Very Massive Stars

41
Very Massive Stars Norbert Langer (Bonn University) with Ines Brott (Vienna) Matteo Cantiello (UCSB) Selma de Mink (STScI) Karen Köhler (Bonn) Debashis Sanyal (Bonn) Alexandra Kozyreva (Bonn) Colin Norman (JHU) Alex Heger (Monash) Alex de Koter (Amsterdam) Onno Pols (Nijmegen) Jorick Vink (Armagh) Sung-Chul Yoon (Bonn) St Paul 3-10-12 – p.1/33

Transcript of Very Massive Stars

Page 1: Very Massive Stars

Very Massive Stars

Norbert Langer (Bonn University)

with

Ines Brott (Vienna)

Matteo Cantiello (UCSB)

Selma de Mink (STScI)

Karen Köhler (Bonn)

Debashis Sanyal (Bonn)

Alexandra Kozyreva (Bonn)

Colin Norman (JHU)

Alex Heger (Monash)

Alex de Koter (Amsterdam)

Onno Pols (Nijmegen)

Jorick Vink (Armagh)

Sung-Chul Yoon (Bonn)

St Paul 3-10-12 – p.1/33

Page 2: Very Massive Stars

The Hunter diagram: early BV stars

Brott, Evans, Hunter et al. 2011St Paul 3-10-12 – p.2/33

Page 3: Very Massive Stars

The rotation rates: early BV stars

Dufton, Langer, Dunstall et al. 2012St Paul 3-10-12 – p.3/33

Page 4: Very Massive Stars

The Hunter diagram: OV stars

6.6

6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

8.8

0 50 100 150 200 250 300 350 400

12 +

log

[N/H

]

v sini [km/s]

1

10

100

1000

Rivero Gonzalez, Puls, Najarro & Brott 2012St Paul 3-10-12 – p.4/33

Page 5: Very Massive Stars

Close binaries: O stars

Sana, de Mink, de Koter, et al. 2012St Paul 3-10-12 – p.5/33

Page 6: Very Massive Stars

Why mass matters

Langer 2012St Paul 3-10-12 – p.6/33

Page 7: Very Massive Stars

The Eddington limit

1 = LLEdd

= 14πcG

κeLM

: no upper mass limit

St Paul 3-10-12 – p.7/33

Page 8: Very Massive Stars

The Eddington limit

1 = LLEdd

= 14πcG

κeLM

: no upper mass limit

1 = 14πcG

κ(Z,X,T,ρ)LM

St Paul 3-10-12 – p.7/33

Page 9: Very Massive Stars

The Eddington limit

1 = LLEdd

= 14πcG

κeLM

: no upper mass limit

1 = 14πcG

κ(Z,X,T,ρ)LM

1−(

v2rotv2Kepler

)

= 14πcG

κ(Z,X,T,ρ)LM

→ low L; 2D

St Paul 3-10-12 – p.7/33

Page 10: Very Massive Stars

The Eddington limit

1 = LLEdd

= 14πcG

κeLM

: no upper mass limit

1 = 14πcG

κ(Z,X,T,ρ)LM

1−(

v2rotv2Kepler

)

= 14πcG

κ(Z,X,T,ρ)LM

→ low L; 2D

1−(

v2rotv2Kepler

)

= 14πcG

κ(r)(L(r)−Lconv(r))M(r)

St Paul 3-10-12 – p.7/33

Page 11: Very Massive Stars

The Eddington limit

1 = LLEdd

= 14πcG

κeLM

: no upper mass limit

1 = 14πcG

κ(Z,X,T,ρ)LM

1−(

v2rotv2Kepler

)

= 14πcG

κ(Z,X,T,ρ)LM

→ low L; 2D

1−(

v2rotv2Kepler

)

= 14πcG

κ(r)(L(r)−Lconv(r))M(r)

inflation!

St Paul 3-10-12 – p.7/33

Page 12: Very Massive Stars

Inflation: He star models

Petrovic, Pols & Langer 2006 St Paul 3-10-12 – p.8/33

Page 13: Very Massive Stars

Inflation 6= HD-limit

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

0 10 20 30 40 50 60

log(

L/L ⊙

)

Teff [kK]

60 M⊙

70 M⊙

80 M⊙

100 M⊙

150 M⊙

200 M⊙

300 M⊙

400 M⊙

500 M⊙

HD limit

ZAMS

Köhler et al., in prep.St Paul 3-10-12 – p.9/33

Page 14: Very Massive Stars

Inflation of main sequence stars

inflation as f(Z):H-ZAMS: Z⊙ →M < 120M⊙ Ishii et al. 1999

ZSMC →M < 200M⊙Z = 0→M < 1000M⊙ Yoon et al. 2012

He-ZAMS: Z⊙ →M < 15M⊙ Petrovic et al. 2006

ZSMC →M < 25M⊙

St Paul 3-10-12 – p.10/33

Page 15: Very Massive Stars

Inflation of main sequence stars

inflation as f(Z):H-ZAMS: Z⊙ →M < 120M⊙ Ishii et al. 1999

ZSMC →M < 200M⊙Z = 0→M < 1000M⊙ Yoon et al. 2012

He-ZAMS: Z⊙ →M < 15M⊙ Petrovic et al. 2006

ZSMC →M < 25M⊙L

LEdd∼ κL

M:

H→ He⇒ κ ↓ 2, L(M) ↑ 10⇒ He-ZAMS crosses H-ZAMS!

St Paul 3-10-12 – p.10/33

Page 16: Very Massive Stars

ZAMS crossing

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

0 10 20 30 40 50 60

log(

L/L ⊙

)

Teff [kK]

60 M⊙

70 M⊙

80 M⊙

100 M⊙

150 M⊙

200 M⊙

300 M⊙

400 M⊙

500 M⊙

HD limit

ZAMS

St Paul 3-10-12 – p.11/33

Page 17: Very Massive Stars

Eddington limit

Langer 2012St Paul 3-10-12 – p.12/33

Page 18: Very Massive Stars

Eddington limit

Ulmer & Fitzpatrick 1999St Paul 3-10-12 – p.13/33

Page 19: Very Massive Stars

Eddington-limit

5.6

5.8

6

6.2

6.4

6.6

6.8

7

7.2

0 10 20 30 40 50 60

log(

L/L ⊙

)

Teff [kK]

60 M⊙

70 M⊙

80 M⊙

100 M⊙

150 M⊙

200 M⊙

300 M⊙

400 M⊙

500 M⊙

HD limit

ZAMS

St Paul 3-10-12 – p.14/33

Page 20: Very Massive Stars

Inflation: f(M )

Petrovic, Pols & Langer 2006St Paul 3-10-12 – p.15/33

Page 21: Very Massive Stars

Inflation: S Dor Variations?

Ingredients:

R(inflated layer) = f(M) Petrovic et al. 2006

M = f(R) e.g. Vink: bistability

St Paul 3-10-12 – p.16/33

Page 22: Very Massive Stars

Inflation: S Dor Variations?

Ingredients:

R(inflated layer) = f(M) Petrovic et al. 2006

M = f(R) e.g. Vink: bistability

1) star compact: M small→ 2) inflation→ 3) M large→ 1) star compact

St Paul 3-10-12 – p.16/33

Page 23: Very Massive Stars

The role of stellar evolution

Langer 1998

St Paul 3-10-12 – p.17/33

Page 24: Very Massive Stars

MS evolution & the Ω-limit

Langer 1998

St Paul 3-10-12 – p.18/33

Page 25: Very Massive Stars

MS evolution: M

Langer 1998

St Paul 3-10-12 – p.19/33

Page 26: Very Massive Stars

Mass loss rate at the Edd.-limit

nuclear timescale evolution: M ≃ Mτnuc

M = 100M⊙: τnuc = 3106 yr → M ≃

3 10−5 M⊙ yr−1

St Paul 3-10-12 – p.20/33

Page 27: Very Massive Stars

Mass loss rate at the Edd.-limit

nuclear timescale evolution: M ≃ Mτnuc

M = 100M⊙: τnuc = 3106 yr → M ≃

3 10−5 M⊙ yr−1

thermal timescale evolution: M ≃ Mτth

M = 100M⊙: τth = 104 yr→ M ≃ 10−2 M⊙ yr−1

St Paul 3-10-12 – p.20/33

Page 28: Very Massive Stars

Mass loss rate at the Edd.-limit

nuclear timescale evolution: M ≃ Mτnuc

M = 100M⊙: τnuc = 3106 yr → M ≃

3 10−5 M⊙ yr−1

thermal timescale evolution: M ≃ Mτth

M = 100M⊙: τth = 104 yr→ M ≃ 10−2 M⊙ yr−1

⇒ LBV eruptions need thermal timescale evolution

St Paul 3-10-12 – p.20/33

Page 29: Very Massive Stars

Post-LBV evolution

Langer 1987

St Paul 3-10-12 – p.21/33

Page 30: Very Massive Stars

Evolutionary scheme

Langer 2012

St Paul 3-10-12 – p.22/33

Page 31: Very Massive Stars

Evolutionary scheme

St Paul 3-10-12 – p.23/33

Page 32: Very Massive Stars

Galactic Wolf-Rayet stars

4.5

5.0

5.5

6.0

6.5

5.5 5.0 4.5 4.0log (T*/K)

log

(L/L

)

WNL (XH > 5%)WNE (XH < 5%)

T*/kK10204060100150200

WC 4

WC 5

WC 6

WO

known distance

unsure distance

WC 7

WC 8

WC 9

WN/WC

ZAMSHe-ZAMS

Sander, Hamann & Todt 2012 St Paul 3-10-12 – p.24/33

Page 33: Very Massive Stars

Galactic Wolf-Rayet stars

25 M

40 M

60 M

85 M

120 M

4.5

5.0

5.5

6.0

6.5

5.5 5.0 4.5 4.0log (T*/K)

log

(L/L

)

Evo

l. m

odel

s pre WR phase

WNL phase

WNE phase

WC phase

WC 4

WC 5

WC 6

WO

known distance

unsure distance

WC 7

WC 8

WC 9

WN/WC

T*/kK10204060100150200

ZAMSHe-ZAMS

Sander, Hamann & Todt 2012 St Paul 3-10-12 – p.25/33

Page 34: Very Massive Stars

Local low-Z VMS

Langer, Norman, de Koter et al. 2007 St Paul 3-10-12 – p.26/33

Page 35: Very Massive Stars

Local Pair-Instability SNe

Kozyreva et al., in prep.St Paul 3-10-12 – p.27/33

Page 36: Very Massive Stars

Local Pair-Instability SNe

Herzig, El Eid, Fricke & Langer 1990St Paul 3-10-12 – p.28/33

Page 37: Very Massive Stars

Local Pair-Instability SNe: Yields

0 20 40 60 80 100 120 140 1600

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iso

top

e M

ass

frac

tio

n

250 Msun PISN

H

He

C

O

NeMg

Si

Fe+Ni

He

Mass, Solar massesKozyreva al., in prep.

St Paul 3-10-12 – p.29/33

Page 38: Very Massive Stars

Summary

Complex physics at the Ω-limit

Inflation: ZAMS crowing, S Dor variability?

Eruptions← τth-evolution⇒ erupting LBVs: after core-H, core-Heburning

PISNe in the local universe

St Paul 3-10-12 – p.30/33

Page 39: Very Massive Stars

VMS binary evolution

-12

-10

-8

-6

-4

-2

0

2

0 20 40 60 80 100 120

log

(mas

s de

nsity

[gm

/cc]

)

Radius [R⊙

]

100M⊙

+50M⊙

binary; Porb=30 days

Yc=0.8254

Primary star at the onset of RLOF

Density inversion

Mass=87M⊙

Sanyal et al., in prep.

St Paul 3-10-12 – p.31/33

Page 40: Very Massive Stars

VMS binary evolution

5.5

5.6

5.7

5.8

5.9

6

6.1

6.2

6.3

6.4

4.3 4.35 4.4 4.45 4.5 4.55 4.6 4.65 4.7

Lum

inos

ity (

log[

L/L ⊙

])

log Teff (K)

100M⊙

+50M⊙

binary; Porb=30 days; H-R diagrams

Yc=0.8254 for primary end of evolution

Yc=0.5846 for secondary end of evolution

PrimarySecondary

Sanyal et al., in prep.

St Paul 3-10-12 – p.32/33

Page 41: Very Massive Stars

VMS binary evolution

10-6

10-5

10-4

10-3

5x10-3

10-2

0 5 10 15 20 25 30

Max

imum

mas

s tr

ansf

er r

ate

[M⊙

/yr]

Porb (days)

100M⊙

+ 50M⊙

binary

Sanyal et al., in prep.

St Paul 3-10-12 – p.33/33