Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped”...

25
Vacuum Entanglement A. Retzker (Tel-Aviv Univ.) J. I. Cirac (Max Planck Inst., Garching.) B. Reznik (Tel-Aviv Univ.) J. Silman (Tel-Aviv Univ.) International summer school on Quantum Information August 29 – September 30,2005

Transcript of Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped”...

Page 1: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Vacuum Entanglement

A. Retzker (Tel-Aviv Univ.)J. I. Cirac (Max Planck Inst., Garching.)B. Reznik (Tel-Aviv Univ.)J. Silman (Tel-Aviv Univ.)

International summer school on Quantum Information

August 29 – September 30,2005

Page 2: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Vacuum Entanglement

Q. Phys.: Can Ent. shed light on “quantum effects”? (low temp. Q. coherences, Q. phase transitions, DMRG, Entropy Area law.)

A

B

Motivation:

QI: natural set up to study Entcausal structure ! LO.many body Ent.

Page 3: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Continuum results: BH Entanglement entropy:Unruh (76), Bombelli et. Al. (86), Srednicki (93), Callan & Wilczek (94) .Algebraic Field Theory:Summers & Werner (85), Halvarson & Clifton (00),Verch & Werner (2004).

Discrete models:Spin chains: Wootters (01), Nielsen (02), Latorre et. al. (03).

Background

Page 4: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

AABB

(I) Are A and B entangled?

(II) Are Bell’s inequalities violated?

(III) Where does it “come from”?

(IV) Can we detect it?

Yes, for arbitrary separation.("Atom probes”).

Yes, for arbitrary separation. (Filtration, “hidden” non-locality).

Localization, shielding.(Harmonic Chain).

Entanglement Swapping.(Linear Ion trap).

Page 5: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Outline :

(1). Field entanglement: local probes.

(2). Linear Ion trap: detection of ground state ent.

Page 6: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

AB

A pair of causally disconnected localized detectorsA pair of causally disconnected localized detectors

Probing Field Entanglement

RFT→ Causal structure

QI : LOCC

L> cT

Page 7: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Causal Structure + LO

x − t =

0 x + t = 0

BA

For L>cT, we have [φA,φB]=0Therefore UINT=UA UB

∆ ETotal =0, but∆ EAB >0. (Ent. Swapping)

Vacuum ent ! Detectors’ ent. Lower bound.

LO

Page 8: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

0E

1EE∆ =Ω

Note: we do not use the rotating wave approximation.

Field – Detectors Interaction

Window Function

Interaction:

HINT=HA+HBHA=εA(t)(e+iΩ t σA

+ +e-iΩ tσA-) φ(xA,t)

Initial state:

Two-level system

Unruh (76), B. Dewitt (76), particle-detector models.

0)0( BA ↓↓=Ψ

Page 9: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Probe Entanglement

Calculate to the second order (in ε) the final state,and evaluate the reduced density matrix.

Finally, we use Peres’s (96) partial transposition criterion to check inseparability and use the Negativity as a measure.

?2222

)()44(

××

×

∑≠=

Bi

Ai

totalFAB

p

Tr

ρρ

ρρ

Page 10: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

21(1 ' )(...)2Interaction A B A A AU U U i dtH T dtdt H Hε ε= ⊗ = − −∫ ∫∫

( ) 0Interaction A BT UΨ = ↓ ↓

Page 11: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

21(1 ' )(...)2Interaction A B A A AU U U i dtH T dtdt H Hε ε= ⊗ = − −∫ ∫∫

( ) 0Interaction A BT UΨ = ↓ ↓

2

52

2

1 0

0( ) ( )

AB

AB ABAB

A A B

B A B

X

X XT O

E E E

E E E

ρ ε

⎡ ⎤⎢ ⎥⎢ ⎥

= +⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

B

γ

AB

ε ε ε+2

A

B

BA

A

+γγ

↓↓ ↑↑ ↓↑ ↑↓

photonE

photonsorX

AA

BAAB

10

200

=Φ=

=ΦΦ=

Page 12: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

21(1 ' )(...)2Interaction A B A A AU U U i dtH T dtdt H Hε ε= ⊗ = − −∫ ∫∫

( ) 0Interaction A BT UΨ = ↓ ↓

2

52

2

1 0

0( ) ( )

AB

AB ABAB

A A B

B A B

X

X XT O

E E E

E E E

ρ ε

⎡ ⎤⎢ ⎥⎢ ⎥

= +⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

B

γ

AB

ε ε ε+2

A

B

BA

A

+γγ

P.T,

P.T.

photonE

photonsorX

AA

BAAB

10

200

=Φ=

=ΦΦ=

↓↓ ↑↑ ↓↑ ↑↓

Page 13: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Emission < Exchange

B

γ

AB

ε ε ε2

A

B

BA

A

γγ

<

XAB

% 2

0 0[ ( )] (( ) ) ( )A BSin Ldd

Lωω ω ε ω ε ε ωω ω

∞ ∞Ω + < Ω + Ω −∫ ∫

Off resonance Vacuum “window function”

Superocillatory functions (Aharonov (88), Berry(94)).

ABBA XEE 0<

Page 14: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

We can tailor a superoscillatory window function for every Lto resonate with the vacuum “window function”

Entanglement for every separation

504.8 504.9 505 505.1 505.2 505.3

sin( )Lω

Superocillatory window function

VacuumWindow function

Exchange term →exp(-f(L/T))

Page 15: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Bell’s Inequalities

No violation of Bell’s inequalities. But, by applying local filters

Maximal Maximal EntEnt..

Maximal violationMaximal violation

ΩΩ

ΩΩ

N N ((ρρ))

M M ((ρρ))

|↓↓> “+” h XAB|VAC> |↑↑> “+”…→η2 |↓>|↓> “+” h XAB|VAC>|↑>|↑>“+”…

CHSH ineq. Violated iffM (ρ)>1, (Horokecki (95).)

“Hidden” non-locality.Popescu (95). Gisin (96).

NegativityNegativity

FilteredFiltered

Page 16: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Summary (1)

1) Vacuum entanglement can be distilled!

2) Lower bound: E ¸ e-(L/T)2

(possibly e-L/T)

3) High frequency (UV) effect: Ω= L2 .

4) Bell inequalities violation for arbitrary separation maximal “hidden” non-locality.

Reznik, Reznik, RetzkerRetzker, , SilmanSilman PRA 71, 042104

Page 17: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Can we detect Vacuum Entanglement?

Page 18: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Detection of Vacuum Entanglement

in a Linear Ion Trap

Paul Trap

AB

Internal levels

H0=ωz(σzA+σz

B)+∑νn an† an

Hint=Ω(t)(e-iφσ+(k)+eiφσ-

(k))xk

H=H0+Hint

A. Retzker, J. I. Cirac, B. Reznik PRL 94, 050504

1/ωz << T<<1/ν0

Page 19: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Entanglement in a linear trap

Entanglement between symmetric groups of ions as a function of the total number (left) and separation of finite groups (right).

∑ −↓↓=n

BAn

dc nnevac β

Page 20: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Causal Structure

UAB=UA· UB + O([xA(0),xB(T)])

Page 21: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Two trapped ions

Final internal state

Eformation(ρfinal) accounts for 97% of the calculatedEntangtlement: E(|vaci>)=0.136 e-bits.

“Swapping” spatial internal states

U=(eiα x σx - eiβ p σy)-...

( )vac e βχ −↓↓ → ↓↓ + ↑↑

Page 22: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Long Ion Chain

A B

But how do we check that ent. is not due to “non-local” interaction?

Page 23: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Long Ion Chain

A B

But how do we check that ent. is not due to “non-local” interaction?

Htruncated=HA· HB

We compare the cases with a truncated and free Hamiltonians

HAB

Page 24: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

Long Ion Chain

L=6,15, N=20 L=10,11 N=20

δ denotes the detuning, L the locations of A and B.

η=exchange/emission >1 , signifies entanglement.

Page 25: Vacuum Entanglement - Max Planck Societyissqui05/Retzker.pdfVacuum Entanglement can be “swapped” to detectors. Bell’s inequalities are violated (“hidden” non-locality). Ent.

SummaryAtom Probes: Vacuum Entanglement can be “swapped” to detectors.Bell’s inequalities are violated (“hidden” non-locality).Ent. reduces exponentially with the separation. High probe frequencies are needed for large separation.

Linear ion trap:-A proof of principle of the general idea is experimentally feasible for two ions. -One can entangle internal levels of two ions withoutperforming gate operations.