basis for calculating the operating points:

Secondary outlet Temperature spread< 70 °C 5 K≥ 70 °C 10 K

Primary inlet Temperature spread< 35 °C 3 K≥ 35 °C 5 K

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 31

5796

245

GB

1

Page 32: Viesmann VITOCAL

Type BW 353.AHT147

Brine inlet temperature in °C

0 10 20 30 40 50

Coe

ff of

per

fC

OP

Elec

tric

pow

er c

onsu

mpt

ion

in k

WC

oolin

g ca

paci

ty in

kW

Hea

ting

outp

ut in

kW

0 10 20 30 40 50

0 10 20 30 40 50

0 10 20 30 40 50

0

500

0

450

50

100

150

200

65°70°75°80°85°90°

250

55°75°

80°

85°

90°

20

40

1.02.03.04.05.06.07.0

35°

65°70°

90°

35° 45° 55° 60° 65°70°75°80°85°90°

35°

50

100

150

200

250

300

60

350

300

45°

55°

400

350

80

75°

60°

500

45°45°

55°

65°70°

100

12080°85°

550

450

35°

60°

400

45°

60°

Note■ COP calculated with reference to EN 14511.■ Output data applies to new appliances with clean plate heat

exchangers.

Flow rate in m³/hPr

essu

re d

rop

in k

Pa

050

10

20

30

40

50

40302010

A Brine primary circuit (30 % glycol content)B Brine primary circuit (21 % glycol content)C Water primary circuit

Flow rate in m³/h

Pres

sure

dro

p in

kPa

050

5

10

15

20

35

40302010

25

30

D Secondary circuit

Vitocal 350-HT Pro (cont.)

32 Viesmann VITOCAL

1

5796

245

GB

Page 33: Viesmann VITOCAL

Performance data, type BW 353.AHT147

Operating point Secondary outlet °C 35 Primary inlet °C 0 5 10 15 Heating output kW 144.9 176.6 212.4 253.8 Cooling capacity kW 110.1 138.9 172.5 212.1 Power consumption kW 34.8 37.7 39.9 41.7 Coefficient of perform-ance ε (COP)

4.2 4.7 5.3 6.1

Power consumption A 99.9 102.5 104.7 106.2

Operating point Secondary outlet °C 45 Primary inlet °C 0 5 10 15 20 25 Heating output kW 134.1 164.3 198.6 238.2 282.9 333.9 Cooling capacity kW 95.7 121.8 152.4 188.7 231.0 279.9 Power consumption kW 38.4 42.5 46.2 49.5 51.9 54.0 Coefficient of perform-ance ε (COP)

3.5 3.9 4.3 4.8 5.5 6.2

Power consumption A 102.9 107.0 110.7 114.3 117.0 119.4

Operating point Secondary outlet °C 55 Primary inlet °C 0 5 10 15 20 25 30 35 Heating output kW 121.5 150.2 182.4 219.6 261.9 309.6 364.2 400.6 Cooling capacity kW 80.4 103.8 131.1 163.8 201.9 246.3 297.9 333.2 Power consumption kW 41.1 46.4 51.3 55.8 60.0 63.3 66.3 67.4 Coefficient of perform-ance ε (COP)

3.0 3.2 3.6 3.9 4.4 4.9 5.5 5.9

Power consumption A 105.6 111.0 116.1 121.2 126.0 130.5 133.8 135.2

Operating point Secondary outlet °C 60 Primary inlet °C 0 5 10 15 20 25 30 35 40 Heating output kW 114.9 142.4 173.7 209.4 250.2 296.4 348.9 384.2 446.6 Cooling capacity kW 72.6 94.5 120.3 150.9 186.9 228.9 277.8 311.5 371.6 Power consumption kW 42.3 47.9 53.4 58.5 63.3 67.5 71.1 72.7 75.0 Coefficient of perform-ance ε (COP)

2.7 3.0 3.3 3.6 4.0 4.4 4.9 5.3 6.0

Power consumption A 106.8 112.5 118.5 124.5 130.2 135.6 139.8 142.0 145.1

Operating point Secondary outlet °C 65 Primary inlet °C 0 5 10 15 20 25 30 35 40 45 Heating output kW 108.0 134.3 164.1 198.6 237.9 282.6 332.7 366.9 427.5 496.8 Cooling capacity kW 64.8 85.1 109.2 137.7 171.6 211.2 257.1 289.1 346.5 413.1 Power consumption kW 43.2 49.2 54.9 60.9 66.3 71.4 75.6 77.8 81.0 83.7 Coefficient of perform-ance ε (COP)

2.5 2.7 3.0 3.3 3.6 4.0 4.4 4.7 5.3 5.9

Power consumption A 107.4 114.0 120.3 127.2 134.1 140.4 146.1 148.8 153.2 156.6

Operating point Secondary outlet °C 70Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 100.5 125.7 154.5 187.2 225.0 267.6 316.2 349.0 407.4 474.6 534.6Cooling capacity kW 57.0 75.8 98.1 124.5 156.0 192.9 236.4 266.5 320.9 384.3 441.6Power consumption kW 43.5 50.0 56.4 62.7 69.0 74.7 79.8 82.5 86.6 90.3 93.0Coefficient of perform-ance ε (COP)

2.3 2.5 2.7 3.0 3.3 3.6 4.0 4.2 4.7 5.3 5.7

Power consumption A 108.0 114.9 122.1 129.6 137.4 144.9 151.5 155.1 160.4 165.3 168.6

Vitocal 350-HT Pro (cont.)

VITOCAL Viesmann 33

5796

245

GB

1

Page 34: Viesmann VITOCAL

Operating point Secondary outlet °C 75Primary inlet °C 0 5 10 15 20 25 30 35 40 45 50Heating output kW 93.3 117.3 144.3 175.8 211.8 252.3 298.2 329.9 385.8 450.9 508.8Cooling capacity kW 49.5 66.5 86.7 111.3 140.4 174.6 214.8 243.2 294.3 354.3 408.9Power consumption kW 43.8 50.9 57.6 64.5 71.4 77.7 83.4 86.6 91.5 96.6 99.9Coefficient of perform-ance ε (COP)

2.1 2.3 2.5 2.7 3.0 3.2 3.6 3.8 4.2 4.7 5.1

Power consumption A 108.3 115.8 123.6 131.7 140.4 148.5 156.3 160.4 167.1 173.4 178.5

Operating point Secondary outlet °C 80Primary inlet °C 5 10 15 20 25 30 35 40 45 50Heating output kW 108.6 134.1 164.1 197.7 236.1 280.2 294.7 344.5 402.8 455.3Cooling capacity kW 57.3 75.6 98.1 124.5 156.0 193.2 204.1 248.3 300.8 348.8Power consumption kW 51.3 58.5 66.0 73.2 80.1 87.0 90.6 96.2 102.0 106.5Coefficient of performance ε(COP)

2.1 2.3 2.5 2.7 2.9 3.2 3.3 3.6 3.9 4.3

Power consumption A 116.3 124.5 133.5 143.1 152.1 160.8 165.5 173.3 181.2 187.5

Operating point Secondary outlet °C 85Primary inlet °C 10 15 20 25 30 35 40 45 50Heating output kW 123.9 151.8 183.6 219.6 261.0 275.6 322.9 378.0 428.0Cooling capacity kW 64.8 84.6 108.6 137.1 171.3 181.7 222.4 270.9 315.8Power consumption kW 59.1 67.2 75.0 82.5 89.7 93.8 100.5 107.1 112.2Coefficient of performance ε (COP) 2.1 2.3 2.4 2.7 2.9 2.9 3.2 3.5 3.8Power consumption A 125.4 135.0 144.9 155.1 164.7 170.3 179.1 188.1 195.3

Operating point Secondary outlet °C 90Primary inlet °C 15 20 25 30 35 40 45 50Heating output kW 139.2 168.9 194.2 230.8 255.5 299.4 351.5 390.0Cooling capacity kW 71.4 92.7 109.9 138.4 158.6 195.3 239.9 272.4Power consumption kW 67.8 76.2 84.3 92.4 96.9 104.1 111.6 117.6Coefficient of performance ε (COP) 2.1 2.2 2.3 2.5 2.6 2.9 3.2 3.3Power consumption A 135.9 146.4 157.5 168.0 174.1 184.1 194.4 203.1

NoteThe flow rates should be considered separately.Ensure the minimum flow rates.Basis for calculating the operating points:

Secondary outlet Temperature spread< 70 °C 5 K≥ 70 °C 10 K

Primary inlet Temperature spread< 35 °C 3 K≥ 35 °C 5 K

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Vitocal 350-HT Pro (cont.)

34 Viesmann VITOCAL

1

5796

245

GB

Page 35: Viesmann VITOCAL

2.1 Overview, installation accessoriesNoteThe symbols (encircled numbers) in the table refer to the "Generalhydraulic scheme", page 59.

Accessories Part no. Type 352.AHT Type 353.AHT 058 071 084 096 119 126 147Primary circuit, see from page 38 Hydraulic connection accessories: – Flange adaptor set, Victaulic 2½" to flange – short Z011 177 2 – Flange adaptor set, Victaulic 3" to flange – long ZK00 972 2 2 2 2 2 2Heat transfer medium: – "Tyfocor" 30 l 9532 655 X X X X X X X– "Tyfocor" 200 l 9542 602 X X X X X X XFilling station 7188 625 X X X X X X XPressure switch (primary circuit) 9532 663 X X X X X X XPrimary pumps 4: – Wilo-Stratos 65/1-12 7439 050 X – Wilo-Stratos 80/1-12 7439 051 X X X X X XSecondary circuit Hydraulic connection accessories – Flange adaptor set, Victaulic 2½" to flange – long ZK00 971 2 – Flange adaptor set, Victaulic 3" to flange – short Z011 178 2 2 2 2 2 2Safety equipment block 7143 783 X X X X X X XPrimary and secondary circuit Hydraulic connection accessories – Rubber expansion joints DN 65/PN 10 ZK03 011 2 – Rubber expansion joints DN 80/PN 10 ZK03 012 2 2 2 2 2 2Secondary pumps, see from page 40 HE circulation pumps 5: – Wilo-Stratos 50/1-12 9566 234 X – Wilo-Stratos 65/1-12 7439 050 X X – Wilo-Stratos 80/1-12 7439 051 X X X XGroundwater HE plate heat exchanger (separating heat exchanger) qR: – Separating heat exchanger, threaded 63 kW 7172 884 X – Separating heat exchanger, threaded 81 kW 7172 885 X – Separating heat exchanger, threaded 92 kW 7172 886 X – Separating heat exchanger, threaded 106 kW 7172 887 X – Separating heat exchanger, threaded 128 kW 7172 888 X – Separating heat exchanger, threaded 138 kW 7172 889 X – Separating heat exchanger, threaded 158 kW 7172 890 XStainless steel drip pan qR: – 550 x 750 x 50 7459 283 X X X – 400 x 850 x 50 7172 893 X – 400 x 600 x 50 7459 282 X X – 550 x 1150 x 50 7459 284 XFlow switch set qT: – SI5000 ZK00 969 X X X X X X X– SR5900 ZK00 970 X X X X X X XDHW heating Plate heat exchanger eR: – DHW plate heat exchanger 54 to 220 kW 7519 161 X – DHW plate heat exchanger 67 to 220 kW 7519 162 X X – DHW plate heat exchanger 95 to 226 kW 7519 163 X X – DHW plate heat exchanger 135 to 226 kW 7519 164 X XValves and actuators 3-way valve for heating - DHW heating changeover 3: – With flanged connection DN 65 7459 385 X X X X – With flanged connection DN 80 7459 386 X X XActuator 3: – Actuator NV24A-TPC 7519 178 X X X X X X X3-way valve as mixer for DHW temperature eZ: – With male thread DN 40 (not DVGW/SVGW certified) 7511 388 X – With male thread DN 50 (not DVGW/SVGW certified) 7511 389 X X X X X XActuator: eZ – Lift drive for mixer (NVC24A-MP-TPC) 7511 391 X X X X X X X

Installation accessories

VITOCAL Viesmann 35

5796

245

GB

2

Page 36: Viesmann VITOCAL

Accessories Part no. Type 352.AHT Type 353.AHT 058 071 084 096 119 126 147Cylinder loading pump: eE – Wilo-Stratos-Z 50/1-9 On site X X X X – Wilo-Stratos-Z 65/1-12 On site X X XDHW circulation pump: eU – Wilo-Stratos-Z 25/1-8 (up to 80 °C) On site X X X X X X XDHW cylinder: eP On request Immersion heater: eW On request Heating water buffer cylinder*2 Min. 1500 litres ZK02 266 X Min. 2000 litres ZK02 267 X X Min. 2500 litres ZK02 268 X X Min. 3000 litres ZK00 269 X XNatural cooling (only possible without cooling water option) Plate heat exchanger uQ: NC plate heat exchanger 7519 156 X NC plate heat exchanger 7519 157 X X NC plate heat exchanger 7519 158 X X NC plate heat exchanger 7519 159 X X3-way diverter valve NC/AC: uP – 3-way valve with DN 65 flange connection 7459 385 X – 3-way valve with DN 80 flange connection 7459 386 X X X – 3-way valve with DN 100 flange connection 7519 175 X X XActuator: uP – Actuator NV24A-TPC 7519 178 X X X X X – Actuator EV24A-TPC 7519 176 X XMixing valve NC iT: – 3-way valve with DN 65 flange connection 7459 385 X – 3-way valve with DN 80 flange connection 7459 386 X X X – 3-way valve with DN 100 flange connection 7519 175 X X XLift drive for mixer: iT – Lift drive for mixer (NVC24A-MP-TPC) 7511 391 X X X X – Lift drive for mixer (EVC24A-MF) 7519 177 X X XActive cooling, coolant (integrated natural cooling) Plate heat exchanger uQ: AC plate heat exchanger 7519 151 X AC plate heat exchanger 7519 152 X X AC plate heat exchanger 7519 153 X X AC plate heat exchanger 7519 154 X XMixing valve NC/AC: iT – 3-way valve with DN 65 flange connection 7459 385 X – 3-way valve with DN 80 flange connection 7459 386 X X X – 3-way valve with DN 100 flange connection 7519 175 X X XLift drive for mixer: iT – Lift drive for mixer (NVC24A-MP-TPC) 7511 391 X X X X – Lift drive for mixer (EVC24A-MF) 7519 177 X X X3-way diverter valve NC/AC: uP – 3-way valve with DN 65 flange connection 7459 385 X – 3-way valve with DN 80 flange connection 7459 386 X X X – 3-way valve with DN 100 flange connection 7519 175 X X XActuator: uP – Actuator NV24A-TPC 7519 178 X X X X X – Actuator EV24A-TPC 7519 176 X XFlow switch: iR ZK00 969 X X X X X X X2-way motorised valve, cooling mode: iR – 3-way valve with DN 65 flange connection 7459 385 X – 3-way valve with DN 80 flange connection 7459 386 X X X – 3-way valve with DN 100 flange connection 7519 175 X X XActuator: iR – Actuator NV24A-TPC 7519 178 X X X X X – Actuator EV24A-TPC 7519 176 X XCoolant buffer cylinder: iP On request/on

site

*2 Thermal insulation required, see from page 72

Installation accessories (cont.)

36 Viesmann VITOCAL

2

5796

245

GB

Page 37: Viesmann VITOCAL

Accessories Part no. Type 352.AHT Type 353.AHT 058 071 084 096 119 126 147Cylinder loading pump: iQ – Wilo-Stratos 65/1-12 7439 050 X – Wilo-Stratos 80/1-12 7439 051 X X X X X XSystem sep. heat exchanger, residual heat (brazed): r¢P Plate heat exchanger, residual heat 7519 166 X Plate heat exchanger, residual heat 7519 167 X X Plate heat exchanger, residual heat 7519 168 X X Plate heat exchanger, residual heat 7519 169 X X3-way diverter valve, residual heat r¢W: – 3-way valve with DN 65 flange connection 7459 385 X X X X – 3-way valve with DN 80 flange connection 7459 386 X X XActuator NV24 r¢W: – Actuator NV24A-TPC 7519 178 X X X X X X XPump, residual heat r¢Q: – Wilo Stratos 50/1-12 9566 234 X – Wilo Stratos 65/1-12 7439 050 X X – Wilo Stratos 80/1-12 7439 051 X X X X3-way control valve, residual heat temp. maintenance r¢O: – 3-way valve with DN 65 flange connection 7459 385 X X X X – 3-way valve with DN 80 flange connection 7459 386 X X XActuator r¢O: – Lift drive for mixer (NVC24A-MP-TPC) 7511 391 X X X X X X XExpansion vessel Calculation on

site

Pressure switch (residual heat) r¢T: 9532 663 X X X X X X XShut-off valve, dry cooler r¢E: – 2-way shut-off valve with DN 65 flange connection 7519 171 X X X X – 2-way shut-off valve with DN 80 flange connection 7519 172 X X XActuator NV24 r¢E: – Actuator NV24A-TPC 7519 178 X X X X X X XShut-off valve, geothermal probe r¢R: – 2-way shut-off valve with DN 65 flange connection 7519 171 X X X X – 2-way shut-off valve with DN 80 flange connection 7519 172 X X XActuator NV24 r¢R: – Actuator NV24A-TPC 7519 178 X X X X X X X3-way control valve, condenser temp. maintenance r¢E: – 3-way valve with DN 65 flange connection 7459 385 X X – 3-way valve with DN 80 flange connection 7459 386 X X X – 3-way valve with DN 100 flange connection 7519 175 X X– Lift drive for mixer (NVC24A-MP-TPC) 7511 391 X X X X X – Lift drive for mixer (EVC24A-MF) 7519 177 X X

NoteThe table does not replace the need for specialist design and engi-neering on site. All components must be checked for suitability inrespect of flow loss and pressure drop. The specifications of individ-ual components can be found in the description of options frompage 63. The above table includes recommendations that requiredetailed engineering.

NoteAll accessories/field equipment were sized for the operating pointW50/W90 with 5 K primary spread and 10 K secondary spread.

Installation accessories (cont.)

VITOCAL Viesmann 37

5796

245

GB

2

Page 38: Viesmann VITOCAL

2.2 Primary and secondary circuit

Victaulic 2½" flange adaptor set (DN 65) to flange – short

Part no. Z011 177To connect the heat pump to the primary circuitMaterial: Steel

Components:■ 1 adaptor connector with flange DN 65/PN 10, 220 mm■ Without sound insulation; requires on-site compensators■ 1 Victaulic coupling 2½" (DN 65)

Order 2 sets per heat pump.

Connection:■ Primary circuit:

Flange DN 65■ Heat pump:

Victaulic 2½" (DN 65)

Max. operating pressure 10 bar

220

NoteFor use, see "Installation accessories" selection table on page 35.

Victaulic 2½" flange adaptor set long (DN 65) to flange – long

Part no. ZK00 971To connect the heat pump to the secondary circuitMaterial: Steel

Components:■ 1 adaptor connector with flange DN 65/PN 10, 380 mm■ Without sound insulation; requires on-site compensators■ 1 Victaulic coupling, type 177, flexible, 2½" (DN 65) (76 mm).

If the flange adaptor set is used, compensators must be installed tocompensate for any vibration.Order 2 sets per heat pump.

Connection:■ Secondary circuit:

Flange DN 65■ Heat pump:

Victaulic 2½" (DN 65)

Max. operating pressure 10 bar

a

a = 380 mm

NoteFor use, see "Installation accessories" selection table on page 35.

Victaulic 3" flange adaptor set (DN 80) to flange – long

Part no. ZK00 972To connect the heat pump to the primary circuitMaterial: Steel

Components:■ 1 adaptor connector with flange DN 80/PN 10, 380 mm■ Without sound insulation; requires on-site compensators■ 1 Victaulic coupling, type 177, flexible, 3" (DN 80) (88.9 mm)

If the flange adaptor set is used, compensators must be installed tocompensate for any vibration.Order 2 sets per heat pump.

Connection:■ Primary circuit:

Flange DN 80■ Heat pump:

Victaulic 3" (DN 80)

Max. operating pressure 10 bar

a

a = 380 mm

NoteFor use, see "Installation accessories" selection table on page 35.

Victaulic 3" flange adaptor set (DN 80) to flange – short

Part no. Z011 178To connect the heat pump to the secondary circuitMaterial: Steel

Components:■ 1 adaptor connector with flange DN 80/PN 10, 300 mm■ Without sound insulation; requires on-site compensators■ 1 Victaulic coupling, type 177, 3" (DN 80)

Installation accessories (cont.)

38 Viesmann VITOCAL

2

5796

245

GB

Page 39: Viesmann VITOCAL

Order 2 sets per heat pump.

Connection:■ Secondary circuit:

Flange DN 80■ Heat pump:

Victaulic 3" (DN 80)

Max. operating pressure 10 bar 300

NoteFor use, see "Installation accessories" selection table on page 35.

Safety equipment block

Part no. 7143 783

Components:■ Safety valve R 1, discharge pressure 3 bar■ Pressure gauge■ Quick-action air vent valve G ⅜, 12 bar■ Thermal insulation■ Up to 200 kW

155

260 94

2.3 Primary circuit

Heat transfer medium "Tyfocor"■ 30 l in a disposable container

Part no. 9532 655■ 200 l in a disposable container

Part no. 9542 602

Light green ready mixed medium for the primary circuit, down to-19 °C, based on ethylene glycol with corrosion inhibitors.

Filling station

Part no. 7188 625For filling the primary circuit

Components:■ Self-priming impeller pump (30 l/min)■ Dirt filter, inlet side

■ Hose, inlet side (0.5 m)■ Connection hose (2 pce, each 2.5 m)■ Packing crate (can be used as flushing tank)

Pressure switch (primary circuit)

Part no. 9532 663Switches off the primary pump in the event of a pressure drop in theprimary circuit.

Installation accessories (cont.)

VITOCAL Viesmann 39

5796

245

GB

2

Page 40: Viesmann VITOCAL

441

23

75

86

25

Note■ Cannot be used in conjunction with potassium carbonate-based

heat transfer medium.■ Observe the statutory requirements when using a pressure switch

in the primary circuit.

2.4 Circulation pumps for primary and secondary circuit

Overview of the primary pumps and secondary pumpsThe circulation pumps must be sized according to the pressuredrops in the primary and secondary circuits existing on site, takinginto account the heat pump operating points (pipework calculation).The primary and secondary pumps can be selected on a system-specific basis using the Wilo configuration program at www.wilose-lect.com.

High efficiency circula-tion pumps

Part no. Primarypumps

Secondarypumps

Wilo Stratos 50/1-10PN 6 and PN 10

7439 061 X X

Wilo Stratos 50/1-12PN 6 and PN 10

9566 234 X X

Wilo Stratos 65/1-9PN 6 and PN 10

9566 235 X X

Wilo Stratos 65/1-12PN 6 and PN 10

7439 050 X X

Wilo Stratos 80/1-12PN 6

7439 051 X X

Wilo Stratos 80/1-12PN 10

7439 052 X X

High efficiency circula-tion pumps

Part no. Primarypumps

Secondarypumps

Wilo Stratos 100/1-12PN 6

7439 053 X

Wilo Stratos 100/1-12PN 10

7439 054 X

Components:■ EC motor and automatic output matching■ Thermal insulation for heating applications as standard■ Pump casing with cataphoretic coating to prevent corrosion due to

the formation of condensate■ System extension by retrofitting communication modules LON,

CAN, PLR, etc.■ Remote control via infrared interface (IR module/IR monitor).■ Energy efficiency class A■ System temperature from -10 to +110 °C (no icing up)■ IP rating IP 44

Installation accessories (cont.)

40 Viesmann VITOCAL

2

5796

245

GB

Page 41: Viesmann VITOCAL

Wilo high efficiency circulation pump curves

Wilo Stratos 50/1-10, 230 V~

7m

10m 8m 6m 5m 4m

3m

2m0

50

100

150

200

0 2 4 6 8 120

2

6

8

12

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h

4

10

10

0 2 4 6 8 1210

DN

50

Ø 9

110

Ø 1

25Ø

165

4 x Ø 194 x Ø 14

81 8189 114

Pg 7

Pg 9

Pg 13.5

49

5272

186

120

240

DN 50

Installation accessories (cont.)

VITOCAL Viesmann 41

5796

245

GB

2

Page 42: Viesmann VITOCAL

Wilo-Stratos 50/1-12, 230 V~

0

200

400

600

0 5 10 15 20 250

2

6

8

10

12

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h

4

14

30

0

11m

10m 9m 8m 7m 6m 5m 4m

5 10 15 20 25 30

DN

50

Ø 9

110

Ø 1

25Ø

165

4 x Ø 194 x Ø 14

96 96120 136

Pg 7

Pg 9

Pg 13.5

66

6283

256

140

280

DN 50

Installation accessories (cont.)

42 Viesmann VITOCAL

2

5796

245

GB

Page 43: Viesmann VITOCAL

Wilo Stratos 65/1-9, 230 V~

1m

0Pump rate in m³/h

0

2

4

6

8

10

Hea

d in

mO

utpu

t in

W

12

14

5 10 15 20 25 30 35

200

400

600

800

0

0Pump rate in m³/h

5 10 15 20 25 30 35

2m

3m4m5m6m7m8m9m

DN

65

Ø 1

30Ø

145

Ø 1

85

4 x Ø 194 x Ø 14

96 96120 136

Pg 7Pg 9

Pg 13.5

66

6283

256

140

280

DN 65

Ø 1

18

Installation accessories (cont.)

VITOCAL Viesmann 43

5796

245

GB

2

Page 44: Viesmann VITOCAL

Wilo-Stratos 65/1-12, 230 V~

0

400

800

1200

0 10 20 30 400

2

6

8

10

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h

4

14

50

0 10 20 30 40 50

11m 10m 9m 8m 7m 6m 5m

4m

12

DN

65

Ø 1

18Ø

130

80

Ø 1

85

4 x Ø 194 x Ø 14

147 147156 164

Pg 7

Pg 9

Pg 13.5

78

66115

319

170

340

DN 65

80

PN 6/10

Ø 1

45

Installation accessories (cont.)

44 Viesmann VITOCAL

2

5796

245

GB

Page 45: Viesmann VITOCAL

Wilo-Stratos 80/1-12, 230 V~

12m 11m 10m

9m8m

7m6m

5m5m

0

500

1000

2000

0 10 30 40 500

2

6

8

10

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h

4

14

70

0

20 60

12

1500

10 30 40 50 7020 60D

N 8

0

127 127156 164

Pg 7Pg 9

Pg 13.5

78

90114

329

180

360

DN 80Ø

160

Ø 2

00

Ø 1

32

8 x Ø 19

DN

80

Ø 1

60Ø

200

Ø 1

32

4 x Ø 19

PN 6 PN 10

Installation accessories (cont.)

VITOCAL Viesmann 45

5796

245

GB

2

Page 46: Viesmann VITOCAL

Wilo-Stratos 100/1-12, 230 V~

12m 11m 10m

9m8m

7m6m

5m5m

0

500

1000

2000

0 10 30 40 500

2

6

8

10

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h

4

14

70

0

20 60

12

1500

10 30 40 50 7020 60

PN 6 PN 10

DN

100

127 127157 164

Pg 7Pg 9

Pg 13.5

78

80104

339

180

360

Ø 1

80Ø

220

Ø 1

56

8 x Ø 19

DN

100

Ø 1

80Ø

220

Ø 1

56

DN 100

4 x Ø 19

Installation accessories (cont.)

46 Viesmann VITOCAL

2

5796

245

GB

Page 47: Viesmann VITOCAL

2.5 Well circuit

Stainless steel drip pan for draining condensateSee pricelist for allocation to the heat pump type.

Part no. Dimensions (length x width xheight)in mm

7172 893 400 x 850 x 507459 282 400 x 600 x 50

Part no. Dimensions (length x width xheight)in mm

7459 283 550 x 750 x 507459 284 550 x 1150 x 50

Flow switch setFor ensuring the minimum flow rate when using a brine/water heatpump as a water/water heat pump

Part no. ZK00 969 ZK00 970Adjustable electronic flow switch SI5001 SR5900Variable flow sensor — SF6200Connection — —Adaptor for ½" connection M18 x ½Connecting cable 5 m longMains connection 24 V–Switching voltage 24 VNominal diameter, pipe DN Up to 100 From 125

2.6 Valves and lift drives

Belimo lift drive comparison table

Part no. Previous series New series 2016 Function Voltage Actuating force7519 178 NV24 NV24A-TPC Open/close 24 V–/24 V~ 1000 N7511 391 NVY24-MFT NVC24A-MP-TPC Constant 0 to 10 V 24 V–/24 V~ 1000 N7519 176 AV24 EV24A-TPC Open/close 24 V–/24 V~ 2000 N7519 177 AVY24-MFT EVC24A-MF Constant 2 to 10 V 24 V–/24 V~ 2000 N

2-way shut-off valve with flange connection

Part no.■ With flange connection PN 6/DN 65:

Part no. 7519 171■ With flange connection PN 6/DN 80:

Part no. 7519 172■ With flange connection PN 6/DN 100:

Part no. 7519 173

■ Open/close function to prevent incorrect circulation■ Application limit: 0 to 100 °C■ In conjunction with an actuator

e

d

g

ab

c

f

Dimension DN 65 DN 80 DN 100a mm 100 110 125b mm 144 158 178c mm 290 310 350d mm 160 190 210e mm 4 x 14 4 x 18 4 x 18f mm 130 150 170g mm 350 360 475

Installation accessories (cont.)

VITOCAL Viesmann 47

5796

245

GB

2

Page 48: Viesmann VITOCAL

3-way valve with flange connection

Part no.■ With flange connection DN 65:

Part no. 7459 385■ With flange connection DN 80:

Part no. 7459 386■ With flange connection DN 100:

Part no. 7519 175

e

d

ab

c

f

g

Dimension DN 65 DN 80 DN 100a mm 100 110 125b mm 120 130 150c mm 290 310 350d mm 160 190 210e mm 4 x 14 4 x 18 4 x 18f mm 130 150 170g mm 350 360 475

Actuator NV24A-TPC

Part no. 7519 178■ Torque: 20 Nm■ Actuating force 1000 N

■ Rated voltage: 24 V–/24 V~■ Control Open/Close■ With emergency function

45193

160

98

150

Actuator EV24A-TPC

Part no. 7519 176■ Torque: 20 Nm■ Actuating force 2000 N

■ Rated voltage: 24 V–/24 V~■ Control Open/Close■ With emergency function

Installation accessories (cont.)

48 Viesmann VITOCAL

2

5796

245

GB

Page 49: Viesmann VITOCAL

53205

258

140

276

Lift drive for mixer (EVC24A-MF)

Part no. 7519 177■ Actuating force 2000 N■ Rated voltage: 24 V–/24 V~

■ Control: Constant 2 to 10 V■ Actuating time: 150 s

53233

259

140

276

NoteFor comparison list, see current price sheet

Lift drive for mixer (NVC24A-MP-TPC)

Part no. 7511 391■ Actuating force 1000 N■ Rated voltage: 24 V–/24 V~

■ Control: Constant 0 to 10 V■ Actuating time: 35 s

Installation accessories (cont.)

VITOCAL Viesmann 49

5796

245

GB

2

Page 50: Viesmann VITOCAL

45215

160

98

150

NoteFor comparison list, see current price sheet

Installation accessories (cont.)

50 Viesmann VITOCAL

2

5796

245

GB

Page 51: Viesmann VITOCAL

2.7 DHW heating with cylinder loading system

Cylinder loading pump curves (on site)

Wilo-Stratos-Z 50/1-9, 230 V~

0100200

500

0 5 15 200

2

6

8

10

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h

4

12

30

0 5 10 15 20 30

10

300

25

25

400

9m 8m 7m 6m 5m 4m 3m

DN

50

Ø 9

110

Ø 1

25Ø

165

4 x Ø 194 x Ø 14

96 96120 136

Pg 7

Pg 9

Pg 13.5

66

6283

256

140

280

DN 50

Installation accessories (cont.)

VITOCAL Viesmann 51

5796

245

GB

2

Page 52: Viesmann VITOCAL

Wilo-Stratos-Z 65/1-12, 230 V~10

m 9m 8m 7m 6m 5m 4m

0

400

800

0

1200

0 10 20 30 40 500

2

4

6

8

10

12

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h10 20 30 40 50

DN

65

Ø 1

30Ø

145

Ø 1

85

4 x Ø 194 x Ø 14

120 120156 164

Pg 7Pg 9

Pg 13.5

78

87107

325

170

340

DN 65

Ø 1

18

Installation accessories (cont.)

52 Viesmann VITOCAL

2

5796

245

GB

Page 53: Viesmann VITOCAL

DHW circulation pump curves (on site)

Wilo-Stratos-Z 25/1-8, 230 V~

0

50

100

200

0

1

3

4

6

Hea

d in

mO

utpu

t in

W

Pump rate in m³/h

Pump rate in m³/h

2

8

0

5

7

150

7m 6m 5m 4m 3m 2m

2 6 104 8

0 2 6 104 8

Pg 7

Pg 9

Pg 13.5

G 1 1/2

7689

76114

9018

0

Rp 1

40

4356

182

2.8 Cooling

Contact humidistat 24 V

Part no. 7181 418■ Dew point contact switch■ To prevent the formation of condensate

Installation accessories (cont.)

VITOCAL Viesmann 53

5796

245

GB

2

Page 54: Viesmann VITOCAL

3.1 Power supply and tariffsWhere heat pumps are used to heat buildings, the local power sup-ply utility must first approve the installation [check with your localpower supply utility].Check the connection conditions specified by your local power sup-ply utility for the stated equipment details. It is crucial to establishwhether mono mode and/or mono energetic heat pump operation isfeasible in the supply area.

It is also important to obtain information about standing charges andenergy tariffs, about the options for utilising off-peak electricity duringthe night and about any power-off periods.Address any questions relating to these issues to your customer'slocal power supply utility.

Application procedureThe following details are required to assess the effect of the heatpump operation on the grid of your local power supply utility:■ User address■ Location where the heat pump is to be used■ Type of demand in accordance with general tariffs

(domestic, agricultural, commercial, professional and other use)

■ Intended heat pump operating mode■ Heat pump manufacturer■ Type of heat pump■ Connected load in kW (from rated voltage and rated current)■ Max. starting current in A■ Max. heat load of the building in kW

3.2 Siting requirements■ The installation room must be dry and safe from the risk of frost.■ Never install the appliance in living spaces or directly next to,

below or above quiet rooms/bedrooms.■ Maintain the minimum clearances and minimum room volume (see

the following chapter).■ Sound insulation measures:

– Heat pump installation on anti-vibration platforms or plinths (seenext chapter).

– Reduction of reverberative surfaces, particularly on walls andceilings. Rough structural renders absorb more sound than tiles.

– If quietness is a particularly important consideration, applysound-absorbing material to the walls and ceilings (commerciallyavailable).

■ Hydraulic connections:– Always make hydraulic heat pump connections flexible and

stress-free (e.g. by using original heat pump accessories).– Apply anti-vibration fixings to pipework and installations.– To prevent condensation, thermally insulate lines and compo-

nents in the primary circuit with vapour diffusion-proof materials.■ R1234ze is a refrigerant with safety class A2L.

The refrigerant is considered to have low flammability.Regulations and directives regarding fire safety and refrigerantquantities at the installation site must be agreed with the localauthority and complied with (on-site task).

Casing ventilationThe casing ventilation enables the maximum permissible casingtemperature to be met and the casing to be vented in case of arefrigerant leak.A temperature sensor in the casing detects the current temperature.The optional refrigerant sensor should be fitted on the back panel inthe bottom left-hand corner. See installation and service instructions.If the temperature rises above 55 °C or the refrigerant sensor meas-ures a refrigerant concentration in excess of the limit, the fan at theback panel (connection side) is started. Indoor air is drawn in by thefan via the air slots on the bottom edge of the two side panels.As soon as the temperature falls below 50 °C or the refrigerant con-centration is below the limit, the fan stops.The maximum heat transfer via the fan is 3.5 kW; the maximum flowrate is 545 m3/h.

NoteThe two side panels with integral air slots must be fitted on the sideopposite the fan.The ambient temperature of the heat pump should not exceed28 °C. If necessary, take on-site measures.We recommend routing extract air from the casing outside andinstalling a refrigerant sensor to monitor refrigerant leaks. Theextract air flow routed outside must be replenished by ventilation airentering the installation room in the same quantity.The casing fan is able to overcome an additional pressure drop (e.g.for routed extract air).Flow rate via casing: 350 m3/hIf necessary, install an additional fan for routed extract air.Additional fan min. flow rate should not fall below 400 m3/h.

Extract from product data sheet, fan 6314 H

Operating data

Aerodynamics

Test conditions:■ Measured with twin chamber test bed to EN ISO 5801 on the

intake side.■ Standard air density = 1.2 kg/m3, TU = 23 ±3 °C■ There must be no solid obstacle within a distance of 0.5 m from

the intake and discharge area.■ The values given only apply to the specified test conditions and

may change due to the installation conditions. When deviatingfrom the standard layout, check the characteristic values in theinstalled condition.

Design information

54 Viesmann VITOCAL

3

5796

245

GB

Page 55: Viesmann VITOCAL

Operating conditions:5000 rpm at free air flow Max. free-blowing flow rate (Δp = 0 / ´ = max.) 545.0 m3/hMax. back pressure (Δp = max. / ´ = 0) 410 Pa

Acoustics

Test conditions:■ Sound pressure level: The distance of the microphone from the

intake aperture is 1 m.■ Sound power: To DIN 45635 part 38 (ISO 10302)

■ Measured in an anechoic chamber with a basic noise level ofLp(A) < 5 dB(A)

■ For further test conditions, see "Aerodynamics".

Operating conditions:5000 rpm at free air flow Optimum operating point 450.0 m3/h @ 117 PaSound power at optimum operating point 6.9 bel(A)Sound pressure in shock cords with free air flow 58.0 dB(A)

Environment

GeneralMinimum permissible ambient temperature -20 °CMaximum permissible ambient temperature 65 °CMinimum permissible storage temperature -40 °CMaximum permissible storage temperature 80 °C

Climatic requirementsPermissible application range: The product is intended for use in closed weatherproof rooms with

controlled temperature and humidity. Avoid direct contact with water.

Humidity requirement Damp heat, constant, to EN60068-2-78, 14 days

Water pollution NoneDust requirements NoneSalt spray requirements None

Siting

Sound-insulating baseThe heat pump may be sited on a base prepared on site for the pur-pose of additional noise attenuation and even weight distribution.

NoteIn the case of installation in corners, enlarge the base by the mini-mum clearances. See chapter "Minimum clearances".

150

A Concrete B25, ironB Floor construction, screedC Top edge unfinished floor

D Impact sound insulation as per regulationsE Pressure-tested sound insulation layer, approx. 10 to 20 mmF Heat pump

Design information (cont.)

VITOCAL Viesmann 55

5796

245

GB

3

Page 56: Viesmann VITOCAL

Pressure points of the heat pump feet

Types BW 352.AHT058, BW 352.AHT071, BW 352.AHT084,BW 352.AHT096 and BW 352.AHT119

628 628 628

2100

705

90050

50

ê Pressure point, footF Hydraulic connections and cable entriesG Inspection sideH Pressure-tested sound insulation layer, approx. 10 to 20 mmL Operating screen

Types BW 353.AHT126 and BW 353.AHT147

850 850 850

2800

705

90050

50

ê Pressure point, footF Hydraulic connections and cable entriesG Inspection sideH Pressure-tested sound insulation layer, approx. 10 to 20 mmL Operating screen

Minimum clearances

≥ 850 ≥ 850

A Cable entriesOn-site strain relief clamps required (wall clearance ≥ 80 mm)

B When using hydraulic connection accessories (connection setand Victaulic flange adaptor set, 2½" (DN 65) or 3" (DN 80)):≥ 1000 mmOn-site hydraulic connections:≥ 600 mm

C Clearances for installation and service≥ 500 mm

D Without anti-vibration parts (side sections):≥ 855 mm

NoteWhen siting cascades, observe the relevant minimum clearances.

Minimum room volume

According to EN 378, the minimum volume of the installation roomdepends on the charge weight and composition of the refrigerant.

Vmin =mmax

G

Vmin Minimum room volume in m3

mmax Maximum refrigerant charge in kgG Practical limit to EN 378, subject to the composition of the

refrigerant

Refrigerant Practical limit in kg/m3

R1234ze 0.061

NoteIf several heat pumps are to be installed in one room, add the mini-mum room volumes together for the individual appliances.

NoteThe following information does not replace the need for on-site engi-neering.

NoteEnsure that an appropriate quantity of air is available to evaporateescaping refrigerant.Minimum room volumes are based on the available air volume.Machinery and other components located inside the room reduce thequantity of available air.

Design information (cont.)

56 Viesmann VITOCAL

3

5796

245

GB

Page 57: Viesmann VITOCAL

NoteIf the required minimum room volume is not achieved, install forcedventilation with an output according to column "Air change". Therefrigerant monitoring will demand forced ventilation once a specifiedvalue is reached.

Taking into account the refrigerant used and the refrigerant charge, the following minimum room volumes result:Vitocal Refrigerant Refrigerant

charge(standardvalue*3)in kg

Minimum room volume, based on the available air vol-ume in m3

Air change ratein m3/h

BW 352.AHT058 R1234ze 22.5 369 402BW 352.AHT071 R1234ze 30.0 492 487BW 352.AHT084 R1234ze 36.0 591 549BW 352.AHT096 R1234ze 42.0 689 609BW 352.AHT119 R1234ze 49.5 812 693BW 353.AHT126 R1234ze 57.0 935 746BW 353.AHT147 R1234ze 68.0 1115 840

3.3 Applicable regulations and standards

Refrigerant GWP Test interval to EU Regulation 517/201412 months 6 months 3 months

R134a 1430 from 3.5 kg from 35 kg from 350 kgR404a 3922 from 1.275 kg from 12.75 kg from 127.5 kgR407c 1774 from 2.8 kg from 28 kg from 280 kgR410a 2088 from 2.4 kg from 24 kg from 240 kgR422d 3143 from 1.6 kg from 16 kg from 160 kgR1234ze < 1 from 5000 kg from 50000 kg from 500000 kg

The new applicable regulations do not prescribe any test intervals forR1234ze refrigerant.

3.4 R1234ze refrigerantService and repair work must only be carried out by trained person-nel with the relevant skills.Or to EN 60335-2-40:Anyone working on the refrigerant circuit must prove their compe-tence in the safe handling of refrigerants by means of a procedureknown in the industry. They must be able to produce a certificate ofcompetence issued by an organisation with industry accreditation.Service work may only be carried out in accordance with the manu-facturer's specifications. If maintenance and repair work requireassistance from additional individuals, the trained person shouldconstantly supervise the work.

Allocation of refrigerantRefrigerant safety class to ISO 817 A2LFluid group to PED 2014/68/EU dated15/05/2014

Group 2

R1234ze is not a hazardous substance according to EC directive67/548/EEC or 1999/45/EC.

NoteCarefully read and observe the installation and service instructionsbefore starting work. Both documents are included in the heat pumptechnical documentation.The EC safety datasheet for R1234ze can be obtained from theTechnical Services department of Viessmann Werke.

Applying the EC regulationAccording to EC regulation no. 1272/2008, observe the following:

Hazard warningsH280: Contains pressurised gas, may explode if heated.

Safety instructionsP260: Do not inhale gas.P280: Wear safety gloves and safety goggles.P284: Wear breathing equipment in case of inadequate

ventilation.

P308 + P313: Request medical advice or assistance in case ofexposure or suspected exposure.Gas is heavier than air and can cause suffocationthrough displacement of the airborne oxygen.

P410 + P403: Protect from insolation, store in a well ventilatedlocation

The refrigerant is considered to have low flammability.■ Ignition energy at 20 °C: Non-flammable■ Ignition energy at 54 °C: > 61000 MJ

*3 See type plate

Design information (cont.)

VITOCAL Viesmann 57

5796

245

GB

3

Page 58: Viesmann VITOCAL

By comparison:■ Propane:

Ignition energy at 20 °C: 0.25 MJ■ Ammonia:

Ignition energy at 20 °C: 680 MJ

Warning notices

The following warning notices are used to check the requirementsthat already have to be met when designing and constructing:■ Only operate the equipment in rooms without constant ignition

source.■ Only operate the equipment in rooms with adequate minimum

room volume (EN 378) (see table above), unless adequate forcedventilation is provided.

General information regarding R1234ze during operation and serviceHigh operating temperatures of > 90 °C can be achieved on the sec-ondary side (heating) with this refrigerant.There is a correspondingly high risk of burns when touching non-insulated heating and refrigerant lines carrying liquid refrigerant.

General information regarding the refrigerantOn contact with air, oxygen causes R1234ze refrigerant to degradewithin a few days. This must be prevented within the refrigerant cir-cuit.

Absolute cleanliness when working:■ Avoid scale when brazing or soldering (copper oxide also contains

oxygen).Always braze or solder with nitrogen.

■ Always evacuate to 0.25 mbar.Break vacuum with nitrogen.Use a high performance vacuum pump.

■ Avoid water and moisture in the refrigerant circuit.Always close off conduits and components immediately.

3.5 Power supply■ Observe the technical connection requirements specified by your

local power supply utility.■ Your local power supply utility will provide you with details regard-

ing the required metering and switching equipment.■ Provide a separate electricity meter for the heat pump.The Vitocal 350-HT Pro is equipped with a mains supply power cir-cuit (compressor) 3 x 400 V/50 Hz.

The control circuit is supplied with 230 V/50 Hz from the mains sup-ply power circuit (wired at the factory).The control circuit fuse is located in the front wiring chamber. Thecontrol unit is equipped with a 230/24 V power supply unit.

Power-OFFIt is possible for the power supply utility to shut down the compressorand electrical DHW heating (if installed). The ability to carry out sucha shutdown may be a power supply utility requirement for providing alower tariff.

This must not shut off the power supply to the heat pump controlunit. If required, additional power cables should be installed and con-nected up separately from the load current within the heat pump.The Vitocal 350-HT Pro is equipped with a floating power-OFF con-tact.

Required cables

Type BW as water/water heat pump: Take the following additionalcomponents into account:■ Well pump (motor protection via a separate motor overload relay)■ Flow switch

■ Frost stat■ Separating heat exchanger

Recommended power cablesWhen installing additional heating water buffer cylinders, heating cir-cuits with mixer, external heat generators (gas/oil/wood) etc., allowfor the additionally required supply and control cables and sensorleads.Check the core cross-sections of the power cables and enlarge ifrequired.

Note■ The power connections must be carried out by an authorised elec-

trician in accordance with local regulations.■ In the case of routing in the vicinity of heating pipes or cast routing,

the cross-sections and max. cable lengths must be recalculated(on site).

Type Main cable fuse pro-tection

BW 352.AHT058 125 ABW 352.AHT071 125 ABW 352.AHT084 160 ABW 352.AHT096 160 ABW 352.AHT119 200 ABW 353.AHT126 200 ABW 353.AHT147 250 ASeparate control unit power cable, sepa-rate connection accessories for power-OFF

63 A

Design information (cont.)

58 Viesmann VITOCAL

3

5796

245

GB

Page 59: Viesmann VITOCAL

NoteThe maximum length of the power cable is calculated and specifiedto EN 60204-1, Table 10

Cable lengths in the heat pump plus wall clearance:Control circuit power supply (230 V~ if on site) 3 mPower circuit power supply (400 V~) 3 mAdditional connecting cables 2.5 m

3.6 Hydraulic connections

General hydraulic scheme

CW

WW

P P

P P

P

M

M

M

M

M

M

M

M

M

M

3

A Control extension residual heat (part no. ZK02826)B Control extension DHW heating (part no. ZK02829)C Control extension AC/NC cooling (part no. ZK02830)

D Control extension well circuit/groundwater (part no. ZK02828)E Control extension geothermal probe (part no. ZK02827)F Waste heat

NoteThis scheme is a general example without shut-off valves or safetyequipment. This does not replace the need for on-site engineering.Determine the type of heat source, groundwater or geothermal probeduring the engineering process.

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit3 3-way diverter valve, central heating/DHW heating4 Primary pump

Pos. Designation5 Secondary pump6 Outside temperature sensor7 Safety assembly, secondary circuit8 Expansion vessel9 Geothermal probeqP Geothermal probe manifoldqQ Safety assembly, primary circuitqW Pressure switch, primary circuitqR Separating heat exchangerqT Flow switch

Design information (cont.)

VITOCAL Viesmann 59

5796

245

GB

3

Page 60: Viesmann VITOCAL

Pos. DesignationqZ FilterqU Circulation pumpqI Room temperature sensorqO Flow switch (AC/NC cooling)eP DHW cylindereQ Cylinder temperature sensoreW Immersion heatereE Cylinder loading pumpeR Heat exchanger, cylinder loading systemeT Flow limitereZ 3-way mixing valveeU DHW circulation pumpeI Cylinder loading system flow temperature sensortP Heating water buffer cylindertQ Buffer temperature sensor, toptW Buffer temperature sensor, bottomuP 3-way diverter valve, cooling modeuQ Heat exchanger coolinguW Cooling water temperature sensor

Pos. DesignationiP Coolant buffer cylinderiQ Cooling water circulation pumpiW Buffer temperature sensor, topiE Buffer temperature sensor, bottomiR 2-way valve (heat source shut-off)iT 3-way mixing valve, low temperature maintenancer-P Heat exchanger, residual heatr-Q Circulation pump, residual heatr-W 3-way diverter valve, residual heatr-E 2-way valve (dry cooler shut-off)r-R 2-way valve (heat source shut-off)r-T Pressure switch, residual heatr-Z Return temperature sensor, residual heatr-I Dry coolerr-O 3-way mixing valve, frost protection and return temperature

raisingz-P 3-way mixing valve, secondary high temperature mainte-

nance

Connections to the heat pumpConnections to the heat pump on the primary and secondary sidesare Victaulic connections. Connection lines and couplings are availa-ble as accessories (see installation accessories "Connection set"and "Victaulic flange adaptor set").■ Primary circuit:

Victaulic 3" (DN 80)■ Secondary circuit:

Victaulic 2½" (DN 65)

Design of hydraulic connections (primary/secondary)The heat pump is factory-fitted with Victaulic connections. These arelocated directly at the heat pump heat exchangers. The accessoriesinclude the appropriate sound-absorbing connection lines and cou-plings.

Primary side connection

15.9

88.9

7.9

Secondary side connection

15.9

76.1

7.9

Design information (cont.)

60 Viesmann VITOCAL

3

5796

245

GB

Page 61: Viesmann VITOCAL

Use of the Victaulic 2½" (DN 65) or 3" (DN 80) flange adaptor set (accessory)

ABCD

300

220

A Victaulic couplings 2½" (DN 65) or 3" (DN 80)B Adaptor connector with flange PN 10, without anti-vibration ele-

ments

C Anti-vibration compensators, on siteD Hydraulic line fixings

3.7 Minimum hydraulic requirementsHeat pumps with high flow rates and optimised pipework systemsneed to comply with fundamental minimum requirements to preventincorrect functions.■ Set primary and secondary pumps to constant speed. For mini-

mum flow rates, see "Specification" from page 5.■ Avoid circulation pumps with automatic overload cut-off functions,

or supplement them with an additional flow switch for each heatpump in the pipework system.

■ In case of two-stage appliances and the use of 2 primary or secon-dary pumps, set to the minimum flow rates.

■ Size pipework system to a low pressure drop.■ To keep the pressure drop constant for all appliances, pipework for

cascades with 2 or more heat pumps must be installed accordingto the Tichelmann principle. Heat pumps not installed according tothe Tichelmann principle will show severe flow rate fluctuations atfull load or when all heat pumps are in operation. This can lead toa complete loss of flow at the most distant heat pump.

■ Cascades not installed according to the Tichelmann principle mustbe equipped with at least a flow switch on the primary side that iscalibrated to the minimum flow rate of the heat pump.

■ To ensure shutdown in case of low pressure, wire circulationpumps with fault signals directly to the heat pump safety chain.

■ Heat pump systems from 50 kW must be operated with sufficientlysized heating water buffer cylinders; see chapter "Heating waterbuffer cylinders".

■ To connect the heat pump to the pipework system, suitable com-ponents must be used to reduce the transmission of vibrations;see "Heat pump connections" on this subject.

■ Oxygen content and corrosion in steel pipework systems causessludge in heat exchangers, which leads to reduced performance.Observe the fill water requirements. See chapter "Water qualityand heat transfer medium".

■ There may be deposits and contamination in the geothermalprobes and geothermal collectors. To prevent these from enteringthe evaporator, fit a dirt filter or strainer in the heat pump primaryflow.

3.8 Sizing the heat pumpFirst establish the standard heat load ΦHL of the building. For discus-sions with customers and for the preparation of a quotation, in mostcases estimating the heat load is adequate.

As with all heating systems, determine the standard heat load of thebuilding to EN 12831 before ordering the appropriate heat pump.

Mono mode operation

Sizing is of particular relevance to heat pump systems that are to beoperated in mono mode, since oversized equipment frequentlyincurs disproportionate system costs. Therefore avoid oversizing!

When sizing the heat pump, observe the following:■ Take into account supplements to the heat load of the building to

cover power-OFF periods. [In Germany] the power supply utilitymay interrupt the power supply of heat pumps for up to 3 x 2 hourswithin a period of 24 hours.

Design information (cont.)

VITOCAL Viesmann 61

5796

245

GB

3

Page 62: Viesmann VITOCAL

Observe additional individual arrangements for customers withspecial tariffs.

■ The building inertia means that 2 hours of power-OFF time are nottaken into consideration.

NoteThe ON periods between 2 power-OFF times must be at least aslong as the preceding power-OFF time.

Estimate of the heat load based on the heated areaThe heated surface area (in m2) is multiplied by the following specificheat demand:

Passive house 10 W/m2

Low energy house 40 W/m2

New build (to EnEV) 50 W/m2

House (built prior to 1995 with standard thermal insu-lation)

80 W/m2

Older house (without thermal insulation) 120 W/m2

Theoretical sizing with a blocking time of 3 × 2 hoursExample:For a new building with good thermal insulation (50 W/m2) and aheated area of 2000 m2

■ Estimated heat load: 100 kW■ Maximum blocking time of 3 × 2 hours at a minimum outside tem-

perature in accordance with EN 12831

24 h, therefore, result in a daily heat volume of:■ 100 kW ∙ 24 h = 2400 kWh

To cover the maximum daily heat amount, only 18 h/day are availa-ble for heat pump operation on account of the power-OFF periods.The building inertia means that 2 hours of the period during whichpower is blocked are not taken into consideration.■ 2400 kWh / (18 + 2) h = 120 kW

In other words, the heat pump output would need to be increased by20 %, if the power supply were blocked for a maximum of3 × 2 hours per day.Frequently, power-OFF periods are only invoked if there is a need todo so. Please contact the customer's power supply utility to enquireabout power-OFF periods.

Mono energetic operationIn heating mode, the heat pump system is supplemented by an elec-tric booster heater (on site, e.g. instantaneous heating water heater).The control unit switches the instantaneous heating water heater on,subject to the outside temperature (dual mode temperature) andheat load.

NoteThe proportion of the electric power drawn by the electric boosterheater is not generally charged at special tariffs.

Sizing for a typical system configuration:■ Size the heating output of the heat pump to approx. 70 to 85 % of

the maximum required building heat load to EN 12831.■ The heat pump covers approx. 95 % of the annual heat load.■ Blocking times do not need to be taken into consideration.

NoteThe reduced size of the heat pump, compared to mono mode opera-tion, means that the runtime will increase. To compensate for this,increase the size of the heat source for brine/water heat pumps.As standard value for a geothermal probe system, the annual extrac-tion rate must not exceed 100 kWh/m ∙ p.a.

Instantaneous heating water heater (on site)An electric instantaneous heating water heater can be integrated inthe heating water flow as an auxiliary heat source. The instantane-ous heating water heater is connected and protected via a separatepower supply connection.The heat pump control unit regulates this function.If enabled by the corresponding parameter, the heat pump controlunit starts the instantaneous heating water heater, subject to the pre-vailing heat demand. As soon as the maximum flow temperature inthe secondary circuit is reached, the heat pump control unit switchesthe instantaneous heating water heater off.

Dual mode operation

External heat generatorThe heat pump control unit enables dual mode operation of the heatpump with an external heat generator, e.g. oil boiler.The external heat generator is hydraulically connected in such a waythat the heat pump can also be used as a return temperature raisingfacility for the boiler. System separation is provided with either a lowloss header or a heating water buffer cylinder.For optimum heat pump operation, the external heat generator mustbe integrated via a mixer into the heating water flow. Direct control ofthis mixer by the heat pump control unit results in a quick response.If the outside temperature (long term average) is below the dualmode temperature, the heat pump control unit starts the externalheat generator. In the case of direct heat demand from the consum-ers (e.g. for frost protection or if the heat pump is faulty), the externalheat generator is also started above the dual mode temperature.

NoteThe heat pump control unit does not contain any safety functions forthe external heat generator. To prevent excessive temperatures inthe heat pump flow and return in the case of a fault, high limit safetycut-outs must be provided to shut down the external heat generator(switching threshold 75 °C).

Design information (cont.)

62 Viesmann VITOCAL

3

5796

245

GB

Page 63: Viesmann VITOCAL

Supplement for DHW heating in mono mode operation

NoteIn dual mode operation of the heat pump, the heating output availa-ble is generally so high that this supplement does not need to betaken into consideration.

For a general residential building, a maximum DHW demand ofapprox. 50 l per person per day at approx. 45 °C is assumed.■ This represents an additional heat load of approx. 0.25 kW per

person given a heat-up time of 8 h.■ This supplement will be taken into consideration if the sum total of

the additional heat load exceeds 20 % of the heat load calculatedto EN 12831.

DHW demand at a DHW tem-perature of 45 °C

Specific available heat Recommended heat load sup-plement for DHW heating*4

in l/d per person in Wh/d per person in kW/personLow demand 15 to 30 600 to 1200 0.08 to 0.15Standard demand*5 30 to 60 1200 to 2400 0.15 to 0.30

or Reference temperature 45 °C Specific available heat Recommended heat load sup-

plement for DHW heating*4

in l/d per person in Wh/d per person in kW/personApartment(billing according to demand)

30 Approx. 1200 Approx. 0.150

Apartment(flat rate billing)

45 Approx. 1800 Approx. 0.225

Detached house(average demand*5)

50 Approx. 2000 Approx. 0.250

Supplement for setback modeAs the heat pump control unit is equipped with a temperature limiterfor setback mode, the supplement for setback mode to EN 12831can be ignored.In addition, the control unit is equipped with start optimisation, whichmeans that there is also no need for a supplement for heating upfrom setback mode.

Both functions must be enabled in the control unit. If any of the sup-plements are omitted because of the activated control unit functionsthen this must be documented when the system is handed over tothe operator.If, irrespective of the above mentioned control options, these supple-ments are nevertheless to be taken into account, the calculationshould be made with reference to EN 12831.

3.9 Heat source geothermal probesGeothermal probes can be designed and configured in accordancewith VDI 4640 (Germany). In Switzerland, the specifications ofSIA 384 plus cantonal and local regulations apply.

Authorising body for boreholes in Germany:■ Boreholes < 100 m: Water Board■ Boreholes > 100 m: Local mining board

Drilling contractors certified according toDVGW Code of Practice W 120 or the FWS quality seal should beengaged to carry out the drilling work.We recommend that all sizing is carried out by an appropriate serv-ice provider in line with local conditions.

Frost protectionTo safeguard a trouble-free heat pump operation, use antifreezebased on glycol in the primary circuit. This must protect against frostdown to at least -15 °C and contain suitable anti-corrosion inhibitors.Ready-mixed solutions ensure an even distribution of concentrate.For the primary circuit, we recommend Viessmann Tyfocor heattransfer medium which is based on ethylene glycol (ready-mixeddown to -15 °C, light green).

NoteWhen selecting the antifreeze, always observe the stipulations of theauthorising body.

*4 With a DHW cylinder heat-up time of 8 h.*5 Select a higher supplement if the actual DHW demand exceeds the stated values.

Design information (cont.)

VITOCAL Viesmann 63

5796

245

GB

3

Page 64: Viesmann VITOCAL

Geothermal probe

RL

VL

RL Primary circuit returnVL Primary circuit flowA Bentonite-cement suspensionB Protective cap

On smaller plots, geothermal probes are an alternative to geother-mal collectors when retrofitting existing buildings. In the following weconsider the double U-shaped pipe probe.One version would be 2 double U-shaped pipe loops made fromplastic in one borehole. All cavities between the pipes and theground are filled with a highly conductive material (bentonite).We recommend the following distance between 2 geothermalprobes:■ Up to 50 m deep: Min. 5 m■ Up to 100 m deep: Min. 6 mNotify the relevant authorities well in advance of commencing suchinstallations.The geothermal probes are installed either by drilling or by ramming,subject to their respective design. Systems of this type require a per-mit from the local water board.Further information can be obtained from the geothermal probe man-ufacturer.

NoteSimulation programs are purely for sizing; geothermal probes for theVitocal 350-HT Pro require proper geological engineering.

Possible specific extraction rates qE for double U-shaped pipeprobes (to VDI 4640Part 2)Subsoil Specific

extraction rate qE

in W/mStandard values Poor subsoil (dry sediment)(λ < 1.5 W/(m · K))

20

Normal solid rock subsoil andwater-saturated sediment(1.5 ≤ λ ≤ 3.0 W/(m · K))

50

Solid rock with high thermal conductivity(λ > 3.0 W/(m · K))

70

Individual rocks Gravel, sand (dry) < 20Gravel, sand (water-carrying) 55-65Clay, loam (damp) 30-40Limestone (solid) 45-60Sandstone 55-65Acidic magmatite (e.g. granite) 55-70Basic magmatite (e.g. basalt) 35-55Gneiss 60-70

Rough sizingThe basis for sizing is the cooling capacity ²K of the heat pump atoperating point B0/W35.Required probe length l = ²K/³E (³E = average extraction rate sub-ject to ground conditions).For estimated sizing, we recommend calculation with ³E = 35 W/m.The precise sizing depends on the ground structure and the water-carrying ground strata, and can only be determined following a localinspection by the drilling contractor. For the initial approximate sizingof large heat pumps, we recommend a first estimate with 35 W/mgeothermal probe.

NoteThe reduction in number of drilled holes in favour of probe depth rai-ses the pressure drop to be overcome and the required pump rate.

Information regarding dual mode parallel and mono energeticoperationIn case of dual mode parallel and mono energetic operation, con-sider the higher heat source load (see "Sizing"). As standard valuefor a geothermal probe system, the annual extraction rate must notexceed 100 kWh/m ∙ p.a.

Pump output supplements (percentage) for operation with Tyfocor

NoteCirculation pump curves, see chapter "Primary pump".

Design flow rate²A = ²water + fQ (in %)Design delivery headHA = Hwater + fH (in %)Use the higher pump rate details ²A and HA to select the pump.

NoteThe supplements only comprise the corrections for the circulationpumps. System curve or data corrections can be determined with thehelp of technical literature or information provided by the valve man-ufacturer.Viessmann heat transfer medium Tyfocor (ready mixed for tempera-tures down to –19 °C) has an ethylene glycol volume ratio of 28.6 %(calculated as 30 %).

Design information (cont.)

64 Viesmann VITOCAL

3

5796

245

GB

Page 65: Viesmann VITOCAL

Volume ratio ethylene glycol % 25 30 35 40 45 50At an operating temperature of 0 °C – fQ % 7 8 10 12 14 17– fH % 5 6 7 8 9 10At an operating temperature of +2.5 °C – fQ % 7 8 9 11 13 16– fH % 5 6 6 7 8 10At an operating temperature of +7.5 °C – fQ % 6 7 8 9 11 13– fH % 5 6 6 6 7 9

Geothermal probe hydraulic connection

1

2

4

qWqQ

8

qP

9

6

P P

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit4 Primary pump6 Outside temperature sensor8 Expansion vessel9 Geothermal probeqP Geothermal probe manifoldqQ Safety assembly, primary circuitqW Pressure switch, primary circuit

3.10 Heat source groundwaterThe heat pump utilises the thermal energy content of groundwater.

K

L

C

E

B

AQ

O

P

D

H N

G

-14.0 mmin. 5 m-12.0 m-14.0 m-15.0 m-16.0 m

-20.0 m-21.0 m

-23.0 m-24.0 m

-15.0 m

-11.0 m

approx. 1.3 m

M

F

A Flow switch, well circuitB Primary pump (integrated subject to type)C To the heat pumpD Primary circuit frost statE Separating heat exchanger, intermediate circuitF Well shaft

G Supply pipeH Non-return valveK Well pumpL Delivery wellM Groundwater flow direction

Design information (cont.)

VITOCAL Viesmann 65

5796

245

GB

3

Page 66: Viesmann VITOCAL

N Return wellO Pressure pipe

With groundwater as a heat source, heat pumps achieve high per-formance factors. Groundwater offers a constant temperature allyear round of 7 to 12 °C. Therefore the temperature level needs tobe raised only a little higher (compared to other heat sources) inorder for it to be able to be utilised for heating purposes.Depending on the design, the heat pump cools the groundwater byup to 5 K, although its consistency remains otherwise unchanged.■ Due to the cost of pumping systems, we recommend that for

detached houses and two-family houses the groundwater is pum-ped from a maximum depth of approx. 15 m (see the above dia-gram). For commercial or large scale systems, pumping fromgreater depths could still be viable.

■ Maintain a clearance of at least 5 m between the point of extrac-tion (delivery well) and the point of re-entry (return well). Deliveryand return wells must be located in the line of flow of the ground-water to prevent a "flow short circuit". Construct the return well sothat the water exits below the groundwater level.

■ The groundwater flow and return lines to/from the heat pump mustbe protected against frost and must fall towards the well.

■ Due to fluctuating water quality, we generally recommend systemseparation between wells and heat pump (see technical guide"Heat pump principles").

Water qualityThe water quality must meet the limits listed in the following table forstainless steel (1.4401) and copper. Operating these wells should bestraightforward if these limits are observed. Due to fluctuating waterquality, we recommend using a threaded stainless steel heatexchanger as a separating heat exchanger for all other applications,including standard well installations.A threaded stainless steel heat exchanger as a separating heatexchanger is always required in the following cases:

■ Where the limits for copper cannot be maintained.■ When using surface water e.g. from lakes, ponds and rivers

NoteThe following table is incomplete and should only be viewed as aguideline. If in doubt, a detailed water analysis and evaluation arerequired.

Design information (cont.)

66 Viesmann VITOCAL

3

5796

245

GB

Page 67: Viesmann VITOCAL

Resistance of copper-brazed or welded stainless steel plate heat exchangers to water-borne substances

Substance Concentration mg/l Copper Stainless steelOrganic materials If verifiable Ammonia (NH3) < 2

2 to 20> 20

+0–

++0

Chloride (CI) < 300> 300

+–

+0

Electrical conductivity < 10 µS/cm10 to 500 µS/cm

> 500 µS/cm

0+–

0+0

Iron (Fe), dissolved < 0.2> 0.2

+0

+0

Free (corrosive) carbonic acid (CO2) < 55 to 20

> 20

+0–

++0

Free chlorine gas (CI2) < 11 to 5

> 5

+0–

++0

Manganese (Mn), dissolved < 0.1> 0.1

+0

+0

Nitrates (NO3), dissolved < 100> 100

+0

++

pH values < 7.57.5 to 9.0

> 9.0

0+0

0++

Oxygen < 0.2> 0.2

+0

++

Hydrogen sulphide (H2S) < 0.05> 0.05

+–

+0

Hydrogen carbonate (HCO3)Sulphates (SO4

2-)< 1.0> 1.0

0+

0+

Hydrogen carbonate (HCO3) < 7070 to 300

> 300

0+0

++0

Aluminium (Al), dissolved < 0.2> 0.2

+0

++

Sulphates (SO42-) < 70

70 to 300> 300

+0–

++0

Sulphide (SO3) < 1 + +Total hardness ≤ 15 °dH + +Filterable materials < 30 mg/l + +Lead < 0.05 + +

+ Good resistance under standard conditions0 There is a high risk of corrosion if several factors are rated 0– Unsuitable

Calculating the required groundwater volumeThe required groundwater flow rate depends on the heat pump out-put and the rate of groundwater cooling.

For minimum flow rates, see the heat pump specification (e.g. mini-mum flow rate for Vitocal 350-HT Pro). When sizing the primarypumps, please note that higher flow rates result in increased internalpressure drop.

Approval for a brine/water heat pump as a groundwater/water heat pump systemThis project requires permission from the local water authority [checklocal regulations].Where buildings must be connected to the public water system, theutilisation of the groundwater as a heat source for heat pumps mustbe authorised by your local authority [check local regulations].

Permits can be subject to certain stipulations.

Design information (cont.)

VITOCAL Viesmann 67

5796

245

GB

3

Page 68: Viesmann VITOCAL

Sizing the separating heat exchanger

10 °C

9 °C 7 °C

12 °C

A WaterB Brine (antifreeze mixture)

NoteFill the primary circuit with antifreeze mixture (brine, min. -5 °C).

The operational reliability of a brine/water heat pump in the water/water application improves when it is used with a primary circuit heatexchanger.See the following table for a selection of threaded heat exchangers.The intermediate circuit is calculated with 20 % antifreeze content.

Separating heat exchanger selection lists

Type Cooling ca-pacity at W10

Flow rate Pressure drop Connections Plate heat ex-changer(threaded)

Well circuit(water)

Intermediatecircuit frostprotection atleast down to-5 °C

Well circuitside

Intermediatecircuit side

kW m3/h m3/h kPa kPa Part no.2-stage, both stages with the same outputBW 352.AHT058 69 19.77 16.58 20.65 8.77 G 2 7172 884BW 352.AHT071 88 25.22 17.64 26.34 20.21 G 2 7172 885BW 352.AHT084 100.6 28.83 17.37 30.11 20.02 G 2 7172 886BW 352.AHT096 115 32.96 15.67 34.42 18.81 DN 100 7172 887BW 352.AHT119 139.6 40.01 16.26 41.78 19.42 DN 100 7172 888BW 353.AHT126 150.9 43.25 16.95 45.17 20.3 DN 100 7172 889BW 353.AHT147 172.5 49.44 16.34 51.63 19.55 DN 100 7172 890

NoteValues for cooling capacity and well circuit have been rounded up/down.

S4 S1

S3 S2

a c

b

NoteS1 to S4: Plate heat exchanger connectionsFor definition, see datasheet.

Heat exchanger dimensionsType Part no. Dimensions in mm Required drip pan in

mma b cBW 352.AHT058 7172 884 320 832 580 400x600x50BW 352.AHT071 7172 885 320 832 580 400x600x50BW 352.AHT084 7172 886 320 832 840 400x850x50BW 352.AHT096 7172 887 450 1166 636 550x750x50BW 352.AHT119 7172 888 450 1166 636 550x750x50BW 353.AHT126 7172 889 450 1166 636 550x750x50BW 353.AHT147 7172 890 450 1166 1036 550x1150x50

Design information (cont.)

68 Viesmann VITOCAL

3

5796

245

GB

Page 69: Viesmann VITOCAL

NoteDetails of all heat exchangers without contamination

Hydraulic connection, groundwater

P P

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit4 Primary pump6 Outside temperature sensor8 Expansion vesselqQ Safety assemblyqW Pressure switchqR Separating heat exchangerqT Flow switchqZ Filter, groundwaterqU Circulation pump

NoteThis function requires additional electrical components in the heatpump. See page 89.

3.11 Heat source waste heat/process waterIf process water with waste heat from an industrial process is usedas a heat source for a heat pump, please observe the following:

■ The water quality for water/water application must be within theapplicable limits.– See table "Resistance of copper-brazed or welded stainless

steel plate heat exchangers to water-borne substances",page 67.

■ If the water quality falls outside these limits, use a stainless steelprimary circuit separating heat exchanger (see threaded stainlesssteel plate heat exchangers in the table on page 67). Sizing is car-ried out by the manufacturer of the heat exchanger.– The available amount of water must satisfy the minimum flow

rates of the primary side of the heat pump (see "Specification").– The max. inlet temperature in water/water heat pumps is 50 °C.

With higher waste heat/process water temperatures, low endcontrollers (e.g. as offered by Landis & Staefa GmbH SiemensBuilding Technologies) on the primary side of the heat pump limitthe maximum inlet temperature to 50 °C by adding cool returnwater. Control arranged on site.

Design information (cont.)

VITOCAL Viesmann 69

5796

245

GB

3

Page 70: Viesmann VITOCAL

RL

VL

RL

A

B

C

D

K

H

G

E

F

A OverflowB InletC Dirt trap (on site)D Low end controller with mixing valve (on site)E Primary pump

F To the heat pumpG Separating heat exchanger, primary circuitH Circulation pump (≙ well pump)K Water container

(min. 3000 l capacity, on site)

3.12 Central heating/central cooling

Secondary circuit

Minimum flow rateHeat pumps require a minimum heating water flow rate (see "Speci-fication"), which must be maintained at all times. To ensure the mini-mum flow rate, install an overflow valve or low loss header in sys-tems without a heating water buffer cylinder. When utilising an over-flow valve, the control unit must be set to "Constant pressure con-trol" for high efficiency circulation pumps.

Design information (cont.)

70 Viesmann VITOCAL

3

5796

245

GB

Page 71: Viesmann VITOCAL

3.13 Systems with heating water buffer cylinder

Cascade, heating water buffer cylinder

HR

HV

E E E

E DrainHR Heating return to the heat pump

HV Heating flow from the heat pump

NoteThe system pipework for a buffer cylinder cascade must be installedaccording to the Tichelmann principle. Other hydraulic pipework ver-sions always require line regulating valves to be installed and bal-anced.

Hydraulic connection of heating water buffer cylinder

P

z-P M

Design information (cont.)

VITOCAL Viesmann 71

5796

245

GB

3

Page 72: Viesmann VITOCAL

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit5 Secondary pump6 Outside temperature sensor7 Safety assembly, secondary circuit8 Expansion vesseltP Heating water buffer cylindertQ Buffer temperature sensor, toptW Buffer temperature sensor, bottomz-P 3-way mixing valve, secondary high temp. maintenance

NoteThis function requires additional electrical components in the heatpump. See page 89.

Heating water buffer cylinder 1500 l

Part no. ZK02 266

235

50

380

235

3016

0021

50

1350

825

1760

2230

12601000

13

50°70°

120°

33°50°

120°

130

SpecificationType Probe PSM 1500Capacity l 1500Material S 235 JRInner coating UntreatedOuter coating Rust protectionOperating pressure, heating Operating pressure, water bar 3Test pressure bar 4.5Max. operating temperature °C 95Connections 4 x DN 80 4 x 1½ fem. (DN 40)Sensor connections 4 x ½ fem. (DN 15)Cool-down losses per day kWh 4.993Thermal insulation Part no. ZK02 270Insulation thickness mm 130Material Fleece and skai jacket, silver

NoteOrder sensor wells separately, see Viessmann pricelist.

Design information (cont.)

72 Viesmann VITOCAL

3

5796

245

GB

Page 73: Viesmann VITOCAL

Heating water buffer cylinder 2000 l

Part no. ZK02 267

13601100

13

50°70°

120°

34,5°50°

120°

250

2018

0023

7025

050

320

340

900

1490

2000 20

20 2480

SpecificationType Probe PSM 2000Capacity l 2021Material S 235 JRInner coating UntreatedOuter coating Rust protectionOperating pressure, heating Operating pressure, water bar 3Test pressure bar 4.5Max. operating temperature °C 95Connections 4 x DN 80 4 x 1½ fem. (DN 40)Sensor connections 4 x ½ fem. (DN 15)Cool-down losses per day kWh 5.742Thermal insulation Part no. ZK02 271Insulation thickness mm 130Material Fleece and skai jacket, silver

NoteOrder sensor wells separately, see Viessmann pricelist.

Design information (cont.)

VITOCAL Viesmann 73

5796

245

GB

3

Page 74: Viesmann VITOCAL

Heating water buffer cylinder 2500 l

Part no. ZK02 268

160

285

1500

285

5022

80

535

975 14

1518

5523

60

15101250

13

50°70°

120° 36°50°

120°

130

SpecificationType Probe PSM 2500Capacity l 2304Material S 235 JRInner coating UntreatedOuter coating Rust protectionOperating pressure, heating Operating pressure, water bar 3Test pressure bar 4.5Max. operating temperature °C 95Connections 4 x DN 100 4 x 1½ fem. (DN 40)Sensor connections 4 x ½ fem. (DN 15)Cool-down losses per day kWh Not givenThermal insulation Part no. ZK02 272Insulation thickness mm 130Material Fleece and skai jacket, silver

NoteOrder sensor wells separately, see Viessmann pricelist.

Design information (cont.)

74 Viesmann VITOCAL

3

5796

245

GB

Page 75: Viesmann VITOCAL

Heating water buffer cylinder 3000 l

Part no. ZK02 269

150

285

1950

285

5027

20

2800

2330

2310

1680

1020

380

360

15101250

15

50°70°

120°

36°50°

120°

SpecificationType Probe PSM 3000Capacity l 2852Material S 235 JRInner coating UntreatedOuter coating Rust protectionOperating pressure, heating Operating pressure, water bar 3Test pressure bar 4.5Max. operating temperature °C 95Connections 4 x DN 100 4 x 1½ fem. (DN 40)Sensor connections 4 x ½ fem. (DN 15)Cool-down losses per day kWh 8.388Thermal insulation Part no. ZK02 273Insulation thickness mm 130Material Fleece and skai jacket, silver

NoteOrder sensor wells separately, see Viessmann pricelist.

Heating water buffer cylinder for optimised runtimesVHP = QWP · (20 to 25 l)QWP = Absolute rated heating output of the heat pumpVHP = Heating water buffer cylinder capacity in l

Example:Type BW 352A.097 with QWP = 97 kW

Partial load operation approx. 50 kWVHP = 50 · 25 l

= 1250 l cylinder capacity

Selection: Heating water buffer cylinder 1500 litres

Heating water buffer cylinder for bridging periods when the supply is blockedThis version can be used on heat distribution systems without addi-tional storage mass (e.g. radiators, hydraulic hot air fans).100 % thermal storage for the power-OFF times is possible but notrecommended, as the heating water buffer cylinder volume wouldneed to be very large.

Example:ΦHL = 100 kW = 100000 WtSz = 2 h (max. 3 × per day)

Δϑ = 10 KcP = 1.163 Wh / (kg · K) for watercP Spec. thermal capacity in kWh/(kg · K)ΦHL Heat load of the building in kWtSz Blocking time in hVHP Heating water buffer cylinder capacity in lΔϑ System cool-down in K

Design information (cont.)

VITOCAL Viesmann 75

5796

245

GB

3

Page 76: Viesmann VITOCAL

100 % sizing(subject to the existing heating surfaces)

VHP =ΦHL · tSz cP · Δϑ

VHP = 100000 W · 2 h = 17200 kg1.163 Wh/(kg · K) · 10 K

17200 kg of water corresponds to a heating water buffer cylindercapacity of 17200 l.Selection: Special heating water buffer cylinder with appropriatelysized connections (≥ 2½ (DN 65))

Rough sizing(subject to the utilisation of the delayed building heat loss)VHP ΦHL · (60 to 80 l)

VHP = 100 · 60 lVHP = 6000 l cylinder capacity

NoteSelection: 2 heating water buffer cylinders 3000 litres

NoteObserve the heating water buffer cylinder pressure drop.

Heating output Connection, heating water buffer cylinderUp to 120 kW ≥ DN 65 (2½)Up to 200 kW ≥ DN 80 (3)Up to 300 kW DN 100

3.14 Water quality and heat transfer medium

DHWThe appliances can be used with potable water up to a hardnesslevel of 16 ºdH (3.0 mol/m3). In the case of higher hardness levels, asoftening system for potable water is required (on site) to protect theplate heat exchanger in the cylinder loading system.

Heating waterUnsuitable fill and top-up water increases the level of deposits andcorrosion. This can result in system damage.Observe VDI 2035 and applicable SWKI BT 102-01 and SIA regard-ing the quality and amount of heating water, incl. fill and top-upwater.

■ Flush the heating system thoroughly before filling.■ Only fill with water of potable quality.■ Soften fill water with a water hardness above 16.8 °dH

(3.0 mol/m3), e.g. with the small softening system for heating water(see the Vitoset pricelist).

Heat transfer medium, primary circuit (brine circuit)

Primary inlet Heat transfer medium< 10 °C Brine (30 % glycol content)≥ 10 °C Brine (21 % glycol content)≥ 15 °C Water

Brine/water heat pumps:■ The primary circuit may only be filled with heat transfer medium

containing corrosion inhibitors and frost protection down to -19 °C(e.g. Tyfocor). Never dilute the heat transfer medium with water.

■ Never use zinc-plated/galvanised pipes for the primary circuit.

Brine/water heat pumps in water/water application:■ With separating heat exchanger:

Fill intermediate circuit with antifreeze mixture (brine, min. -5 °C).■ Without separating heat exchanger with waste heat/process water

heat source:Process water must comply with the water quality requirements forheat exchangers:See table "Resistance of copper or stainless steel plate heatexchangers to water-borne substances" on page 67.

3.15 DHW heating

Function description regarding DHW heating

DHW heating is fundamentally different to heating mode, as it isoperated with constant heat amount requirements all year round atthe same temperature level.For Vitocal 350-HT Pro, DHW heating is set to single-stage opera-tion at the factory.

The max. cylinder storage temperature is limited subject to the heatpump used and the individual system configuration. Storage temper-atures above this limit are only possible with the assistance of abooster heater.

Booster heaters suitable for DHW reheating:■ Immersion heater (accessories)

DHW heating should preferably take place during the night after22:00 h. This has the following advantages:■ The heat pump heating output is available for central heating dur-

ing the daytime.■ Better utilisation of economy (night) tariffs (if offered by the power

supply utility).■ DHW cylinder heating and simultaneous drawing can be avoided.

When using an external heat exchanger, the system may notalways achieve the required draw-off temperatures because of thesystem design.

■ DHW heating by the Vitocal 350-HT Pro can safeguard a uniformlyhigh inlet temperature by a special temperature maintaining facilityon the heating side of the DHW cylinder.

Design information (cont.)

76 Viesmann VITOCAL

3

5796

245

GB

Page 77: Viesmann VITOCAL

The DHW connection should be made according to the applicableregulations with regard to safety and hygienic requirements. In addi-tion, DHW cylinders require regular servicing and inspections.

The cylinder loading system extracts cold water from the DHW cylin-der as part of the loading process (no draw-off), i.e. from the lowersection by means of cylinder loading pump eE. This cold water isheated in cylinder loading system heat exchanger eR and suppliedto the DHW cylinder. The 3-way mixer eZ keeps the temperature up,ensuring that the cylinder inlet temperature is >45 °C. On commis-sioning, the maximum flow rate is set by flow limiter eT. Seescheme, page 78.

Connection on the DHW sided: Observe DIN 1988 and DIN 4753.c: Observe SVGW regulations.

KKA

B

C

D

G

H

L MNF

O

K FP R K S O

F

E

Example with Vitocell

A DHWB DHW circulation pipeC DHW circulation pumpD Spring-loaded check valveE Expansion vessel, suitable for drinking waterF DrainG Visible discharge pipe outlet point (tundish)H Safety valve

K Shut-off valveL Flow regulating valve

(installation recommended)M Pressure gauge connectionN Non-return valveO Cold waterP Drinking water filterR Pressure reducer to DIN 1988-2, Dec. 1988 editionS Non-return valve/pipe separator

Safety valveProtect the DHW cylinder with a safety valve against unduly highpressure.

Recommendation: Install the safety valve higher than the top edge ofthe cylinder. This protects the valve against contamination, scalingand high temperatures. The DHW cylinder will also not need to bedrained when working on the safety valve.

Design information (cont.)

VITOCAL Viesmann 77

5796

245

GB

3

Page 78: Viesmann VITOCAL

Hydraulic connection, cylinder loading system

CW

WW

M

P

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit3 3-way diverter valve "Central heating/DHW heating"5 Secondary pump6 Outside temperature sensor7 Safety assembly, secondary circuit8 Expansion vesseleP DHW cylindereQ Cylinder temperature sensor, topeW Immersion heatereE Cylinder loading pumpeR Heat exchanger, cylinder loading systemeT Flow limitereZ 3-way mixing valveeU DHW circulation pumpeI Cylinder loading system flow temperature sensoreO Cylinder temperature sensor, bottomz-P 3-way mixing valve, secondary high temperature maintenance

NoteThis function requires additional electrical components in the heatpump. See page 89.

Detail of DHW cylinder with external heat exchanger (cylinder loading system) and electric booster heaterDuring cylinder loading (no draw-off) in the cylinder loading system,cold water is drawn from the bottom of the DHW cylinder by the cyl-inder loading pump, heated in the heat exchanger and returned tothe DHW cylinder via the heating lance built into the flange.The generously sized outlet apertures in the heating lance result inlow flow velocities, which in turn provide temperature stratificationinside the DHW cylinder.DHW booster heating is possible if an additional immersion heater isinstalled (on site).

Design information (cont.)

78 Viesmann VITOCAL

3

5796

245

GB

Page 79: Viesmann VITOCAL

KW

A

WW

eW

eU

KW Cold waterWW DHWA Cylinder loading system, page 78

Equipment requiredPos. Designation Number Part no.eW Immersion heater 1 On siteeU DHW circulation pump 1 On site

Selecting a cylinder loading system

Loading cylinderThe loading cylinder must be selected according to the flow rates.Due to the high output, the minimum volume should be equivalent tothat of the heat pump type. According to the following sizing, thetemperature that can be achieved in the DHW cylinder isaround 65 °C in the top section.

Standard values, min. cylinder volume for 2-stage heat pumpHP output at B0/W35 Cylinder capacity< 60 kW 750 l60 to 100 kW 1000 l100 to 150 kW 1500 l< 150 kW 2000 l

70 °C

65 °C 50 °C

73 °C

A B

A Heat pump (heating water)B DHW cylinder (domestic hot water)

XVMXLG

Design information (cont.)

VITOCAL Viesmann 79

5796

245

GB

3

Page 80: Viesmann VITOCAL

Plate heat exchanger selection up to limit operation W10/W35*6

Type Part no. Flow rate, primary Pressure drop,primary

Flow rate DHW Pressure dropDHW

m3/h kPa m3/h kPaBW 352.AHT058 7519 161 13.20 15 5 3.4BW 352.AHT071 7519 162 16.80 15 6.4 3BW 352.AHT084 19.70 23 7.5 3.5BW 352.AHT096 7519 163 22.90 15 8.7 2.8BW 352.AHT119 27.00 27 10.3 4.7BW 353.AHT126 7519 164 29.80 25 11.2 3BW 353.AHT147 34.40 31 13.1 5

Type Part no. Dimensions(Length/width/height)

Connections, HP side Connections

mm (Vic) DHW (G)BW 352.AHT058 7519 161 281/118/543 2½ (DN 65) 2½ (DN 65)BW 352.AHT071 7519 162 281/144/543 2½ (DN 65) 2½ (DN 65)BW 352.AHT084BW 352.AHT096 7519 163 281/197/543 2½ (DN 65) 2½ (DN 65)BW 352.AHT119BW 353.AHT126 7519 164 281/277/543 2½ (DN 65) 2½ (DN 65)BW 353.AHT147

NoteConnection of the heat pump to the plate heat exchanger requiresthe accessory "Flange adaptor set 2½".

3.16 Cooling mode

Types and configuration

Subject to system version, the following cooling functions are possi-ble:■ Natural cooling (as option with or without mixer)

– The compressor is shut down and heat exchange occurs directlywith the primary circuit.

■ "Active cooling"– The heat pump is delivered as a refrigeration unit. Therefore, a

higher cooling capacity is possible than with natural cooling.– This function is only possible outside a power-OFF period, and

must be enabled separately by the system user.

Even if active cooling is selected and enabled, the control unit willinitially start the natural cooling function. If the set room temperaturecannot be achieved with this function for a prolonged period, thecompressor starts.A mixer can only be used with natural cooling and, particularly incooling mode on underfloor heating circuits, keeps the flow tempera-ture above the dew point. To ensure the transfer of the high coolingcapacity in active cooling at all times, no mixer is provided.

Cooling with groundwaterGroundwater offers ideal conditions for achieving just as high a cool-ing capacity with natural cooling (NC) as with active cooling (AC).At 7 to 12 °C, groundwater temperatures are low enough all yearround for operation with active cooling not to be necessary, whichresults in the compressor remaining switched off.The cooling capacity is determined solely by the groundwater flowrate and the temperature spread. At the same time, the cooling sys-tem should be sized for the maximum available groundwater temper-ature.

Cooling system sizing W13/W18 or W14/W19■ Raising the cooling capacity by increasing the groundwater flow

rate for operation with natural cooling is more cost effective thanwith active cooling (compressor running).

■ With natural cooling, the groundwater only draws the coolingcapacity actually required.With active cooling, the groundwater must draw a cooling capacityhigher than that for natural cooling by the amount of the compres-sor output (+ approx. 20 %).

■ Active cooling requires an additional plate heat exchanger.

Example for cooling demand of 80 kW at W7/W12Desired heat pump: Vitocal 350-HT Pro, type BW 352.AHT058.QK 10/5 = approx. 75 kW at W10/W5 (note separating heat

exchanger if required)(heat pump cooling capacity in kW)

Pel WP = 22 kW(heat pump electrical output in kW)

Pel UP = approx. 4 kW(well pump electrical output in kW)

´W 10/7 = 27 m3/h (W10/W7 in heating mode)(groundwater flow rate in m3/h)

Well circuit sizing:ΔT = 4 K: Heating to 14 °C (W10/W14 in cooling mode)

Available for utilisation by cooling circuit: W12/W16 with´W = 28.9 m3/h

*6 Operating points with higher outputs, such as waste heat used as primary source, require the loading plate heat exchanger to be sizedseparately.

Design information (cont.)

80 Viesmann VITOCAL

3

5796

245

GB

Page 81: Viesmann VITOCAL

Well circuit Heat pump innatural coolingmode

Cooling capacity kW ≈ 125at W12/W16

75at W7/W12

Electrical output kW 4 22Energy efficiency ra-tio EER

≈ 31 3.4

Natural cooling function (NC)

Function description

With natural cooling, the heat pump control unit performs the follow-ing functions for charging the coolant buffer cylinder:■ Control of all necessary circulation pumps and diverter valves■ Temperature capture■ DHW heating by the heat pump is possible during cooling mode.

Hydraulic connectionThe maximum transferable cooling capacity depends on the geother-mal probes, the ground temperatures and theNC plate heat exchanger.For cooling, it is possible to connect either a heating/cooling circuit,e.g. underfloor heating circuit, or a separate cooling circuit, e.g. a fanconvector.

Required components for a separate on-site control unit:■ Circulation pumps■ Diverter valves■ Mixer■ Sensors■ KM-BUS interface for heat pump control unit

Note■ To prevent condensation, provide vapour diffusion-proof thermal

insulation for all primary and coolant lines, in accordance withengineering standards.

■ Power supply (1N/PE, 230 V/50 Hz) is required. Recommendation:Use the heat pump power supply via an additional power distribu-tion board.

Hydraulic connection with natural cooling, heat exchanger and active cooling

P

P

M2

1

6

uQ

uW

uP4

qW

qQ

8

iT

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit4 Primary pump6 Outside temperature sensor8 Expansion vesselqQ Safety assembly, primary circuitqW Pressure switch, primary circuituP 3-way diverter valve, cooling modeuQ Heat exchanger coolinguW Cooling water temperature sensoriT 3-way mixing valve, low temperature maintenance

NoteThis function requires additional electrical components in the heatpump. See page 89.

Cooling with an underfloor heating systemThe underfloor heating system can be used for heating and coolingbuildings and rooms.Underfloor heating systems are hydraulically connected to the pri-mary circuit via a plate heat exchanger. A mixer is required to matchthe cooling load of the rooms to the outside temperature. A coolingcurve (similar to a heating curve) can be used to exactly match thecooling capacity to the cooling load via the cooling circuit mixer thatis regulated by the heat pump control unit.Surface temperature limits must be maintained to observe comfortcriteria and to prevent condensation. For example, the surface tem-perature of an underfloor heating system in cooling mode must notfall below 20 °C.The underfloor heating system should be sized in accordance with aflow/return temperature pair of approx. 14/18 °C.The following table can assist in estimating the possible coolingcapacity of an underfloor heating system.

The following applies:The minimum flow temperature for cooling with an underfloor heatingsystem and the minimum surface temperature are subject to the pre-vailing ambient conditions inside the room (air temperature and rela-tive humidity). These must therefore also be taken into considerationduring the design phase.

Estimating the cooling capacity of an underfloor heating system subject to floor covering and the spacing between pipe runs(assumed flow temperature of approx. 14 °C, return temperature approx. 18 °C, source: Velta)Floor covering Tiles CarpetSpacing mm 75 150 300 75 150 300Cooling capacity with pipe diameter -10 mm W/m2 45 35 23 31 26 19-17 mm W/m2 46 37 25 32 27 20-25 mm W/m2 48 40 28 33 29 22

Design information (cont.)

VITOCAL Viesmann 81

5796

245

GB

3

Page 82: Viesmann VITOCAL

Details accurate for:Room temperature 25 °CRelative humidity 60 %Dew point temperature 15 °C

Sizing the NC plate heat exchanger (natural cooling)The following table may be used for rough sizing.Perform a cooling load calculation in accordance with VDI 2078 forprecise sizing. The following tables can be used to calculate the sizeof the required cooling heat exchanger.

18 °C

10 °C 14 °C

∼12.5 °C

A B

A Cooling circuit, primary side (brine down to -15 °C/25 %)B Cooling circuit secondary side (water)

Victaulic

NC plate heat exchanger selection

Plate heat exchanger selection list for brine/water heat pump with water or brine 10/12.5 °C, cooling system 18/14 °C water / max.cooling capacity calculated with heat pump cooling capacity 0.8 at 50 W/mType Part no. Maximum out-

putFlow rate, sec-ondary

Pressure drop,secondary

Flow rate, pri-mary

Pressure drop, pri-mary

kW m3/h kPa kg/h kPaBW 352.AHT058 7519 156 48 8.2 14.8 15.6 46.1BW 352.AHT071 7519 157 60 10.3 11.3 19.5 36.9BW 352.AHT084 71 12.2 15.6 23.1 50.9BW 352.AHT096 7519 158 81 13.9 10.4 26.3 34.6BW 352.AHT119 96 16.5 14.4 31.2 47.8BW 353.AHT126 7519 159 108 18.5 7 35.1 23.9BW 353.AHT147 158 27 14.6 51.3 49.8

Type Part no. Maximum out-put

Dimensions(length/width/height)

Connections,primary

Connections,secondary

Flange connection

kW mm Victaulic Victaulic SetBW 352.AHT058 7519 156 48 271/80/532 DN 65 DN 65 4 x 2½"BW 352.AHT071 7519 157 60 271/112/532 DN 80 DN 80 4 x 3"BW 352.AHT084 71BW 352.AHT096 7519 158 81 271/152/532 DN 80 DN 80 4 x 3"BW 352.AHT119 96BW 353.AHT126 7519 159 108 271/269/532 DN 80 DN 80 4 x 3"BW 353.AHT147 158

NoteWhen using a geothermal probe or where flow temperature can be< 1 °C in the primary circuit, install a forced shutdown mechanismand a frost stat.

Active cooling function (AC)

Function descriptionDuring spring, summer or autumn, brine/water and water/water heatpumps can utilise the temperature level of the heat source to coolthe building with natural cooling.At the same time, active cooling can be achieved by starting thecompressor and reversing the functions of the primary and secon-dary sides.

The heat generated is dissipated via the primary source (or a con-sumer).In the event of cooling demand, the natural cooling function isalways activated first. If the cooling capacity is no longer sufficientwith natural cooling, the system changes over to active cooling.The heat pump starts to operate and the cold side (primary circuit)and hot side (secondary circuit) are changed over.

Design information (cont.)

82 Viesmann VITOCAL

3

5796

245

GB

Page 83: Viesmann VITOCAL

The heat generated is made available to the connected consumers(e.g. DHW cylinder). Excess heat is dissipated into the ground orwell system.To prevent the geothermal probes from becoming overloaded (risk ofdrying out), the temperature and its spread are permanently moni-tored by the heat pump control unit. If overloading occurs, the sys-tem automatically changes over to natural cooling.

With active cooling, the heat pump control unit performs the follow-ing functions for charging the coolant buffer cylinder:■ Control of all necessary circulation pumps and diverter valves■ Temperature capture

The heat pump always starts for active cooling. The available cool-ing capacity depends on the required coolant temperatures. In activecooling mode, the heat pump generates a defined, constant coolingcapacity. The cooling capacity generated in active cooling mode canbe equated with that in groundwater operation if the coolant temper-atures are ≤ 10 °C.

This results in the following key design points required for continu-ous cooling:1. Calculate heat pump heating output at cooling temperature level.2. Ensure continuous heat transfer (heating output) via geothermal

probes.

For heat transfer via geothermal probes:■ Simulate and size probe array for cooling mode.■ Never exceed max. probe temperature of 28 °C.■ Provide additional dry coolers.■ Never exceed max. probe inlet temperature of 35 °C.

For heat transfer via heat distribution:■ Allow for an adequate buffer cylinder volume.■ Ensure heat is drawn off continuously in accordance with the gen-

erated heating output.■ Provide buffer volume for breaks in heat draw-off.■ If required, factor in an additional dry cooler and observe design

temperatures.Even at outside temperatures of +35 °C, a dry cooler must still beable to transfer heat.The heat pump flow temperature is at least 45 °C.

Note■ If heat is not drawn off continuously in active cooling mode, the

heat pump is switched off.■ For active cooling mode, the intermediate circuit must be filled up

to the AC plate heat exchanger with antifreeze. The minimum sys-tem temperature in the cooling circuit must not fall below 5 °C,whilst the minimum flow temperature in the primary circuit (brineinlet) may be 3 °C.

Sizing the AC plate heat exchangerThe following table may be used for sizing.

10 °C

7 °C 5 °C

12 °C

A B

A Building cooling circuitB Heat pump primary circuit (intermediate circuit)

Victaulic

AC plate heat exchanger selection

Type Part no. Cooling capaci-ty

Flow rate, pri-mary, water

Pressure drop,primary, on thewater side

Flow rate, sec-ondary, glycol

Pressure drop,secondary, gly-col circuit

kW m3/h kPa kg/h kPaBW 352.AHT058 7519 151 71.6 12.50 9.3 14 11.7BW 352.AHT071 7519 152 90.9 15.60 9.5 17.7 12.5BW 352.AHT084 107.5 18.76 13.8 21 17.1BW 352.AHT096 7519 153 123.7 21.20 14.4 24.2 18.6BW 352.AHT119 145.2 25.90 21.5 28.4 25.3BW 353.AHT126 7519 154 161.2 28.75 25.1 31.5 29.4BW 353.AHT147 185.5 34.20 35.2 36.3 38.6

Type Part no. Dimensions (length/width/height)

Connections,primary

Connections, sec-ondary

Flange connection

mm Victaulic Victaulic SetBW 352.AHT058 7519 151 271/236/532 DN 65 DN 65 2 x 2½" long

2 x 2½" shortBW 352.AHT071 7519 152 271/326/532 DN 80 DN 80 2 x 3" long

2 x 3" shortBW 352.AHT084BW 352.AHT096 7519 153 271/416/532 DN 80 DN 80 2 x 3" long

2 x 3" shortBW 352.AHT119BW 353.AHT126 7519 154 271/461/532 DN 80 DN 80 2 x 3" long

2 x 3" shortBW 353.AHT147

Design information (cont.)

VITOCAL Viesmann 83

5796

245

GB

3

Page 84: Viesmann VITOCAL

As a result of the compressor operation, active cooling generates acorrespondingly high heating output that must be dissipated. Apartfrom charging a heating water buffer cylinder or providing DHWheating, residual heat needs to be dissipated. For this, a dry coolerneeds to be installed, subject to the sizing of the heat source. Shouldactive cooling still be required when outside temperatures fall belowzero (e.g. server cooling), install a thermostatic temperature mainte-nance facility (set to 5 °C) on the side of the heat exchanger forresidual heat, i.e. on the heat dissipating side. This provides the heatexchanger with frost protection.

Hydraulic connection of coolant buffer cylinder

P

P

M

M

M

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit4 Primary pump6 Outside temperature sensor8 Expansion vesselqQ Safety assembly, primary circuitqW Pressure switch, primary circuitqO Flow switch, AC/NC coolinguP 3-way diverter valve, coolinguQ Heat exchanger, natural cooling/coolinguW Cooling water temperature sensoriP Coolant buffer cylinderiQ Circulation pumpiW Buffer temperature sensor, topiE Buffer temperature sensor, bottomiR Motorised 2-way valve, cooling modeiT 3-way mixing valve, low temperature maintenance

NoteThis function requires additional electrical components in the heatpump. See page 89.

Design information (cont.)

84 Viesmann VITOCAL

3

5796

245

GB

Page 85: Viesmann VITOCAL

Residual heat exchanger selection list

Type Part no. Maximum out-put

Max. flow rate,primary

Pressure drop,primary

Flow rate, sec-ondary, glycol30 %

Pressure drop,secondary

kW m3/h kPa m3/h kPaBW 352.AHT058 7519 166 98 14.5 22 16.1 24BW 352.AHT071 7519 167 147 18.3 22 20.5 24BW 352.AHT084 21.8 27 24.1 30BW 352.AHT096 7519 168 200 25.2 22 27.9 25BW 352.AHT119 29.8 26 33.0 29BW 353.AHT126 7519 169 250 32.7 27 36.1 30BW 353.AHT147 37.8 35 41.9 39

Type Part no. Dimensions (length/width/height)

Connections, pri-mary

Connections, sec-ondary

Flange connection

mm Victaulic Victaulic SetBW 352.AHT058 7519 166 271/197/636 DN 65 DN 65 4 x 2½"BW 352.AHT071 7519 167 271/277/636 DN 80 DN 80 4 x 3"BW 352.AHT084BW 352.AHT096 7519 168 271/356/636 DN 80 DN 80 4 x 3"BW 352.AHT119BW 353.AHT126 7519 169 271/489/636 DN 80 DN 80 4 x 3"BW 353.AHT147

Connection of the plate heat exchanger requires the accessory flange connector set 2½" (DN 65) or 3" (DN 80).

46 °C

42 °C 40 °C

48 °C

A B

A Heat pump (water)B Residual heat consumer (brine)

Victaulic

Hydraulic connection, heat exchanger for residual heat

PP

P

MM

M

M

M

r-P

Design information (cont.)

VITOCAL Viesmann 85

5796

245

GB

3

Page 86: Viesmann VITOCAL

Required equipmentPos. Designation1 Heat pump2 Heat pump control unit5 Secondary pump6 Outside temperature sensor7 Safety assembly, secondary circuit8 Expansion vessel9 Geothermal probeqP Geothermal probe manifoldr-P Heat exchanger, residual heatr-Q Circulation pump, residual heatr-W 3-way diverter valve, residual heatr-E Motorised 2-way valve (dry cooler shut-off)r-R Motorised 2-way valve (geothermal probe shut-off)r-T Pressure switch, residual heatr-Z Return temperature sensor, residual heatr-I Dry coolerr-O 3-way mixing valve, return temperature raisingz-P 3-way mixing valve, secondary high temperature maintenance

NoteThis function requires additional electrical components in the heatpump. See page 89.

Design information (cont.)

86 Viesmann VITOCAL

3

5796

245

GB

Page 87: Viesmann VITOCAL

4.1 PLC control unit

Design and functions

Modular designThe control unit is integrated into the heat pump. The control unitcomprises a standard unit, extension modules and the programmingunit (colour touchscreen).

Standard unit:■ Mains isolator■ Modbus/Ethernet interfaces■ Operating and fault display■ Fuses

Programming unit■ Operation via:

– Colour touchscreen with graphic display– Commissioning assistant

■ Digital time switch■ Setting:

– DHW heating■ Display:

– Flow temperature– DHW temperature– Operating data– Diagnostic details– Information, warning and fault messages– Further information

Functions■ Waste heat utilisation■ Cylinder temperature controller with temperature maintaining

facility■ External demand and blocking of the heat pump; specification of a

set flow temperature via an external 0 to 10 V signal■ Pump anti-seizing protection■ Data communication■ Telecontrol, remote setting and remote monitoring of the heat

pump and heating system via Ethernet interface■ Trend function for up to 14 days■ Low end controller, primary side■ Additional functions (optional):

– DHW heating with target temperature control– Natural and active cooling control functions– Residual heat control for heat source and dry cooler– Use of geothermal probes– Use of well circuit/groundwater

Time switchA digital time switch is integrated in the PLC control unit, which ena-bles the following functions:

■ Automatic summer/wintertime changeover■ Automatic function for DHW heating and DHW circulation pump■ Time, day and standard switching times for central heating, DHW

heating, charging the heating water buffer cylinder and switchingthe DHW circulation pump are preset at the factory.

■ Switching times can be programmed individuallyShortest switching interval: 10 minutesPower reserve: 1-3 years by internal battery

Outside temperature sensor

Heat pump standard deliveryFor capturing the system flow temperatureInstallation location:■ North or north-west facing wall of the building■ 2 to 2.5 m above the ground, for multi storey buildings in the upper

half of the second floorConnection:■ 2-core lead, length up to 35 m with a cross-section of 1.5 mm2

(copper).■ Never route this cable immediately next to 230/400 V cables.

41 66

80

SpecificationIP rating IP 43 to EN 60529, en-

sure through design/installation.

Permissible ambient temperature – Operation −40 to +70 °C– Storage and transport −40 to +70 °C

Heat pump control unit

VITOCAL Viesmann 87

5796

245

GB

4

Page 88: Viesmann VITOCAL

4.2 Control unit accessories

Pt 1000 contact temperature sensor

Part no. 7172 873For capturing the system flow temperature

Ø 15

26

SpecificationCable length 2.0 mIP rating IP 32 to EN 60529, en-

sure through design/installation.

Sensor type KWT Pt1000Permissible ambient temperature – Operation -20 to 120 °C

Cylinder temperature sensor Pt1000 (also immersion temperature sensor)

Part no. 7511 393For capturing temperatures

SpecificationCable length 4.0 mIP rating IP 32 to EN 60529, en-

sure through design/installation.

Sensor type KWT Pt1000– Diameter 7 6 mmPermissible ambient temperature – Operation -20 to 120 °C

BACnet module

Part no. ZK01 421Extension module for data communication via BACnet interface.Extension module can only be integrated into the PLC control unit atthe factory. Use of BACnet communication precludes the Modbusfunction. Connection: Ethernet RJ45.

NoteBACnet module must be specified when ordering.

Refrigerant sensor for R1234ze

Part no. 7857 056 SpecificationTransmitter type CS 21Gas supply DiffusionMeasuring principle Chemosorption (CS)Supply voltage 10 to 32 V-Output current 0.2 to 1 mA (4 kΩ) or 4 to 20 mA

(200 Ω)Response time t∧ < 14 s (depending on gas type)Typical sensor service life > 5 yearsClimatic conditions Ambient temperature -30 to +55 °CAir humidity 20 to 96 %, non-condensingAir pressure 920 to 1100 hPa

Heat pump control unit (cont.)

88 Viesmann VITOCAL

4

5796

245

GB

Page 89: Viesmann VITOCAL

Body Material AluminiumIP rating IP 54Cable connection PG11 fitting, max. cross-section

3 x 1.5 mm2

Test cable Screened cable, e.g. LiYCY 3 x1.5 mm2

Dimensions (WxHxD) 80 x 76 x 57 mmWeight approx. 370 g

Control unit accessories

Number of required accessories per functionAccessories Function

Groundwa-ter

Geothermalprobe

Dry cooler/residualheat

DHW heat-ing

Heating wa-ter buffercylinder

Coolant buf-fer cylinderAC/NC

Waste heat

Part no. 7637 627 7637 626 7637 625 7637 628 7637 629 Pt 1000 con-tact tempera-ture sen-sor*7*8

7172 873 1 1 1

ImmersiontemperaturesensorPt1000*7

7511 393 1 2 2

Flow switch SI5000

ZK00 969 1 1 1

Flow switchSR 5900*9

ZK00 970 1 1 1

Pressureswitch

9532 663 1 1 1

Residual heatextension

ZK02 826 1

Geothermalprobe exten-sion

ZK02 827 1

Well circuit ex-tension

ZK02 828 1

DHW heatingextension

ZK02 829 1

AC/NC cool-ing extension

ZK02 830 1

*7 Included as accessory*8 As an alternative, the immersion temperature sensor, part no. 7511 393 can also be used with the sensor well part no. 7511 394*9 Alternative to part no. 7511 396

Heat pump control unit (cont.)

VITOCAL Viesmann 89

5796

245

GB

4

Page 90: Viesmann VITOCAL

AActive cooling.............................................................................80, 82Actuators..........................................................................................48Application limits.............................................................................. 12Application procedure (details).........................................................54

BBase.................................................................................................55Blocking time....................................................................................75

CCables required................................................................................58Central heating/central cooling.........................................................70Circulation pumps............................................................................ 40Clearances.......................................................................................56Connections– DHW............................................................................................. 77– Heat pump.................................................................................... 60– Hydraulic.......................................................................................59– Power supply................................................................................ 58Coolant water buffer cylinder– Hydraulic connection.....................................................................84Cooling function– Active cooling................................................................................82– Natural cooling..............................................................................81Cooling heat exchanger............................................................. 82, 83Cooling mode...................................................................................80– Types and configuration................................................................80Cooling with underfloor heating........................................................81Cylinder loading system– Hydraulic connection.....................................................................78

DDelivered condition.............................................................................4DHW cylinder................................................................................... 76DHW demand...................................................................................63DHW heating– Connection on the DHW side........................................................76– Selecting a cylinder loading system..............................................79Double U-shaped pipe probe........................................................... 64Drip pan............................................................................................47

EElectric booster heater..................................................................... 78Electricity meter................................................................................58Ethylene glycol.................................................................................63External heat generator....................................................................62

FFault................................................................................................. 87Fill water...........................................................................................76Flow rate.......................................................................................... 67Flow switch set.................................................................................47Flow temperature............................................................................. 87Frost protection................................................................................ 63Function description– DHW heating.................................................................................76– Heating circuit............................................................................... 70– Instantaneous heating water heater..............................................62

GGeothermal probe............................................................................ 63– Hydraulic connection.....................................................................65Groundwater.................................................................................... 65– Hydraulic connection.....................................................................69

HHeating output..................................................................................61Heating water buffer cylinder........................................................... 71– Hydraulic connection.....................................................................71Heat load..........................................................................................61Heat pump control unit– Design...........................................................................................87– Functions...................................................................................... 87– Programming unit..........................................................................87– Standard modules.........................................................................87Heat pump sizing............................................................................. 61Heat transfer medium...........................................................39, 64, 76Hydraulic connections......................................................................59Hydraulic connection set..................................................................75

IInformation....................................................................................... 87Instantaneous heating water heater.................................................62

LLift drives..........................................................................................48Lift valves......................................................................................... 48

MMinimum clearances........................................................................ 56Minimum flow rate............................................................................70Mono energetic operation................................................................ 62Mono mode...................................................................................... 61

NNatural cooling........................................................................... 80, 81

OOperation– Dual mode.....................................................................................62– Mono energetic............................................................................. 62– Mono mode...................................................................................61Oversizing........................................................................................ 61

PPerformance diagrams.....................................................................14Potable water softening system....................................................... 76Power cable..................................................................................... 58Power-OFF.....................................................................54, 58, 61, 75Power-OFF period............................................................................54Power-OFF time...............................................................................61Power supply..............................................................................54, 58Power tariffs..................................................................................... 54Pressure drop...................................................................................14Pressure points of the feet............................................................... 56Primary pumps.................................................................................40Primary source– Brine..............................................................................................63– Water.............................................................................................65Pump output supplements............................................................... 64

RRequired equipment.........................................................................59– Active cooling................................................................................81– Coolant buffer cylinder.................................................................. 84– Cylinder loading system................................................................78– Geothermal probe.........................................................................65– Groundwater................................................................................. 69– Heating water buffer cylinder........................................................ 72– Natural cooling..............................................................................81– Residual heat heat exchanger...................................................... 86Residual heat heat exchanger– Hydraulic connection.....................................................................85Return well....................................................................................... 66Runtime optimisation........................................................................75

Keyword index

90 Viesmann VITOCAL

5796

245

GB

Page 91: Viesmann VITOCAL

SSafety equipment block....................................................................39Safety valve......................................................................................77Secondary pumps............................................................................ 40Separating heat exchanger..............................................................68Settings............................................................................................ 87Siting................................................................................................ 54Sizing the heat pump....................................................................... 61Sound-insulating base......................................................................55Specification– Vitocal 350-HT Pro..........................................................................5Standard delivery............................................................................... 4Standard heat load of the building................................................... 61Supplement for DHW heating.......................................................... 63Supplement for setback mode......................................................... 63Supply well.......................................................................................66System separation........................................................................... 66

TTechnical connection requirements..................................................58Time switch...................................................................................... 87Tyfocor............................................................................................. 64

UUnderfloor heating............................................................................81

VVictaulic flange adaptor set– Primary circuit............................................................................... 38– Secondary circuit.......................................................................... 38

WWarning............................................................................................87Waste heat....................................................................................... 69Water board......................................................................................64Water quality.................................................................................... 76

Keyword index

VITOCAL Viesmann 91

5796

245

GB

Page 92: Viesmann VITOCAL

92 Viesmann VITOCAL

5796

245

GB

Subject to technical modifications.

Viessmann LimitedHortonwood 30, TelfordShropshire, TF1 7YP, GBTelephone: +44 1952 675000Fax: +44 1952 675040E-mail: [email protected]

Viessmann Werke GmbH & Co. KGD-35107 AllendorfTelephone: +49 6452 70-0Fax: +49 6452 70-2780www.viessmann.com