vibration of aircraft

download vibration of aircraft

of 18

Transcript of vibration of aircraft

  • 8/14/2019 vibration of aircraft

    1/18

    1

    New Techniques for Vibration Qualification of VibratingEquipment on Aircraft

    Dr. Andrew Halfpenny, Chief Technologist, HBM-nCode Products1

    Mr. T. C. Walton, Principal Dynamicist, AgustaWestland

    2

    1HBM-nCode Products. Travelers Tower 1, 26555 Evergreen Road, Suite 700, Southfield, MI 48076.

    www.ncode.com

    2AgustaWestland, Yeovil, Lysander road, Somerset, BA20 2YB. UK

    www.agustawestland.com

    AbstractAllaircraftvibrateandallcomponentsaredesigned,testedandcertifiedtosurvivethesevibrationlevelsovertheirentire

    servicelife.DesignstandardssuchasMILSTD810F(1)andRTCADO160E(2)areoftenusedtoobtainthevibrationsign

    off test; butwhat is the safetymargin on these tests?Howmany hours do they represent on real aircraft? Can the

    equipmentlifebeextendedforaircraftwithlessdamagingusageprofiles?Canreadacrossevidencefromoneaircraftbe

    usedtoqualifyacomponentonanotherwithoutfurthertesting?Thispaperdiscussesthelatestapproachestotheanalysis

    ofshockandvibrationandshowshowvibrationtestscanbetailoredbasedonmeasuredflightspectra,howdifferenttests

    canbecompared,andhowthelifeofequipmentcanbeadjustedbasedonoperationalexperience.

    1 Introduction

    Thispaperdescribeshowthevibrationenvironmentofanaircraftcanbecharacterized intermsofaFatigueDamageSpectrum (FDS)andShockResponseSpectrum (SRS). Itdescribeshow these spectraare calculated

    from both measured flight load data and directly from vibration test specifications. Vibration tests can be

    tailoredtoensurethattestspectraexceedflightspectrawithanadequatesafetymargin.

    These techniques provide a means of comparing shock and vibrationinduced damage across different

    vibrationtestsanddifferentaircraftplatforms.Thisenablesustouse testandserviceevidenceobtainedon

    oneaircraftplatformtoqualifyequipmentonanother.Thisreadacrossevidencehasbeensuccessfullyused

    toqualifyequipmentwithouttheneedforanyadditionalvibrationtesting. Itoffersconsiderablecostsavings

    andalsoenablesarapidpathforthedeploymentofmissioncriticalequipmentinmilitaryoperations.

    Techniques are discussed which derive tailored vibration tests based on measured flight load data.

    Accelerometers record thevibration levelsatanumberofpositionson theaircraftwhile flyingaprescribed

    sequenceofmaneuvers.ThefatiguedamagedosageforeachmaneuveriscalculatedusingaFatigueDamage

    Spectrum (FDS),whicheffectivelyplotsdamagevs. frequency.Thedamage fromeachmaneuver issummed

    over the usage profile of the aircraft to determine the wholelife damage dosage. From this profile we

    determineastatisticallyrepresentativevibrationtestwhichcontainsatleastthesamedamagecontentasthe

    wholelife,butoveramuchshortertestperiod.ThisfacilitatestheprovisionforTestTailoring,asspecifiedin

    AnnexAofMILSTD810F(1),aswellasRTCADO160E(2)andGAMEG13(3).

    CasestudiesarepresentedtodescribehowtheanalysiswasusedbyAgustaWestlandfortailoringvibration

    tests for its latestaircraft.Studiesalsodescribehowthetechniqueshavebeenusedtoprovide readacross

    evidence to support flight clearance for urgently needed equipment in military operations. These include

  • 8/14/2019 vibration of aircraft

    2/18

    Aircraft Airworthiness & Sustainment 2010

    2

    clearance forhelicopteravionicsandoptoelectricalequipment.Studiesalsodescribehow cases for limited

    type approval (i.e. restricted flight envelope or service life), or experimental flight approval are assessed

    quantitativelyusing these techniques.Thepaperconcludesbydescribinghow the techniquecanbeused to

    providequantitativeevidence to supportequipment lifeextensionsbasedonOperationalLoadsMonitoring(OLM)andHealthandUsageMonitoringSystem(HUMS)data.

    2 Review of background theory Fatigue Damage Spectrum (FDS) andShockResponseSpectrum(SRS)

    ThebasisofthetheoryusedinthispaperoriginatesfromtheworkofAmericanengineerBiotin1934.Further

    developmentonthisapproachwasconductedbyLalanneandtheFrenchMinistryofDefenseinpreparationof

    the military design standard GAM EG13 (3) in the 1980s. In this section we introduce the two principal

    componentsoftheapproach:theShockResponseSpectrum(SRS)andtheFatigueDamageSpectrum(FDS).

    TheSRSisusedtodeterminethemaximumpeakamplitudeofloadingwhichtypicallyresultsfromextreme

    shockeventssuchassevere landing, impact,weaponsdischargeornearbyexplosions.Theseextremeevents

    cangiverisetocatastrophicfailureascomponentstressesexceedthedesignstrength.TheFDS,ontheother

    hand,isusedtoaccumulatethedamagecausedbylongtermexposuretofatiguedamagingvibrationswhich,

    althoughmodest inamplitude,give rise tomicroscopiccracks thatsteadilypropagateover timeand lead to

    eventualfatiguefailure.

    2.1 TheShockResponseSpectrum(SRS)

    TheSRSisusedtodeterminethepeakamplitudeofloadingseenduringaflighteventoravibrationtest.The

    safetymarginofthetestcanbedeterminedbycomparingthetestSRSwiththeflightSRS.Itisinsufficientto

    simply record the highest static acceleration level because this does not account for the frequency of the

    vibration.Dynamicsystemsaremoresensitivetocertainfrequenciesthanothers,thesocalledresonant(ornatural) frequencies. Structural failure isalsoattributable toexcessive strainenergy,and strainenergy ina

    vibratingcomponentisproportionaltodisplacementratherthanacceleration.Thereforethedamagingeffect

    ofacceleration isseen to reducewith thesquareof the frequency.High frequenciesbecome lessdamaging

    thanlowerfrequencies.Itisthereforeimportanttoconsiderbothaccelerationamplitudeandfrequencyduring

    thevibrationassessment.

    The SRS essentially represents a plot of the peak amplitude vs. frequency. A typical SRS plot showing

    helicopterflightdatacomparedwithaMILSTD810FvibrationqualificationtestisillustratedinFigure1.Inthis

    casethequalification testexceeds thepeak inflight levelsbyat leasta factorof2so the test isconsidered

    conservative.

    TheSRSwasdevelopedbyBiotin1932(4).TocomputeBiotsShockSpectrum,themeasuredacceleration

    signal is firstofall filteredbya SingleDegreeof Freedom (SDOF) transfer function centeredona specifiednaturalfrequency(fn)asillustratedinFigure2.Themaximumvalueofthefilteredresponseisthencalculated

    and this representsasinglepoint in theSRSplot.Thiscalculation is repeatedoverawholerangeofnatural

    frequenciestocreatetheentireSRS.In1934,Biot(5)publishedapaperonearthquakeanalysisandusedthe

    termShockSpectrumforthefirsttime.

    Biot used the SDOF response function as a frequency filter because of its ability to select a specific

    frequency inamannerconsistentwiththephysicalresponseofastructuralsystem. It isalsomathematically

    stableandisideallysuitedtorapidtimedomainconvolution.Otherspectrahavebeendocumentedwhichuse

    differentfilters.Ruppetal(6),forexample,describeananalogousapproachbasedonabandpass filterand

  • 8/14/2019 vibration of aircraft

    3/18

    Aircraft Airworthiness & Sustainment 2010

    3

    this is used by some automotive companies in Europe; however, the SDOF approach is the most popular

    approach.

    Figure1Comparisonbetweeninflightshockexposureandatypicalvibrationtestprofile

    Figure2SchematicflowchartillustratingtheSRSandFDScalculationprocess

    Frequency

    Gain

    Frequency

    LogDam

    age

    Acceleration

    on airframe

    Frequency

    filter (SDOF)

    Rainflow count

    filtered signal

    Plot damage Vs

    frequency

    Increment filter

    by f

    f

    Frequency

    Peakvalue

    Peak amplitude of

    filtered signal

    Shock Response Spectrum (SRS) Fatigue Damage Spectrum (FDS)

  • 8/14/2019 vibration of aircraft

    4/18

    Aircraft Airworthiness & Sustainment 2010

    4

    TheSDOFresponsefunction(Figure2)isdominatedbyasinglespikelocatedatthenaturalfrequencyfn.At

    frequenciesbelowthenaturalfrequency,thecomponentbehavesquasistatically [Gain(f>fn ) 0].

    Aroundthenaturalfrequencythecomponentwillresponddynamicallyandwillbecomegreatlyamplifiedwithitsmaximumresponsebeinglimitedonlybythedampinginthesystem[Gain(f=fn)=Q].Theformulaforthe

    SDOFfilterfunctionisgiveninEquation1.ThisfilterwillreturnaSRSintermsofaccelerationvs.frequencyfn.

    11

    1

    Equation1

    Gain(f)istheSDOFfilterwithrespecttofrequency f,andfnisthenaturalfrequency;bothareexpressedin

    Hz.TheratioofthemaximumdynamicresponsetothestaticresponseisknownastheDynamicAmplification

    (Q)factor.For5%structuraldamping,thishasthevalueofQ=10as illustrated inFigure2.Therelationship

    betweendamping ratio andQ isgiven inEquation2. It ispossible to fit theamplification factorQ to the

    particularcomponentbeingtested;however,establishedprocedureassumesavalueofQ=10forcomparative

    analysis.ThisassumesthatweusethesameQvaluewhencalculatingtheSRS inflightandtheSRSfromthe

    qualificationtest.Qisessentiallyusedtotunethefiltertothedesiredfrequencyrange,itdoesnotimplyany

    mechanicalsignificanceintheanalysis.

    12 Equation2

    TheShockResponseSpectrum (SRS)canbeexpressed in termsofaccelerationordisplacement response

    dependingon the frequency response functionused. For fatiguepurposes,wearemostly interested in the

    displacement response. The SDOF filter function relating to displacement response is given in Equation 3.

    Fatiguecracks initiateandgrow through thecyclicreleaseofstrainenergyand,therefore, thedisplacement

    responseprovidesaproportional relationshipwith theenergydriving the failure.Accelerationmightbe the

    origin of the load but it is the resulting strain (displacement) that drives the structural failure. The SRS of

    displacementcan thereforebeused toquantify thedamagingeffectof the inputacceleration foranySDOF

    systemoverarangeofnaturalfrequencies.

    121

    1

    Equation3

    Biotproposedusing theSDOFassumption forall componentsunderexcitation regardlessof theiractualfrequency response. Over the past years many have contested the conservatism of this assumption when

    appliedtocomponentswithamultimodalresponse.Lalanne(7)documentsanumberofthesestudieswhich

    allconcludethat theSDOF response,used inconjunctionwitha frequencysweep, isasuitablyconservative

    assumptionforallpracticalcases.

    ThearrivalofdigitalcomputershasmadeitpossibletocalculatetheSRSforlongtimesignalsveryrapidly.

    UsingtheZtransform,Irvine(8)derivestheequationsforaveryefficientInfiniteImpulseResponse(IIR)filter.

    Halfpenny(9)describesaveryefficientprocesswhichisabletocalculatetheSRSandFDSfrommeasuredflight

    datawithexceptionalspeed,andHalfpenny(10)describesanalgorithmforrealtimeanalysisofvibrationdata

    whichissuitableforConditionBasedMaintenance(CBM)analysisofvibratingequipmentonaircraft.

  • 8/14/2019 vibration of aircraft

    5/18

  • 8/14/2019 vibration of aircraft

    6/18

    Aircraft Airworthiness & Sustainment 2010

    6

    Figure

    4

    Typical

    fatigue

    SN

    curve

    for

    aluminum

    alloy

    6082

    in

    the

    T6

    condition

    When random (variableamplitude) loadsareencountered, rainflowcyclecounting isused todecompose

    thesignalintoequivalentsinusoidalstresscycles.Thetotaldamageinthetimesignalisobtainedbysumming

    thedamage fromeachstresscycleusingMiners (12) lineardamageaccumulation rule.The totaldamage is

    thereforeobtainedfromEquation5.

    1 Equation5

    TheBasquincoefficientCisusuallytakenasunityforcomparativeFDSanalysis.Thisimpliesthatthesame

    value of C is used when calculating the FDS inflight and the FDS from the qualification test. The Basquin

    exponent bhasasignificanteffecton theFDSanalysis.For traditional fatigueanalysis b isobtained from

    fatigue tests on the material (as per Figure 4) and is then modified to account for geometrical stressconcentrations,etc.ForFDStypeanalysisweareprincipallyinterestedinthefirstfailuresiteandthisusually

    coincideswithageometricalstressconcentrationorthelocationofbolted,riveted,weldedorsolderedjoints.

    Inthesecasesthevalueofbtendstolieintherange4

  • 8/14/2019 vibration of aircraft

    7/18

    Aircraft Airworthiness & Sustainment 2010

    7

    calculatedusingthetimedomaintechniquedescribed inFigure2.Thisapproach involvescalculatingtheSRS

    and FDS from a derive time signal based on the vibration test specification. The process is quite straight

    forward but does require a very long time signal at a very high sampling frequency. The computational

    requirementsand riskofhumanerror in thisapproachare significantandmeans thatadirectapproach forobtainingtheSRSandFDSdirectlyfromthetestspecification isoftenpreferred. Inthissectionwe introduce

    methodsforcalculatingtheSRSandFDSdirectlyfromPSDandsinesweeptestsratherthantimesignals.

    2.3.1 Milesequation

    In 1953, Miles (15) presented an equation that is similar in nature to the SRS. Using the simple formula

    expressed inEquation6hederiveda spectrumof theRMS (RootMeanSquare)acceleration response toa

    randomPSDappliedtoaSDOFsystemofnaturalfrequencyfnanddynamicamplificationQ.

    RMSaccelerationspectrum, ( ) ( )2

    accel n n nRMS f f Q G f

    = Equation6

    G(fn) isthePSDofaccelerationing2/Hzatfrequencyfn,andQisthedynamicamplificationfactor

    2.3.2 ApproximateequationforobtainingSRSdirectlyfromaPSDtest

    MilesequationisusedtodeterminetheRMSaccelerationresponseforaparticularnaturalfrequency.Inorder

    todeterminethemaximumlikelyresponse(i.e.theSRS),MilessuggestedmultiplyingtheRMSspectrumbya

    factorof3(i.e.the3sigmacurve).However, in1978Lalanne(16)proposedarefinementtoMilesequation.

    Fornarrowbandfrequencyresponse,typicalofaSDOFsystem,theamplitudedistributionwasfoundbyRice

    (17) to be Rayleigh and not Gaussian as proposed by Miles. Lalanne therefore rederived Miles equation

    substituting

    the

    Rayleigh

    probability

    function.

    The

    resulting

    equation

    is

    known

    as

    the

    Maximax

    Response

    Spectrum (MRS)or theExtremeResponseSpectrum (ERS). It represents themost likelyextremeamplitude

    response witnessed during a vibration test of duration T seconds driven by random PSD excitation. The

    responsecanalsobeexpressedintermsofrelativedisplacementinmetersusingEquation8.

    ERSaccelerationspectrum, ( ) ( ) ( )lnaccel n n n nERS f f Q G f f T Equation7

    ERSdisplacementspectrum, ( ) ( )

    ( )2

    9.81

    2

    accel n

    disp n

    n

    ERS fERS f

    f=

    Equation8

    Tisthetestexposuredurationinseconds,andG(fn)isthePSDofappliedaccelerationing2/Hz.

    TheERSisanalogoustothetimedomainSRS.However,whereastheSRSisusuallyusedtodeterminethemaximumresponsetoahighlydamagingtransientshock,theERSisusedtorepresentthemaximumexpected

    responsewitnessedduringavibrationtest.InthispaperweusethetermSRSlooselytoencompassbothSRS

    andERStoavoidunnecessarycomplication.

    Theapproximateequationsgivenabovearebasedonseveralassumptions.Themainassumptionsare:

    1. the inputPSD isbroadbanded tending towhitenoise (i.e.thePSDhasa fairly flatprofileand

    containsnosignificantpeaks)

    2. theresponseisnarrowbandedthisassumptionisusuallyassuredbyhavingaQvalueof10

  • 8/14/2019 vibration of aircraft

    8/18

    Aircraft Airworthiness & Sustainment 2010

    8

    Figure 5b shows a comparison between the accurate and approximate ERS derived for a typical PSD

    vibrationtestgiveninFigure5a.ThisanalysisassumesQ=10andT=16hours.

    2.3.3 ApproximateequationforobtainingFDSdirectlyfromaPSDtest

    FollowinginitialworkbyRice(17)andBendat(18)todeterminefatiguedamagedirectlyfromaPSDofstress,

    Lalanne(11)wasabletoutilizethistechnologytocreateaclosedformcalculationtoestimatetheFDSdirectly

    fromtheaccelerationPSD,thisisgiveninEquation9.Anexplanationofvibrationfatiguetheoryisbeyondthe

    scopeofthispaperandyouarereferredtoHalfpenny(19)andBishopetal.(20)formoredetails.

    ( ) ( )

    ( ) ( )

    22

    3

    9.811

    22 2

    b

    n

    n n

    n

    Q G fbFDS f f T

    f

    +

    Equation9

    Tisthetestexposuredurationinseconds,G(fn)isthePSDofappliedaccelerationing2/Hz,and ()isthe

    Gammafunctiondefinedas ( ) ( )10g xg x e dx

    =

    Theapproximateequationgivenaboveisbasedonthesameassumptionsdescribedinsection2.3.2.Figure

    5c showsa comparisonbetween theaccurateandapproximate FDS derived for a typical PSD test given in

    Figure5a.ThisanalysisassumesQ=10,b=4andT=16hours.

    Figure5ComparisonbetweenapproximateandaccurateSRSandFDSforaPSDvibrationtest

    2.3.4 ApproximateequationforobtainingSRSdirectlyfromasinesweeptest

    TheSRScanbeestimateddirectlyfromasinesweeptestspecification.Equation10givestheSRSintermsof

    accelerationing,whereasEquation11givestheSRSintermsofdisplacementinmeters. Equation109.81 2 Equation11

    Accuratemethod

    Approximatemethod

    Accuratemethod

    Approximatemethod

    Acceleratio

    ng2/Hz

    a b c

  • 8/14/2019 vibration of aircraft

    9/18

    Aircraft Airworthiness & Sustainment 2010

    9

    A(fn)istheamplitudeofthesinesweepingatfrequencyfnHz

    Theapproximateequationsgivenabovearebasedonthesameassumptionsdescribedinsection2.3.2and

    arevalidover the frequency rangeof the sweep.Figure6bshowsa comparisonbetween theaccurateand

    approximateSRSderivedforatypicalsweptsinetestgiveninFigure6a.ThisanalysisassumesQ=10.

    2.3.5 ApproximateequationforobtainingFDSdirectlyfromasinesweeptest

    TheFDScanbeestimateddirectlyfromasinesweeptestspecificationusingEquation12.InthiscasetheFDS

    represents fatigue damage from a single sine sweep and should be multiplied by the number of sweeps

    performedduringthetest.

    60 2 9.812 2

    Equation12

    isthelogarithmicsweeprateexpressedinoctavesperminuteandA(fn)istheaccelerationamplitudeing

    atfrequencyfnHz

    Theapproximateequationgivenaboveisbasedonthesameassumptionsdescribedinsection2.3.2andis

    valid over the frequency range of the sweep. Figure 6c shows a comparison between the accurate and

    approximateFDSderivedforatypicalsweptsinetestgiveninFigure6a.ThisanalysisassumesQ=10,b=4,=1

    octavepersecond,over8completesweeps.

    Figure6ComparisonbetweenapproximateandaccurateSRSandFDSforasinesweepvibrationtest

    2.3.6 Advanced(accurate)methodsforderivingSRSandFDSfromstandardvibrationtests

    The approximate equations given above are adequate for general comparative analyses provided the

    assumptionsin2.3.2arevalid.TheyaresuitableformanyofthetestsproposedinMILSTD810F(1)andRTCA

    DO160E(2).Lalanne(11)andHalfpenny(9)havefurtherdevelopedtheseapproachesandpresentnumerical

    solutionalgorithmsofferingmuchgreateraccuracywithoutthelimitationsinherentintheaboveassumptions.

    Thesealsoofferamuchwider rangeofvibration testingoptions includingdifferentsweep typesandmixed

    testssuchassinesweepanddwell.Moreadvancedtestssuchassineonrandomarealsosupportedwhichdo

    notfulfilltheassumptionsmadein2.3.2.Discussiononthesetechniquesisbeyondthescopeofthispaperand

    thereaderisreferredtoHalfpenny(9)formoreinformation.

    Accelerationamplitudeg

    a b c

  • 8/14/2019 vibration of aircraft

    10/18

    Aircraft Airworthiness & Sustainment 2010

    10

    3 VibrationEnvironmentonanaircraft

    3.1 Sourcesofhelicoptervibration

    Thissection introduces thevibrationenvironmentonahelicopteranddescribeshow this ismodeledby thevibrationtest.Theinformationdiscussedhereisalsoapplicabletofixedwingaircraft;however,thediscussion

    inthispaperhasfocusedprincipallyonhelicoptersbecausethecasestudiespertaintothese.

    Thevibrationspectrumofahelicoptercanbedescribedasaseriesofsinusoidaltonessuperimposedona

    backgroundofrandomnoise(sineonrandom).Anexamplerecordedinthefuselageofahelicopterisshownin

    Figure7.Themainsourceofthesesinusoidaltones isattributabletoharmonicsofthemainrotor.Themain

    rotorfrequencyofahelicopterisrelativelylow(typically38Hz)andinaccuraciesintherotortrack,balanceor

    bladepitchwillresultinsinusoidaltonesatthisfrequency.Themainrotorfrequencyisoftendenotedbythe

    term1Rwhile the tail rotor frequency isdenotedby the term1T.The tail rotor frequencyofahelicopter is

    typicallywithintherange1550Hz.

    Whenthehelicopterisinflightthepitchofeachbladevariescyclicallywithrespecttoitsazimuthangle(i.e.

    angleofthebladerelativetotheaxisoftheaircraft).Furthermore,thebladeswillslicethroughmanyeddieswhicharisefromturbulence,aerodynamiceffectsoftheaircraft,groundeffects,bladeinducedwakeeffects,

    etc.Thesecyclicallyperiodiceffectsgiverisetopeaksatharmonicsofthebladepassingfrequencyasshownin

    Figure7.Thebladepassing frequency isdenotedby the term nRwhere n is thenumberofblades in the

    rotor.Mosthelicoptershavebetween2and6bladesinthemainandtailrotors.Theprincipalharmonicsare

    denotedasnR,2nR,3nR,etc..Theeffectbecomeslessobviousforthehigherorderharmonicsinexcessof3nR

    astheseamplitudesaretypicallylowerthanthebackgroundrandomnoise.ThehelicopterusedinFigure7has

    4bladesinboththemainandtailrotors.

    Figure7FDSrecordedonthemainfuselageofahelicopter

    1R 2R 4R 8R 12R 4T

    GearboxmeshingFrequencyHz

  • 8/14/2019 vibration of aircraft

    11/18

    Aircraft Airworthiness & Sustainment 2010

    11

    Allcomponentswillwitnesssignificantvibrationfromthemainrotorandthisdominatesthelowfrequency

    spectrum for positions throughout the aircraft. Components sited towards the tail of the aircraft will also

    witnessprincipalharmonicsofthetailrotor.Componentsthataresitedadjacenttotheenginesandgearboxes

    will see additionalharmonics of theengine, shaft,and gearboxmeshing frequencies. It isusual practice tosegregate the aircraft into regions and assume that the vibration amplitudes are similar for all equipment

    positionedinthatregion.Themostcommonlydefinedregionsare:

    Fuselagevibrationisdominatedbyharmonicsofthebladepassingfrequencyofthemainrotor

    Avionicsbay (similar to fuselagebutvibration isolatedmountsaredesigned to reduce rotorinducedvibrationamplitudes)

    Onornearenginesadditionalsinusoidalharmonicsinducedthroughengineandgearboxharmonicsandmeshingfrequencies

    On or near tail rotor additional sinusoidal harmonics induced through tail rotor and gearboxharmonics

    External stores and sponsonsadditional aerodynamic loads inducedbydownwash from themainrotorandaerodynamicsoftheaircraft

    Inmostcasestheverticalandlateralaccelerationsdominatetheloadingenvironmentandthefore/aftaxis

    isrelativelybenign.

    3.2 Typesofvibrationqualificationtest

    Vibration qualification tests are typically performed in accordance with the aircraft manufacturers

    specificationor tooneof thecommonlyusedmilitarydesignstandardssuchas;USDepartmentofDefense

    standardMILSTD810F(1),andRTCADO160E(2).Thequalificationtestisperformedinthefollowingstages:

    1. Initial resonancesearchsweptsine test todetermine the resonant frequenciesof thecomponent.

    Ideally,resonantfrequenciesshouldnotcoincidewithanyoftheprincipalharmonicsoftheaircraft.A

    componentwillusuallyfailqualificationiflowdampedresonancesareencounteredwithinavoidbands

    ofaprincipalharmonicunless the supplier canproveadequatedurabilityand theaircraftOEM can

    prove that the resonant issues will not adversely affect the durability of the airframe or mounting

    structure.

    2. Endurance test consisting of either a multiple sineonrandom vibration test or a swept sine and

    dwelltest(asdiscussedinthenextparagraph)

    3. Finalresonancesearchsweptsinetestasperstep1toensurenochanges inresonant frequencies

    whichcouldindicatethepresenceofanemergingfatiguecrack

    Mostmodernvibration testsareperformedusinguniaxialelectrodynamicvibration rigs.Theendurance

    portionofthetestcommonlyusesamultiplesineonrandomvibrationprofile.Atestdurationof16hoursperaxis(repeatedoverx,yandzaxessequentially)istypicallyequivalentto10,000hoursofoperationalexposure.

    Analternativeapproach is to specifya swept sineanddwellvibrationprofile.Thisapproach involvesan

    extendedsweptsinetest(typically1hour)followedbyasequenceofstaticsinusoidaltestsdesignedtoexcite

    theprincipalharmonicsoftheaircraft(typically1millioncyclesateachharmonic).Thetestisrepeatedforall

    axessequentially(oneaftertheother).

    The swept sine and dwell test profile is less efficient than the sineonrandom because each principal

    harmonic (sine tone) must be tested separately for 1 million cycles and this leads to a very lengthy and

    expensivetest.Thisisparticularlyproblematicforhelicopterswherethemainrotorharmonicsoccurata low

  • 8/14/2019 vibration of aircraft

    12/18

    Aircraft Airworthiness & Sustainment 2010

    12

    frequency.Thesineonrandomtestprofileexcitesallharmonicssimultaneouslywhichismorerepresentative

    oftheactualaircraft loadingprofile.Sineonrandomtestshave largelysupersededthesweptsineanddwell

    test.Thetechniquesdiscussedinthispaperhavebeensuccessfullyemployedasameansofconvertingexisting

    sweptsineanddwelltestprofilestothemorerepresentativeandefficientsineonrandom.

    Afinalimpact(hammer)testisperformedontheequipmentasmountedontheaircrafttoensurethatany

    additionallyflexibilityinthemountingdoesnotgiverisetoresonanceswithintheavoidbandsoftheprincipal

    harmonics.

    3.3 Estimationofaccelerationlevelsusedinthevibrationtest

    While the aircraft is at the design stage we can obtain estimates of test acceleration levels for use in

    preliminary qualification. Suitable estimates are provided by both MILSTD810F and RTCA DO160E.

    Accelerationlevelsareprovidedintheformofequationswherethevibrationamplitudeisgivenasafunction

    of theprincipalharmonic frequency.Differentequationsareprovided foreachpositionon thehelicopterto

    accountforvariationsinvibrationseverity.

    As measured flightdata becomes available then thesepreliminary design estimates should be reviewed

    againstmeasureddata.Thetestaircraftisinstrumentedwithaccelerometerswhichrecordthevibrationlevels

    atanumberofpositionswhileflyingaprescribedsequenceofmaneuvers.Maneuversareflownundervarious

    weight conditions so we can obtain a series of measured flight events that are representative of the real

    conditions seen inservice. The fatigue damage dosage for each maneuver is calculated using a FDS. The

    damagefromeacheventissummedovertheusageprofileoftheaircrafttodeterminethewholelifedamage

    dosage.AnequivalentFDScanbecalculated for theproposedqualification testand the testspecification is

    iteratedsothetestFDSexceedstheflightFDSbyanacceptablesafetymargin.Theapproach is illustrated in

    Figure8.

    Theobjectiveoftesttailoringistoderiveaqualificationtestthatcontainsatleastthesamefatiguedamage

    contentastherealaircraftenvironmentbut inashortertesttime.Asthedamage isfixedthenthevibrationamplitudeusedinthetestmustvarywiththedurationofthetest.Ashortertestwillrequiregreatervibration

    amplitudesinordertoachievethesamedegreeofdamageinashorterperiod.TheShockResponseSpectrum

    (SRS)isusedtocomparetheworstamplitudeusedinthetestagainsttheworstamplitudeseenduringflight.In

    most cases the worst shock load seen in flight will only occur for very short periods of time at infrequent

    intervals; whereas most of the fatigue damage will be attributed to long periods of flight at very modest

    vibrationlevels.Testtailoringusesthiseffecttoderivetheoptimumtestduration.Theoptimumtestduration

    isachievedwhentheSRSofthetestcoincideswiththeSRSobtainedfortheworstflightcondition.Thisallows

    thetesttooperateattheoptimumaccelerationlevelsodamageisaccumulatedatthemaximumratewithout

    exceedingtheworstloadsseeninflight.

    Most traditional helicopter and fixedwing tests are overaccelerated. This means that the loading

    amplitudeexceedstheworst flight loadsbyasignificantmargin.Thisapproach isjustifiedonaccountofthehigh safety margins implicit in the design of aircraft components. However, care is required when over

    acceleratingavibrationtesttoensurethattheexcessiveloadsdonotintroduceplasticityintothecomponent

    whichcouldaltertheloadpathsandchangethefailuremode.

  • 8/14/2019 vibration of aircraft

    13/18

    Aircraft Airworthiness & Sustainment 2010

    13

    Figure8Testtailoringforhelicoptervibrationqualification

    4 CaseStudies

    4.1 Case Study 1: Vibration qualification based on read-across evidence from otheraircraft

    Equipmentwasurgentlyrequiredfordeploymentonamilitaryhelicopter.Novibrationqualificationhadbeen

    performedforthisaircraft;however,previousclearancehadbeenawardedforadifferenthelicoptertype.The

    objectiveofthisanalysis istocomparethedamagecontentoftheoriginalaircrafttestwiththatrequiredfor

    thenewhelicopterandassesswhethertheexistingqualificationevidenceissufficientforflightapprovalonthe

    newhelicoptertype.

    The original sineonrandom qualification test was performed in accordance with MILSTD810E for

    equipmentmounted to the fuselage.Theprincipal rotorharmonicsaredifferenton thishelicopterand the

    vibrationlevelsarelower.Themanufacturersvibrationrequirementsforthenewhelicopterareexpressedin

    termsofaswept sineanddwell test.Adirect comparisonbetween the two testswasperformedusing theSRS/FDSapproachandtheresultsareshowninFigure9.

    A comparison of the SRS for both tests is shown in Figure 9a. The SRS required by the new helicopter

    specificationsignificantlyexceedsthatprovidedintheexistingqualificationevidence.However,aconsiderable

    overload is acknowledged in the new helicopter specification in order to accelerate the vibration test. A

    comparison was therefore made against measured flight data and this clearly shows an acceptable safety

    margin.

    Step 1Damage Transformation

    Calculate

    SRS

    Calculate

    FDSEvent

    FDS

    Event

    SRS

    Step 3

    Test Synthesis

    Step 2

    Mission ProfilingSum FDS

    Mission

    FDSEnvelope

    SRS

    Mission

    SRS

    Compare

    SRS

    Input data

    for eachflight event

    Aircraft

    usage

    profile

    Accelerated

    vibration test

    profile

    Calculate

    FDS

    CalculateSRS

    Compare

    FDS

    Iterate (Tailor)

    test specification

  • 8/14/2019 vibration of aircraft

    14/18

    Aircraft Airworthiness & Sustainment 2010

    14

    Figure9Comparisonofavailablequalifationevidencewithaircraftrequirementspecification

    Figure9bshowsacomparisonoftheFDSforbothtests.Thefrequenciesoftheprincipalharmonicsareseen

    to varyand cumulativedamageofferedby theexistingqualificationevidence is considerably less than that

    requiredbythenewhelicopterspecification.Thereisinsufficientevidencetoconsiderfulltypeapprovalofthe

    equipmentatthisstage!

    Figure9cshowstheeffectofreducingthesafeoperationallifefrom10,000hoursto100hours.Duetothe

    urgentrequirementofthisequipment,limitedflightapprovalwasawardedfor100operationalhoursandthe

    equipmentwasfittedtoserviceaircraft.Duringthefirstyearofoperationtheequipmentwasretestedtothe

    newspecificationandwaseventuallyawardedfulltypeapproval.However,ithadbeendeployedstraightaway

    andusedsuccessfullyintheatreoverthisentireperiod.

    Limitedflightapproval isalsopossiblethrougharestrictionoftheflightenvelope; i.e.byrestrictingsome

    flight conditions and maneuvers. For this type of analysis it is preferable touse measured flight load data

    directly in the comparison rather than using the manufacturer specification. This approach is called Test

    TailoringandiscoveredinCaseStudy2.

    Inmanycasestheexistingqualificationevidenceprovessufficientforthenewaircraftandfulltypeapproval

    canbeawardedwithoutrecoursetoadditionaltesting.Thisoffershugecostsavingsbecausevibrationtestsare

    a)ShockResponseSpectrumshowsthatthesuppliers

    qualificationevidenceislowerthanthat requiredbythe

    aircraftspecificationbut isstillgreaterthanmeasuredflight

    databyanacceptablemargin

    Originalaircraft

    specification

    Suppliersqualificationevidence

    Measuredflight loaddata

    b)Fatigue DamageSpectrumshowsthatthesuppliers

    qualificationevidenceisinadequateforthisaircrafton

    accountofthedifferenceinrotorharmonicfrequencies

    c)Theequipmentcanbeprovisionallydelifed to100

    operationalhourspendingfurthervibrationtests

    Shock Response Spectrum (SRS) Fatigue Damage Spectrum (FDS)

    Fatigue Damage Spectrum (FDS)

    Originalaircraftspecification

    Suppliersqualificationevidence

    Delifed damagespectrum(100hours)

    Suppliersqualificationevidence

  • 8/14/2019 vibration of aircraft

    15/18

    Aircraft Airworthiness & Sustainment 2010

    15

    oftenveryexpensiveonaccountofthedirecttestingcostsandthecostofthetestcomponentwhich is life

    expiredattheendofthetest.

    This approach to qualification has also proveduseful for assessing experimental flight approval for new

    equipment. Qualification evidence based on fixed wing installations, shipping or transportinduced damage

    qualification, or slosh and vibration qualification tests often prove sufficient for limited flight clearance for

    experimentalpurposes.

    4.2 CaseStudy2:Testtailoringofcontrolrodvibrationtest

    Newyawcontrol rodsandmountingswererequiredonahelicopter.Thecontrol rodsrunthroughthemain

    fuselageandtailconeandaresubjectedtoadditionalvibrationfromthetailrotor,thetailrotorgearboxand

    theintermediategearbox.Thesecomponentsareflightsafetycriticalandageneralvibrationspecificationwas

    considered inadequate in this case.The existing swept sine anddwell testwasalsounacceptably longand

    expensive (98hours peraxis), and the safetymarginwasuncertain.A test tailoringexercisewas therefore

    authorized to determine a more appropriate sineonrandom qualification test along with a completeassessmentoftheinherentsafetymargin.

    Accelerationmeasurementsweretakenoveranumberofflighteventsusingtriaxialaccelerometerslocated

    at several positions on the helicopter. The SRS and FDS were calculated for each accelerometer and an

    envelopetakentorepresenttheworstloadingcondition.TheFDSwasscaledovertheaircraftusageprofileas

    describedpreviouslytodetermine thewholelifedamage.TheSRSandFDSwerecalculatedoverarange5

    2000Hz.AcomparisonofthemeasuredspectrawiththestandardtestspecificationisillustratedinFigure10.

    Figure10Comparisonofflightvibrationexposuretocertifiedtestlimits

    FromFigure10,the inflightshockresponse iswellrepresentedbytheexistingtestspecificationoverthefirstfewrotorharmonics;however,itdoesnotaddressthehighfrequencygearboxinducedpeak.Theinflight

    damageresponseisalsowellrepresentedoverthefirstfewrotorharmonicsbuthasanegligiblesafetymargin.

    Theexistingtestspecificationdoesnotaddressanyofthehigh frequencygearboxinducedvibrationsor the

    peaksat1Rand2Rwhicharesignificantonthisaircraft.

    4.2.1 Testtailoringprocess

    Thenewtestisbasedonasineonrandomprofilecomprisingthefollowingsteps:

    Flightloaddata

    Standardqualificationtest

  • 8/14/2019 vibration of aircraft

    16/18

    Aircraft Airworthiness & Sustainment 2010

    16

    1. Initialresonancesearchatasweepratenotexceeding1octave/mininaccordancewithmanufacturers

    existingspecifications

    2. 16hoursineonrandomtestinaccordancewithFigure11

    3. Finalresonancesearchasperstep1

    4. Repeatallabovestepsforeachaxis(x,y,z)

    Thistestisdesignedtoofferclearanceforupto10,000operationalhoursandtesttailoringwasperformed

    usingtheGlyphWorksAcceleratedTestingpackagefromHBMnCode(21).AcomparisonoftheSRSandFDS

    areillustratedinFigure12.ThetestwasderivedusingMILSTD810Fasabasis.ThebackgroundrandomPSD

    and the amplitude of the sine tones were then tailored to achieve an adequate safety margin over the

    proposedusagespectrum.Furtherconstraintswereappliedsuch thatnovibration levelshouldbe less than

    those recommended inMILSTD810F,and the finalFDSshouldnotbe lessthantheexistingsweptsineand

    dwelltestspecification.

    Figure11

    Tailored

    vibration

    test

    based

    on

    MIL

    STD

    810F

    From Figure12we see that thenew test specificationoffers anacceptable safetymarginonbothpeak

    shockandfatiguedamage.Thesineonrandomtesttakesonly16hoursperaxisasopposedto98hoursforthe

    previoussweptsineanddwelltestandthisoffersasignificantcostsaving.

    These techniques provide a tailored test which accounts for the real vibration environment and avoids

    potentialunderdesignissuesbyallowingdirectcontrolofthesafetymargin.Inothersituationstesttailoring

    hasbeenusedtorelaxtheoriginaltestspecificationwherethemeasuredusageprofileislessdamaging.This

    canreducetheinherentcostimplicationsofovertesting,andtheinherentweightimplicationsofoverdesign.

    Acceleration

    Log frequency Hz

    10

    300

    2000

    22

    44

    2.2g 2.2g

    0.001

    0.01

    120

    1.0g

    Random PSD (g2/Hz)

    Sinusoidal tones (g)

    11

    1.1g

    Freq. PSDg2/Hz

    10 0.01

    300 0.01

    2000 0.001

    Freq. Amp.g

    2R=

    11Hz 1.1g

    4R =22Hz 2.2g

    8R=44Hz 2.2g

    4T=120Hz 1.0g

    PSDrandom

    Sinetones

  • 8/14/2019 vibration of aircraft

    17/18

    Aircraft Airworthiness & Sustainment 2010

    17

    Insome cases ithasbeenusedsuccessfully toqualify importantequipment thatwaspreviously considered

    inadequateandalsoextendthelifeofequipmentwherethevibrationlevelsorusagespectrumwerefoundto

    be lower than theexistingqualificationevidence.Halfpenny (10)describeshow realtimealgorithmscanbe

    used to determine the FDS and SRS inflight and provide quantitative support for life extension and CBMassessments.

    Figure12Comparisonbetweenflightvibrationexposureandtailoredtest

    5 Conclusion

    This paper has described how the vibration environment of an aircraft can be characterized in terms of a

    Fatigue Damage Spectrum (FDS) and Shock Response Spectrum (SRS). It described how these spectra are

    calculated

    from

    both

    measured

    flight

    load

    data

    and

    directly

    from

    vibration

    test

    specifications.

    Vibration

    tests

    aretailoredtoensurethattestspectraexceedflightspectrawithanadequatesafetymargin.Thetechniques

    wereusedsuccessfullytotailorstandardMILSTD810Fteststocoverthemoreonerousvibrationconditions

    seenoncertainflightsafetycriticalcomponentsonahelicopter.Theyhavealsobeenusedtocompareexisting

    qualificationevidenceforequipmentononetypeofaircraftsoitcouldbeusedonanotherwithouttheneed

    for retesting.This enabled urgent equipment tobe provisionally cleared for limited flightapproval without

    riskingcrewandaircraftsafetyorperformance.

    6 Bibliography

    1.USDepartmentofDefense.MILSTD810Fsection514:DepartmentofDefenseTestMethodStandardfor

    EnvironmentalEngineeringConsiderationsandLaboratoryTests.2003.

    2. RTCA Inc. RTCA DO160E: . Environmental conditions and test procedures for airborne equipment.

    WashingtonDC:s.n.,2004.

    3.Ministrede laDfense,DlgationGnralepour l'ArmementFrance.GAMEG13 Essaisgnrauxen

    environementdesmatrials.Paris:MinistredelaDfense,France,1986.

    4. M.A., Biot. Transient oscillations in elastic systems. Thesis No. 259. Pasadena: California Institute of

    Technology,AeronauticsDepartment.,1932.

    Flightloaddata

    Standardqualificationtest

    Tailoredqualification

    test

  • 8/14/2019 vibration of aircraft

    18/18

    Aircraft Airworthiness & Sustainment 2010

    18

    5.Biot,M.A.Theoryofelasticsystemsvibratingundertransient impulse,withanapplicationtoearthquake

    proofbuildings.ProceedingsoftheNationalAcademyofScience.s.l.:NationalAcademyofScience,1933.Vols.

    19No2,pp.262268.

    6. RuppA,

    Masiere

    A,

    Dornbusch

    T.Durability transfer conceptfor themonitoring of the load and stress

    conditionsonvehicles.s.l.:InovativeAutomotiveTechnology IAT'05,Bled,2122April2005,2005.

    7.C,Lalanne.MechanicalVibration&Shock,volume2.London:HermesPentonLtd.,2002.

    8.T.,Irvine.AnIntroductiontotheShockResponseFunction.[Online]2002.www.vibrationdata.com.

    9. Halfpenny, A. Accelerated Testing Theory and User Manual. HBMnCode GlyphWorks Product

    Documentation.s.l.:HBMnCode,2008.

    10.AHalfpenny,TWalton.CBMforvibratingequipmentonrotorcraft.AmericanHelicopterSociety,Technical

    Specialists'MeetingonConditionBasedMaintenance.Huntsville,AL:s.n.,2009.

    11.C,Lalanne.MechanicalVibration&Shock,volume5.London:HermesPentonLtd.,2002.

    12.Miner,MA.Cumulativedamageinfatigue.J.AppliedMechanics.1945.Vols.67pp.A159A164.

    13.A,Halfpenny.Apracticaldiscussiononfatigue.NewTechnology2001.Warwickshire,UK:MIRA,2001.

    14.DowningS.D.,SocieD.F.Simplerainflowcountingalgorithms.Int.JFatiguepp3140.Jan,1982.

    15.Miles,JW.Onstructuralfatigueunderrandomloading.JAeronauticalSciencespp.753.1954.

    16.Lalanne,C.Lesvibrationsaleatoires.CoursADERA.1978.

    17.Rice,SO.Mathematicalanalysisofnoise.Selectedpapersonnoiseand stochasticprocesses.NewYork:

    Dover,1954.

    18. Bendat, JS. Probability functions for random responses: prediction of peaks, fatigue damage and

    catastrophicfailures.NASAreportoncontractNAS54590.1964.

    19.Halfpenny,A.RainflowcyclecountingandfatigueanalysisfromPSD.ProceedingsofASTELAB.France:s.n.,

    2007.

    20. F, BishopNWM and Sherratt. Fatigue life prediction from power spectral density data. Part 2: Recent

    development.Environmentalengineering.1989.Vols.2,Nos.1and2,pp510.

    21.HBMnCode.GlyphWorksAcceleratedTestingPackage.

    22.D,QianSandChen.JointTimeFrequencyAnalysis methodsandapplications.London:PrenticeHallPTR,

    1996.ISBN0132543842.

    7 Definitions,Acronyms,Abbreviations

    EFA: Experimental Flight ApprovalFDS: Fatigue Damage Spectrum

    FFT: Fast Fourier TransformFTA: Full Type [flight] Approval

    IIR filter: Infinite Impulse Response filter

    LTA: Limited Type [flight] Approval

    RMS: Root Mean SquareSDOF: Single Degree of Freedom System

    SRS: Shock Response Spectrum

    ERS: Extreme Response Spectrum

    MRM: Maximax Response Spectrum