Vienna { Erwin Schr odinger Institute Means, … · Vienna { Erwin Schr odinger Institute Means,...

66
Vienna – Erwin Schr¨ odinger Institute Means, Covariance, Fisher Information: the quantum theory and uncertainty relations Paolo Gibilisco Department of Economics and Finance University of Rome “Tor Vergata” [email protected] November 21, 2012 P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 1/1

Transcript of Vienna { Erwin Schr odinger Institute Means, … · Vienna { Erwin Schr odinger Institute Means,...

Vienna – Erwin Schrodinger Institute

Means, Covariance, Fisher Information:the quantum theory and uncertainty relations

Paolo Gibilisco

Department of Economics and FinanceUniversity of Rome “Tor Vergata”[email protected]

November 21, 2012

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 1 / 1

History and credits

What follows originated from some works by

S. Luo, Quantum Fisher information and uncertainty relations, LMP,2000.

S. Luo, Wigner-Yanase information and uncertainty relations, PRL,2003.

Other people involved:

Z. Zhang, Q. Zhang, Kosaki, Yanagi, Furuichi, Kuriyama, Gibilisco,Imparato, Isola, Hansen, Andai, Petz, Hiai, Szabo, Audenaart, Cai.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 2 / 1

Heisenberg uncertainty principle

A,B ∈Mn,sa(C), ρ density matrix

[A,B] := AB − BA Eρ(A) := Tr(ρA)

Varρ(A) := Eρ(A2)− Eρ(A)2

Heisenberg uncertainty principle (1927) reads as

Varρ(A) ·Varρ(B) ≥ 1

4|Tr(ρ[A,B])|2.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 3 / 1

“Classical”’ doubts

In classical probability, let (X ,Y ) be a r.v. on (Ω,G, p).The covariance matrix of (X ,Y ) is symmetric and semidefinite positive soits determinant is non-negative and therefore

Varp(X ) ·Varp(Y ) ≥ Covp(X ,Y )2.

So to have a general bound for Varp(X ) ·Varp(Y ) does not seems such a“quantum” phenomenon.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 4 / 1

Quantum covariance

Quantum covariance (Schrodinger & Robertson)

Covρ(A,B) :=1

2Tr(ρ(AB + BA))− Tr(ρA) · Tr(ρB) =

= Tr

[(Lρ + Rρ

2

)(A0)B0

].

where A0 := A− Tr(ρA) · I and

Lρ(A) := ρA Rρ := Aρ

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 5 / 1

Schrodinger – Robertson UP

Schrodinger and Robertson (1929-1930) improved UP

Varρ(A) ·Varρ(B) ≥ Covρ(A,B)2 +1

4|Tr(ρ[A,B])|2.

Namely

det

Varρ(A) Covρ(A,B)

Covρ(B,A) Varρ(B)

≥ det

− i2Tr(ρ[A,A]) − i

2Tr(ρ[A,B])

− i2Tr(ρ[B,A]) − i

2Tr(ρ[B,B])

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 6 / 1

Robertson general UP (1934)

Let A1 . . . ,AN ∈Mn,sa(C).

det Covρ(Ah,Aj) ≥ det

− i

2Tr(ρ[Ah,Aj ])

,

for h, j = 1, . . . ,N

det Covρ(Ah,Aj) is the generalized variance of the random vector(A1, ...,An).

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 7 / 1

Robertson general UP (2nd version)

The matrix − i2Tr(ρ[Ah,Aj ]) is anti-symmetric. Therefore, the

Robertson UP reads as

det Covρ(Ah,Aj) ≥

0, N odd

det− i2Tr(ρ[Ah,Aj ]), N even,

Remark If N = 2m + 1, UP says (classically !) that the generalizedvariance is non-negative.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 8 / 1

First problem: searching an UP for N odd

Robertson UP is based on the commutator [Ah,Aj ]. If N = 1 thisstructure becomes meaningless !

Intuitively, an UP for N odd should be based on a structure whichinvolves [ρ,A] .

This commutator appears in quantum dynamics.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 9 / 1

(Elementary) Quantum dynamics

Let ρ(t) be a curve in D1n and let H ∈ Mn,sa; ρ(t) satisfies Schrodinger

equation w.r.t. H if

ρ(t) =d

dtρ(t) = i [ρ(t),H].

Equivalently, ρH(t), the time evolution of ρ = ρH(0) determined by H,evolves according to the formula

ρH(t) := e−itHρe itH .

ThereforeρH(0) = i [ρ,H]

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 10 / 1

Second problem: different quantum covariances?

Covρ(A,B) :=1

2Tr(ρ(AB + BA))− Tr(ρA) · Tr(ρB) =

= Tr

[(Lρ + Rρ

2

)(A0)B0

].

Is the above definition “natural”?Certainly it coincides with the classical covariance in a commutativesetting.It uses the ”arithmetic mean” of the left and right multiplication operator

marith(Lρ,Rρ) :=Lρ + Rρ

2

This suggest that we may consider other noncommutatitive ”‘means”.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 11 / 1

Harmonic covariance?

If we consider the “harmonic” covariance

Covharρ (A,B) := Tr((

2(L−1ρ + R−1ρ )−1)

(A0)B0

),

also this coincides with the classical definition where there is no differencebetween Lρ and Rρ!

Is there a quantum criterion to prefer a certain covariance (mean)?

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 12 / 1

Means for numbers ...

Let R+ = (0,+∞).A mean for pair of positive numbers is a function m(·, ·) : R+ × R+ → R+

such thati) m(x , x) = x ;ii) m(x , y) = m(y , x) ;iii) x ≤ x ′ y ≤ y ′ =⇒ m(x , y) ≤ m(x ′, y ′) ;iv) for t > 0 one has m(tx , ty) = t ·m(x , y);v) m(·, ·) is continuous.

Mnu := m(·, ·) : R+ × R+ → R+|m is a mean

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 13 / 1

... from certain functions

Fnu is the class of functions f (·) : R+ → R+ such thatiii) f (1) = 1;iv) tf (t−1) = f (t);iii) x ≤ x ′ =⇒ f (x) ≤ f (x ′);iv) f is continuous.

PropositionThere is bijection betwen Mnu and Fnu given by the formula

mf (x , y) := yf (xy−1)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 14 / 1

Operator means

Kubo-Ando 1980Let Dn := A ∈ Mn|A > 0.A mean is a function m : Dn ×Dn → Dn such that(i) m(A,A) = A,(ii) m(A,B) = m(B,A),(iii) A < A′,B < B ′ =⇒ m(A,B) < m(A′,B ′),(iv) m is continuous,(v) Cm(A,B)C ∗ ≤ m(CAC ∗,CBC ∗), for every C ∈ Mn.Property (vi) is the transformer inequality.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 15 / 1

Operator monotone functions

Mn = complex matricesDefinitionf : (0,+∞)→ R is operator monotone iff ∀A,B ∈ Mn and ∀n = 1, 2, ...

0 ≤ A ≤ B =⇒ 0 ≤ f (A) ≤ f (B).

Definitionϕ is a Pick function if it is analytic in the upper half plane and map thelatter into itself.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 16 / 1

Lowner Theorem

Lowner 1932

Theorem

f is operator monotone iff it is the restriction of a Pick function.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 17 / 1

Fop

Usually one consider o.m. functions that are:i) normalized i. e. f (1) = 1;ii) symmetric i.e. tf (t−1) = f (t).

Fop:= family of normalized symmetric o. m. functions.

Examples1 + x

2,√

x ,2x

1 + x.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 18 / 1

Kubo–Ando theorem

Mop:= family of matrix means.

Kubo and Ando (1980) proved the following, fundamental result.

Theorem

There exists a bijection between Mop and Fop given by the formula

mf (A,B) := A12 f (A−

12 BA−

12 )A

12 .

[A,B] = 0 =⇒ mf (A,B) := Af (BA−1).

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 19 / 1

Kubo–Ando inequality

Examples of operator means

A + B

2

A12 (A−

12 BA−

12 )

12 A

12

2(A−1 + B−1)−1

Fundamental inequality

2(A−1 + B−1)−1 ≤ mf (A,B) ≤ A + B

2∀f ∈ Fop

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 20 / 1

g -Covariance

To each operator monotone g ∈ Fop one associate the means mg (·, ·).

Define the g -covariance as

Covgρ(A,B) := Tr(mg (Lρ,Rρ)(A0)B0)

If

g(x) =1 + x

2

thenmg = arithmetic meanand Covgρ(A,B) is the standard covariance introduced by Schrodinger andRoberston.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 21 / 1

Fisher information for densities

X : Ω→ R real r. v. with diff. density ρThe score is

Jρ :=ρ′

ρ

The Fisher information is

IX := Iρ = Varρ(Jρ) =

∫R

(ρ′)2

ρ

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 22 / 1

FI as Riemannian metric (Rao 1945)

M statistical model (set of densities)M can be considered as a manifold where the ρ′s play the role of tangentvectors.Iρ is associated to a Riemannian metrics as in the formula

gρ,F (ρ′, ρ′) =

∫R

ρ′ · ρ′

ρ= Iρ

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 23 / 1

FI on the simplex

P1n := ρ ∈ Rn|

∑i

ρi = 1, ρi > 0.

TP1n = u ∈ Rn|

∑i

ui = 0.

gρ,F (u, v) :=∑i

uiviρi

This will be the Fisher-Rao metric

Geodesic distance (Bhattacharya): dF (ρ, σ) = 2 arccos

(∑i ρ

12i σ

12i

)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 24 / 1

The link with entropy

i) Hessian of Kullback-Leibler relative entropy

S(ρ, σ) :=∑i

ρi (log ρi − log σi );

− ∂2

∂t∂sS(ρ+ tu, ρ+ sv)

∣∣∣t=s=0

=n∑

i=1

uiviρi + svi

∣∣∣t=s=0

=n∑

i=1

uiviρi

= gρ,F (u, v).

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 25 / 1

The link with the sphere

FI as a spherical geometry (Rao, Dawid)ii) pull-back of the map

ϕ(ρ) = ϕ(ρ1, . . . , ρn) = 2(√ρ1, . . . ,

√ρn)

gϕρ (u, v) = gϕ(ρ)(Dρϕ(u),Dρϕ(v))

= 〈Mρ−1/2(u),Mρ−1/2(v)〉

=n∑

i=1

uiviρi

= gρ,F (u, v).

(1)

This explains the geodesic distance (Bhattacharya):

dF (ρ, σ) = 2 arccos

(∑i ρ

12i σ

12i

)P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 26 / 1

From the properties of Fisher information ...

Look at Fisher information in different ways:i) Hessian of Kullback-Leibler relative entropy

K (ρ, σ) :=∑i

ρi (log ρi − log σi );

ii) pull-back of the map ρ→ √ρ;iii) get the scores using the (Symmetric) Logarithmic Derivative

∂ρ(θ)

∂θ=

1

2

(∂

∂θlog(ρ(θ)) · ρ(θ) + ρ(θ) · ∂

∂θlog(ρ(θ))

)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 27 / 1

... to a zoo of examples of QFI

Examples of quantum Fisher informations

Hessian of Umegaki relative entropyTr(ρ(log ρ− log σ))−→ BKM metric

Pull-back of the map ρ→ √ρ−→ WY metric

Symmetric logarithmic derivative−→ Bures-Uhlmann metric (SLD)

Can we have a unified quantum approach?

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 28 / 1

Chentsov Theorem

Yes! Using the classical Chentsov theorem.

On the simplex P1n the Fisher information is the only Riemannian metric

contracting under an arbitrary coarse graining T , namely for any tangentvector X at the point ρ we have

gmT (ρ)(TX ,TX ) ≤ gn

ρ (X ,X )

RemarkCoarse graining = stochastic map = linear, positive, trace preserving.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 29 / 1

Monotone metrics (or QFI) according Chensov-Morozova

D1n := ρ ∈ Mn|Tr(ρ) = 1 ρ > 0 = faithful states

DefinitionA quantum Fisher information is a Riemaniann metric on D1

n contractingunder an arbitrary coarse graining T , namely

gmT (ρ)(TA,TA) ≤ gn

ρ (A,A).

(quantum) coarse graining = linear, (completely) positive, trace preservingmap.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 30 / 1

Petz theorem

Lρ(A) := ρA Rρ(A) := Aρ

Petz theorem

There is bijection among quantum Fisher information and operatormonotone functions (and/or operator means) given by the formula

〈A,B〉ρ,f := Tr(A ·mf (Lρ,Rρ)−1(B)).

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 31 / 1

Geodesic distances

Closed form of geodesics distances are known only in two cases

DBures(ρ, σ) = 2 arccosTr(ρ12σρ

12 )

12

DWY = 2 arccosTr(ρ12σ

12 )

(Gibilisco-Isola)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 32 / 1

Summary

Kubo-Ando-Petz ( Lowner)

f

l

mf (A,B) := A12 f (A−

12 BA−

12 )A

12 .

l

〈A,B〉ρ,f := Tr(A ·mf (Lρ,Rρ)−1(B)).

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 33 / 1

Decomposition of tangent space I

TρD1n = A ∈ Mn,sa|A = A∗, Tr(A) = 0.

TρD1n = (TρD1

n)c ⊕ (TρD1n)o

where(TρD1

n)c := A ∈ TρD1n| [ρ,A] = 0

(TρD1n)o := orth. compl. of (TρD1

n)c resp. to H-S

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 34 / 1

Decomposition of tangent space II

For each QFI and for each A ∈ (TρD1n)c one has

〈A,A〉ρ,f = Tr(ρ−1A2).

To evaluate a QFI one has just to know what happens for (TρD1n)o whose

typical element has the form

i [ρ,A] A s.a.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 35 / 1

Regular and non-regular QFI

Fop := f op. mon.|f (1) = 1, tf (t−1) = f (t)

F rop := f ∈ Fop|f (0) := lim

t→0f (t) > 0

F nop := f ∈ Fop|f (0) = 0

Fop = F rop ∪ Fn

op

Remark The word non-regular should lead to a negative attitude: theBKM metric is non-regular but widely used in quantum statisticalmechanics.Why is this decomposition relevant?

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 36 / 1

Riemannian metrics on the sphere

B3 := (x , y , z) ∈ R3|x2 + y2 + z2 ≤ 1

S2 := B3 0 := (0, 0, 0)

M := B3/(S2 ∪ 0)

M is a fiber bundle over S2 with projection

π :M→ S2

π(x , y , z) :=1√

x2 + y2 + z2(x , y , z)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 37 / 1

Riem. metrics on the sphere II

M3 Dn → ρ ∈ S2 radially iffπ(Dn) = ρ ∀n and lim Dn = ρDifferential

Tπ : TM→ TS2

Horizontal-Vertical decomposition

TDM = Ker(TDπ)⊕ HD

HD = horizontal tangent vectors at the point D

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 38 / 1

Riem. metrics on the sphere III

Restriction

TDπ = HD → TρS2

is a linear isomorphism between HD and TρS2 (where ρ = T (D)).

We may “lift” tangent vectors u, v ∈ TρS2 to uD , vD ∈ TDM.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 39 / 1

Radial extensions

Suppose we have:i) a Riemannian metric g(·, ·) on M;ii) a Riemannian metric h(·, ·) on S2.

h is the radial extension of g if

Dn → ρ radially

g(uDn , vDn)→ k(u, v)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 40 / 1

The Bloch sphere

2× 2 matrices, I identity, σ1, σ2, σ3 Pauli matrices

σ1 =

(0 11 0

), σ2 =

(0 −ii 0

), σ3 =

(1 00 −1

),

Stokes parametrization of qubits

ρ =1

2(I + 〈(x , y , z), (σ1, σ2, σ3)〉)

x2 + y2 + z2 ≤ 1

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 41 / 1

Petz-Sudar theorem

Pure states → x2 + y2 + z2 = 1 (the sphere S2)Faithful mixed states → x2 + y2 + z2 < 1(manifold M plus the origin)TheoremIf 〈·, ·〉FS denotes the standard Riemannian metric on the sphere S2 (purestates), then a QFI 〈·, ·〉ρ,f has a radial extension iff it is regular. Theextension is given by

1

2f (0)〈·, ·〉FS

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 42 / 1

General P-S theorem

Remark

True in general using the Fubini–Study metric on the projective space CPn.

More delicate because for n > 2:extreme boundary (pure states) 6= topological boundary (detρ = 0).

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 43 / 1

The function f

f (x) :=1

2

[(x + 1)− (x − 1)2

f (0)

f (x)

]Theoremf ∈ F r

op (f is a regular n. s. o. m. function)

f ∈ F nop (f is a non-regular n. s. o. m. function)

Moreover f → f is bijection.Gibilisco-Imparato-Isola-Hansen

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 44 / 1

Regular and non-regular means

f → f

mf → mf

Examples

x + y

2→ 2

1x + 1

y(√x +√

y

2

)2

→ √xy

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 45 / 1

β example

x > 0, β ∈ (0, 12)

fβ(x) := β(1− β)(x − 1)2

(xβ − 1)(x1−β − 1)

fβ(x) =xβ + x1−β

2

Fix x > 0. Then fβ(x) is decreasing as a function of β.This remark allows a great simplification of a preceding result by Kosaki.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 46 / 1

Fundamental formula

Theorem

If f is regular then

f (0)

2〈i [ρ,A], i [ρ,B]〉ρ,f = Covρ(A,B)− Covfρ(A,B).

An immediate consequence is

Proposition

Varρ(A) ≥ f (0)

2||i [ρ,A]||2ρ,f

The above is the case N = 1 of the following ...

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 47 / 1

The dynamical UP

Theorem

Let A1 . . . ,AN ∈Mn,sa(C).

det Covρ(Ah,Aj) ≥ det

f (0)

2〈i [ρ,Ah], i [ρ,Aj ]〉ρ,f

for h, j = 1, . . . ,N,for all f ∈ Fop.

Nontrivial bound also if N is odd!

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 48 / 1

Interlude: the case N = 1 and WYD-information

Wigner-Yanase-Dyson information

A s.a. matrix (observable in QM)ρ density matrix (state in QM)

I βρ (A) := −1

2Tr([ρβ,A][ρ1−β,A]) β ∈ (0,

1

2]

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 49 / 1

Interlude: WYD applications

strong subadditivity of entropy (Lieb-Ruskai,1973)

homogeneity of the state space of factors of type III1(Connes-Stormer,1978);

measures for quantum entanglement (Chen,2005;Klyachko-Oztop-Shumovsky,2006);

uncertainty relations ;

quantum hypothesis testing (Calsamiglia et al., 2008)

(Explanation: WYD is a QFI)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 50 / 1

Interlude: Lieb convexity

Theorem

(case β = 1/2: Wigner & Yanase 1963 - general case: Lieb 1973)

I βρ (A) is convex as function of ρ.

“If two ensembles are united, the information content of the resultingensemble should be smaller than the average information content of thecomponent ensembles” (Wigner-Yanase original paper)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 51 / 1

Interlude: convexity or concavity?

Remark

Since

I βρ (A) =1

2Tr(ρA2)− Tr(ρβAρ1−βA)

convexity of I βρ (A) is equivalent to concavity of

ρ→ Tr(ρβAρ1−βA)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 52 / 1

Lieb convexity and SSA

Applications: Strong subadditivity of von Neumann quantum entropy

S(ρ) := −Tr(ρ log ρ)

(Lieb & Ruskai 1975)

SSA implies strong results about to thermodynamic limit of entropy perunit volume (Robinson, Ruelle, & Lanford 1967-8)

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 53 / 1

Interlude: WYD as quantum Fisher informationDefinitionThe metric adjusted skew information is

I fρ (A) :=f (0)

2||i [ρ,A]||2ρ,f

PropositionIn the case x > 0, β ∈ (0, 12 ]

fβ(x) := β(1− β)(x − 1)2

(xβ − 1)(x1−β − 1)

we have

Ifβρ (A) :=

fβ(0)

2||i [ρ,A]||2ρ,fβ = −1

2Tr([ρβ,A][ρ1−β,A])

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 54 / 1

Interlude: concavity-convexity trick

T (·),S(·) real functions on states

S(·) concave, T (·) convex

S(·) = T (·) on pure states⇓

S(ρ) ≥ T (ρ) ∀ρ ∈ D1n

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 55 / 1

Interlude: N = 1, the DUP from Lieb convexity

Theorem (F. Hansen 2006)

Varρ(A) ≥ I fρ (A)

ProofVarρ(A) is concaveI fρ (A) is convex

ρ pure implies Varρ(A) = I fρ (A)—-

Warning: this elegant proof do not work in the general case of the DUP!

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 56 / 1

Why “dynamical”?

Let ρ > 0 be a state and H,K ∈ Mn,sa. Suppose that ρ = ρH(0) = ρK (0).Then, for any f ∈ Fop, one has (taking the square root of both sides ofthe DUP)

AreaCovρ (H,K ) ≥ f (0)

2·Areafρ(ρH(0), ρK (0)).

The bound on the right side of the inequality can be seen as a measure ofthe difference between the dynamics generated by H and K .

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 57 / 1

How the bound in the DUP depends on f

Theorem

Define for f ∈ F rop

S(f ) := det

f (0)

2〈i [ρ,Ah], i [ρ,Aj ]〉ρ,f

f (x) :=1

2

[(x + 1)− (x − 1)2

f (0)

f (x)

].

Then, for any f , g ∈ F rop

f ≤ g =⇒ S(f ) ≥ S(g).

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 58 / 1

The optimal bound

Let fSLD(x) :=1 + x

2. Since for any f ∈ F r

op

2x

1 + x= fSLD ≤ f

then

S(fSLD) ≥ S(f )

namely the optimal bound is given by Bures-Uhlmann metric.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 59 / 1

Relation with standard UP - I

Let f ∈ F rop. The inequality

det

f (0)

2〈i [ρ,Ah], i [ρ,Aj ]〉ρ,f

≥ det

− i

2Tr(ρ[Ah,Aj ])

is (in general) false for any N = 2m.RemarkThe proof is a consequence of Hadamard inequality:

det(H) ≤N∏j=1

hjj

for any H ∈ MN,sa.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 60 / 1

Relation with standard UP - II

Let f ∈ F rop. The inequality

det

f (0)

2〈i [ρ,Ah], i [ρ,Aj ]〉ρ,f

≤ det

− i

2Tr(ρ[Ah,Aj ])

is (in general) false for any N = 2m.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 61 / 1

The dynamical UP (g -version)

Theorem

Let A1 . . . ,AN ∈Mn,sa(C).

detCovgρ(Ah,Aj)

≥ det g(0)f (0)〈i [ρ,Ah], i [ρ,Aj ]〉ρ,f

for h, j = 1, . . . ,N,for all g , f ∈ Fop.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 62 / 1

Conclusion - Dynamical UP case

For the dynamical UP quantum g -covariances coming from regular g(constant g(0) 6= 0) do have uncertainty relations.

Quantum g -covariances coming from nonregular g (constant g(0) = 0) doNOT have (non-trivial) uncertainty relations.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 63 / 1

g -version of Robertson UP

Theorem

Let A1 . . . ,AN ∈Mn,sa(C).

detCovgρ(Ah,Aj)

≥ det −i · g(0) · Tr(ρ[Ah,Aj ]) ,

for h, j = 1, . . . ,N,for all g ∈ Fop.

Remark: g(0) is the best constant in the above inequalities.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 64 / 1

The end

Quantum g -covariances coming from regular g (constant g(0) 6= 0) dohave uncertainty relations.

Quantum g -covariances coming from nonregular g (constant g(0) = 0) doNOT have uncertainty relations.

The usual quantum covariance has the most demanding one (sinceg(0) = 1

2 only for the arithmetic mean).

After all Schrodinger and Robertson were right ...

Recent reference:P. Gibilisco, T. Isola. How to distinguish quantum covariances usinguncertainty relations. Journal of Mathematical Analysis and Applications,384: p. 670-676, 2011.

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 65 / 1

Post scriptum: The DUP on von Neumann algebras

While the first papers on the DUP where forced to use eigenvalues (seethe complicated calculations in the paper by Kosaki) now one has togeneralize something like the mean of the operators Lρ and Rρ. These arecommuting operator therefore

mf (Lρ,Rρ) = Lρf (RρL−1ρ ) = Lρf (∆ρ)

So we are dealing with the modular operator and this construction makessense in the general setting of von Neumann algebras.Gibilisco-IsolaPetz-Szabo

P. Gibilisco (Rome “Tor Vergata”) Means, Covariance, Fisher Information November 2012 66 / 1