Vibration analyis of discrete MDOF systems7 Remarks •Equations of motion for MDOF systems are...

45
1 Dr C S Manohar Department of Civil Engineering Professor of Structural Engineering Indian Institute of Science Bangalore 560 012 India [email protected] Vibration analyis of discrete MDOF systems

Transcript of Vibration analyis of discrete MDOF systems7 Remarks •Equations of motion for MDOF systems are...

  • 111

    Dr C S ManoharDepartment of Civil Engineering

    Professor of Structural EngineeringIndian Institute of ScienceBangalore 560 012 India

    [email protected]

    Vibration analyis of discrete MDOF systems

  • 2

    Preliminaries

    Nature of equations of motionInput - output relations in time domainInput - output relations in frequency domainForced vibration analysis using modal expansion

  • 3

    A rigid bar supported on two springs

    1 1 1 2 22

    O : Elastic centre O : Centre of gravity

    k L k L

    Two DOF-s1 Translation1 Rotation

    1 2 1 2l l L L L

  • 4

    1 1 2 2

    2 2 2 1 1 1

    1 2 1 1 2 22 2

    1 1 2 2 1 1 2 2

    0

    0

    00

    0

    my k y l k y l

    I k y l l k y l l

    k k k l k lm y yk l k l k l k lI

    is diagonal and is non-diagonalM KStatic coupling

  • 5

    1 22 2

    1 1 2 2

    00

    0k km me z z

    k L k Lme m

    is non-diagonal and is diagonalM KInertial coupling

  • 6

    1 1 2 22

    1 2 2

    0m ml k k k Lx x

    ml m k L k L

    is non-diagonal and is non-diagonalM KStatic and inertial coupling

  • 7

    Remarks

    •Equations of motion for MDOF systems are generally coupled

    •Coupling between co-ordinates is manifest in the form of structural matrices being nondiagonal

    •Coupling is not an intrinsic property of a vibrating system. It is dependent upon the choice of the coordinate system. This choice itself is arbitrary.

    •Equations of motion are not unique. They depend upon the choice of coordinate system.

  • 8

    Remarks (continued)

    •The best choice of coordinate system is the one in which the coupling is absent. That is, the structural matrices are all diagonal.

    •These coordinates are called the natural coordinates for the system. Determination of these coordinates for a given system constitutes a major theme in structural dynamics. Theory of ODEs and linear algebra help us.

  • 9

    u t u t

    1m

    2m

    3m

    1k

    2k

    3k

    1z t

    2z t

    3z t

    A building frame under support motion

  • 10

    1 1 1 1 2 1 2 1 1 2 1 2

    2 2 2 2 1 3 2 3 2 2 1 3 2 3

    3 3 3 3 2 3 3 2

    0

    0

    0

    m z c z u c z z k z u k z z

    m z c z z c z z k z z k z z

    m z c z z k z z

  • 11

    1 1

    2 2

    3 3

    1 1 1 1 2 1 2 1 1 2 1 2 1

    2 2 2 2 1 3 2 3 2 2 1 3 2 3 2

    3 3 3 3 2 3 3 2 3

    x z ux z ux z u

    m x c x c x x k x k x x m u

    m x c x x c x x k x x k x x m u

    m x c x x k x x m u

    1 1 1 2 2 1 1 2 2 1

    2 2 2 2 3 3 2 2 2 3 3 2

    3 3 3 3 3 3 3 3

    0 0 0 00 00 0 0 0

    m x c c c x k k k xm x c c c c x k k k k x

    m x c c x k k x

    1

    2

    3

    0 0 1 0 0 1

    0 0 1

    mm u

    m

  • 12

    gx t gy t

    A frame with asymetric plan under multi-componentsupport motions

  • 13

    x t

    y t

    t

    O

    O

  • 14

  • 15

  • 16

    1 11 4 2 3

    1 2 3 4

    1 14 3 1 2

    1 2 3 4

    1 2 3

    4

    ( ) ( )2 2 2

    ( ) ( )2 2 2

    ( / 2)( / 2),

    s s s s sS

    s s s

    s s s s sS

    s s s

    a a

    s s S s s s

    b b b b bm m m m mx

    tb d m m m m

    d d d d dm m m m my

    tb d m m m mm m m A hm A h m tb d

  • 17

    34332112

    ;12

    hIE

    kh

    IEkkk ssaa

    22

    22

    22

    22

    21

    21

    22

    21

    21

    2222

    22223

    2)(

    2

    2212

    223

    sssalaassaa

    sssssss

    sss

    ssaassscolumnsslab

    rhArhAyx

    hAyxyxyx

    hA

    dy

    bxdtbdb

    dtbI

    hAhAdtbmmm

  • 18

    0)()()()(

    )()()()(

    )()()()(

    )()()()(

    0)()()()(

    )()()()(

    0)()()()(

    )()()()(

    141411111

    252528282

    262623232

    171712121

    26262323

    17171212

    25252828

    14141111

    gggg

    gggg

    gggg

    gggg

    gggg

    gggg

    gggg

    gggg

    xyxcxyxkxyxcxyxky

    xyxcxyxkxyxcxyxky

    yxycyxykyxycyxykx

    yxycyxykyxycyxykxI

    yxycyxykyxycyxyk

    yxycyxykyxycyxykym

    xyxcxyxkxyxcxyxk

    xyxcxyxkxyxcxyxkxm

    )(tfKuuCuM

    x tu t y t

    t

  • 19

    0 00 ; 0, and , in general, are non-diagonal

    Equations are coupledSuppose we introduce a new set of dependentvariables ( ) using the transformation

    ( )where is a tra

    MX CX KX F t

    X X X XM C K

    Z tX t TZ t

    T n n

    nsformaiton matrix, to beselected.

    How to uncouple equations of motion?

  • 20

    0 00 ; 0

    ( )

    ( )

    ( )

    ( )

    , ,& structural matrices in the new coordinate system.( ) force vector in the new coord

    t t t t

    MX CX KX F t

    X X X X

    X t TZ t

    MTZ t CTZ t KTZ t F t

    T MTZ t T CTZ t T KTZ t T F t

    MZ t CZ t KZ t F t

    M C KF t

    inate system

    Can we select such that , ,& are all ?If yes, equation for ( ) would then represent a set of uncoupled equations and hence can be solved easily.

    T M C KZ t

    QuestionDIAGONAL

  • 21

    How to select to achieve this?TConsider the seemingly unrelated problem ofundamped free vibration analysis

    0Seek a special solution to this set of equations in whichall points on the sturcutre oscillate harmonically at thesa

    MX KX

    2

    2

    me frequency.That is

    exp ; 1,2, ,

    or, exp where is a 1 vector.

    exp & exp

    exp 0

    k kx t r i t k n

    X t R i t R n

    X t i R i t X t R i t

    MR KR i t

  • 22

    22

    2

    exp 0

    0

    This is a algebraic eigenvalue problem.

    ; is positive semi-definite is positive definite

    Eigensolutions would be real valuedand eigenvalues w

    t t

    MR KR i t

    RM KR

    KR MR

    K K M MKM

    Note

    ould be non-negative.

  • 23

    2

    2

    12

    12 2

    12

    12

    0

    Let exist.

    0

    0 0

    If exists, =0 is the solution.

    Condition for existence of nontrivial solution is that

    should not exist

    KR MR

    K M R

    K M

    K M K M R

    IR R

    K M R

    K M

    2

    2 2 21 2

    1 2

    .

    0

    This is called the characteristic equaiton.This leads to the characteristic values

    and associated eigenvectors, , , .

    n

    n

    K M

    R R R

  • 24

    2

    2

    2

    Consider - th and -th eigenpairs. (1)

    (2)

    (1)

    (3)

    (2)

    r r r

    s s sts

    t ts r r s r

    tr

    tr s s

    r sKR MR

    KR MR

    R

    R KR R MR

    R

    R KR

    Orthogonaility property of eigenvectors

    2

    2

    2

    2 2

    (4)Transpose both sides of equation (4)

    Since & , we get (5)

    Substract (3) and (5)

    0

    tr s

    t t t ts r s s r

    t t

    t ts r s s r

    tr s s r

    R MR

    R K R R M R

    K K M MR KR R MR

    R MR

    0

    0

    ts rts r

    R MR r s

    R KR r s

    2

    Normalization1ts s

    ts s s

    R MR

    R KR

  • 25

    21 ( )

    2 2 21 2

    Introduce

    Diag

    n n n

    n

    R R R

    t

    t

    M IK

    Orthogonality relations

    Select T

  • 26

    0 0

    2

    0 ; 0

    ( )

    ( )

    ( )

    ( )

    ; 1,2, ,

    How about initial conditions?(0) 0

    (0) 0 0

    0 (0) & 0 (0)

    t t t

    r r r r

    t t

    t t

    MX KX F t

    X X X X

    X t Z t

    M Z t K Z t F t

    M Z t K Z t F t

    IZ t Z t F t

    z z f t r n

    X Z

    MX M Z Z

    Z MX Z MX

    ConsiderUndampedForcedVibrationAnalysis

  • 27

    0

    1

    1 0

    0 10 cos sin sin

    0 10 cos sin sin

    tr

    r r r r r rr r

    n

    k kr rr

    tnr

    kr r r r r rr r r

    zz t z t t t f d

    X t Z t

    x t z t

    zz t t t f d

  • 28

    0 00 ; 0

    ( )

    ( )

    ( )

    ( )

    If is not a diagonal matrix, theequations

    t t t t

    t

    t

    MX CX KX F t

    X X X X

    X t Z t

    M Z t C Z t K Z t F t

    M Z t C Z t K Z t F t

    IZ t C Z t Z t F t

    C

    How about damped forced response analysis?

    of motion would still remain coupled.

  • 29

    If the damping matrix is such that is a diagonal matrix, then equaitons would

    get uncoupled.Such matrices are called classical damping matrices.

    Rayleigh's proport

    t

    CC

    C

    Classical damping models

    Exampleional damping matrix

    t t t

    C M K

    C M KI

  • 30

    2

    2

    [ ]

    [ ] [ ]

    2 2

    T T

    T T

    i

    n n

    nn

    n

    C M KC M KI K

    I Diag

    c

  • 31

    100

    101

    102

    103

    10-4

    10-3

    10-2

    10-1

    100

    frequency rad/s

    eta

    mass and stiffness proportional

    stiffness proportionalmass proportional

  • 32

    2

    0

    ( )

    0 (0) & 0 (0)

    2 ; 1,2, ,

    with 0 & 0 specified.

    exp cos sin

    1 exp

    t

    t t

    r r r r r r r

    r r

    r r r r dr r dr

    t

    r r rdr

    IZ t C Z t Z t F t

    Z MX Z MX

    z z z f t r n

    z z

    z t t a t b t

    t f d

  • 33

    0

    1

    1 0

    1exp cos sin exp

    1exp cos sin exp

    1,2, ,

    t

    r r r r dr r dr r r rdr

    n

    k kr rr

    tn

    kr r r r dr r dr r r rr dr

    z t t a t b t t f d

    X t Z t

    x t z t

    t a t b t t f d

    k n

  • 34

    u t u t

    1m

    2m

    3m

    1k

    2k

    3k

    1z t

    2z t

    3z t

    Example 1

  • 35

  • 36

    0.024 0.009 0.007 t

  • 37

    1 2 3

  • 38

  • 39

    gx t gy t

    Example 2

  • 40

    Physical properties of the frame members

  • 41 0.02 0.02 0.01 t

  • 42

    1 2 3

    Mode shapes

  • 43

  • 44

    Summary

    • Normal modes of vibration of a structure are special undamped free vibration solutions such that all points of the structure oscillate harmonically at the same frequency with the ratio of displacements at any two points being independent of time.

    • Thus, for a structure vibrating in one of its modes, the phase difference between oscillations at any two points is either 0 or π.

    • The frequencies at which normal mode oscillations are possible are called the natural frequencies.

  • 45

    Summary (Continued)

    • Modal matrix is orthogonal to mass and stiffness matrices. This helps is diagonalising the mass and stiffness matrices.

    • Undamped normal modes, in conjunction with proportional damping models, simplify vibration analysis procedures considerably.