UvA-DARE (Digital Academic Repository) Molecular ... fileEpilepsia 2000; 41: 245-53. 19....

22
UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl) UvA-DARE (Digital Academic Repository) Molecular alterations in epilepsy-associated malformations of cortical development Boer, K. Link to publication Citation for published version (APA): Boer, K. (2009). Molecular alterations in epilepsy-associated malformations of cortical development. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 09 May 2019

Transcript of UvA-DARE (Digital Academic Repository) Molecular ... fileEpilepsia 2000; 41: 245-53. 19....

UvA-DARE is a service provided by the library of the University of Amsterdam (http://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Molecular alterations in epilepsy-associated malformations of cortical developmentBoer, K.

Link to publication

Citation for published version (APA):Boer, K. (2009). Molecular alterations in epilepsy-associated malformations of cortical development.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s),other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, statingyour reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Askthe Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam,The Netherlands. You will be contacted as soon as possible.

Download date: 09 May 2019

189

References

190

191

1. Reynolds EH, Kinnier Wilson JV. Psychoses of epilepsy in Babylon: the oldest account of the disorder. Epilepsia 2008; 49: 1488-90.

2. McHenry LC Jr. Garrison’s History of Neurology. 1969, Springfield, CC Thomas.3. de Boer HM, Mula M, Sander JW. The global burden and stigma of epilepsy. Epilepsy Behav 2008; 12: 540-6.4. Sander JW. The epidemiology of epilepsy revisited. Curr Opin Neurol 2003; 16: 165-70.5. Engel J Jr. Report of the ILAE classification core group. Epilepsia 2006; 47: 1558-68.6. Adams RD, Victor M. Principles of neurology, 4th edition. 1989, Singapore, McGraw-Hill.7. ILAE. Guidelines for epidemiologic studies on epilepsy. Commission on Epidemiology and Prognosis,

International League Against Epilepsy. Epilepsia 1993; 34: 592-6.8. French JA. Refractory epilepsy: clinical overview. Epilepsia 2007; 48 Suppl 1: 3-7.9. Luders H, Schuele SU. Epilepsy surgery in patients with malformations of cortical development. Curr Opin

Neurol 2006; 19: 169-74.10. Shaefi S, Harkness W. Current status of surgery in the management of epilepsy. Epilepsia 2003; 44 Suppl 1:

43-7.11. Cascino GD. Surgical treatment for epilepsy. Epilepsy Res 2004; 60: 179-86.12. Guerrini R, Dobyns WB, Barkovich AJ. Abnormal development of the human cerebral cortex: genetics,

functional consequences and treatment options. Trends Neurosci 2008; 31: 154-62.13. Barkovich AJ, et al. A developmental and genetic classification for malformations of cortical development.

Neurology 2005; 65: 1873-87.14. Taylor DC, et al. Focal dysplasia of the cerebral cortex in epilepsy. J Neurol Neurosurg Psychiatry 1971; 34:

369-87.15. Palmini A, et al. Terminology and classification of the cortical dysplasias. Neurology 2004; 62: S2-8.16. Tassi L, et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome.

Brain 2002; 125: 1719-32.17. Krsek P, et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann

Neurol 2008; 63: 758-69.18. Lombroso CT. Can early postnatal closed head injury induce cortical dysplasia. Epilepsia 2000; 41: 245-53.19. Marin-Padilla M, et al. Shaken infant syndrome: developmental neuropathology, progressive cortical

dysplasia, and epilepsy. Acta Neuropathol 2002; 103: 321-32.20. Thom M, et al. Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a

histopathological study with calbindin D-28-K immunohistochemistry. Neuropathol Appl Neurobiol 2000; 26: 251-7.

21. van Slegtenhorst M, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277: 805-8.

22. ECTS C. Identification and characterization of the tuberous sclerosis gene on chromosome 16. The European Chromosome 16 Tuberous Sclerosis Consortium. Cell 1993; 75: 1305-15.

23. Mizuguchi M, Takashima S. Neuropathology of tuberous sclerosis. Brain Dev 2001; 23: 508-15.24. DiMario FJ Jr. Brain abnormalities in tuberous sclerosis complex. J Child Neurol 2004; 19: 650-7.25. Tinkle BT, et al. Epidemiology of hemimegalencephaly: a case series and review. Am J Med Genet A. 2005;

139: 204-11.26. Flores-Sarnat L. Hemimegalencephaly: part 1. Genetic, clinical, and imaging aspects. J Child Neurol 2002;

17: 373-84.27. Boer K, et al. A neuropathological study of two autopsy cases of syndromic hemimegalencephaly.

Neuropathol Appl Neurobiol 2007; 33: 455-70.28. Salamon N, et al. Contralateral hemimicrencephaly and clinical-pathological correlations in children with

hemimegalencephaly. Brain 2006; 129: 352-65.29. Blümcke I, Wiestler OD. Gangliogliomas: an intriguing tumor entity associated with focal epilepsies. J

Neuropathol Exp Neurol 2002; 61: 575-84.30. Wolf HK, et al. Ganglioglioma: a detailed histopathological and immunohistochemical analysis of 61 cases.

Acta Neuropathol 1994; 88: 166-73.31. Blümcke I, et al. The CD34 epitope is expressed in neoplastic and malformative lesions associated with

chronic, focal epilepsies. Acta Neuropathol 1999; 97: 481-90.32. Fassunke J, et al. In situ-RT and immunolaser microdissection for mRNA analysis of individual cells isolated

from epilepsy-associated glioneuronal tumors. Lab Invest 2004; 84: 1520-5.33. Daumas-Duport C. Dysembryoplastic neuroepithelial tumours. Brain Pathol 1993; 3: 283-95.34. Sharma MC, et al. Dysembryoplastic neuroepithelial tumor: a clinicopathological study of 32 cases.

Neurosurg Rev 2009; 32: 161-70.

192

35. Daumas-Duport C, Pietsch T, Lantos PL. Dysembryoplastic neuroepithelial tumour, in World Health Organisation classification of tumours: Pathology and genetics of tumours of the nervous system. Kleihues P, Cavenee WK. 2000, IARC Press, Lyon, p. 103-106.

36. Rakic P. Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 1971; 33: 471-6.37. Lian G, Sheen V. Cerebral developmental disorders. Curr Opin Pediatr 2006; 18: 614-20.38. Merkle FT, et al. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci

USA 2004; 101: 17528-32.39. Pinto L, Gotz M. Radial glial cell heterogeneity--the source of diverse progeny in the CNS. Prog Neurobiol

2007; 83: 2-23.40. Letinic K, Zoncu R, Rakic P. Origin of GABAergic neurons in the human neocortex. Nature 2002; 417: 645-9.41. Fauser S, et al. CD34-immunoreactive balloon cells in cortical malformations. Acta Neuropathol 2004; 108:

272-8.42. Ying Z, et al. Expression of neural stem cell surface marker CD133 in balloon cells of human focal cortical

dysplasia. Epilepsia 2005; 46: 1716-23.43. Crino PB, et al. Embryonic neuronal markers in tuberous sclerosis: single-cell molecular pathology. Proc

Natl Acad Sci USA 1996; 93: 14152-7.44. Crino PB, Trojanowski JQ, Eberwine J. Internexin, MAP1B, and nestin in cortical dysplasia as markers of

developmental maturity. Acta Neuropathol 1997; 93: 619-27.45. Lamparello P, et al. Developmental lineage of cell types in cortical dysplasia with balloon cells. Brain 2007;

130: 2267-76.46. Lee A, et al. Markers of cellular proliferation are expressed in cortical tubers. Ann Neurol 2003; 53: 668-73.47. Martinian L, et al. Expression Patterns of GFAP delta in Epilepsy-Associated Lesional Pathologies.

Neuropathol Appl Neurobiol 2008; 34: P21.48. Mizuguchi M, et al. Doublecortin immunoreactivity in giant cells of tuberous sclerosis and focal cortical

dysplasia. Acta Neuropathol 2002; 104: 418-24.49. Taylor JP, et al. Transcription of intermediate filament genes is enhanced in focal cortical dysplasia. Acta

Neuropathol 2001; 102: 141-8.50. Duggal N, Iskander S, Hammond RR. MAP2 and nestin co-expression in dysembryoplastic neuroepithelial

tumors. Clin Neuropathol 2003; 22: 57-65.51. Duggal N, Hammond RR. Nestin expression in ganglioglioma. Exp Neurol 2002; 174: 89-95.52. Samadani U, et al. Differential cellular gene expression in ganglioglioma. Epilepsia 2007; 48: 646-53.53. Crino PB, Nathanson KL, Henske EP. The tuberous sclerosis complex. N Engl J Med 2006; 355: 1345-56.54. Kwiatkowski DJ. Tuberous sclerosis: from tubers to mTOR. Ann Hum Genet 2003; 67: 87-96.55. Holmes GL, Stafstrom CE. Tuberous sclerosis complex and epilepsy: recent developments and future

challenges. Epilepsia 2007; 48: 617-30.56. Han S, et al. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous

sclerosis complex proteins in brain lesions. Cancer Res 2004; 64: 812-6.57. Inoki K, et al. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev

2003; 17: 1829-34.58. Miyata H, Chiang AC, Vinters HV. Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue

microarray analysis. Ann Neurol 2004; 56: 510-9.59. Becker AJ, et al. Focal cortical dysplasia of Taylor’s balloon cell type: mutational analysis of the TSC1 gene

indicates a pathogenic relationship to tuberous sclerosis. Ann Neurol 2002; 52: 29-37.60. Becker AJ, et al. Mutational analysis of TSC1 and TSC2 genes in gangliogliomas. Neuropathol Appl Neurobiol

2001; 27: 105-14.61. Schonberger A, et al. Increased frequency of distinct TSC2 allelic variants in focal cortical dysplasias with

balloon cells and mineralization. Neuropathology 2009; Apr 21. [Epub ahead of print]62. Ljungberg MC, et al. Activation of mammalian target of rapamycin in cytomegalic neurons of human

cortical dysplasia. Ann Neurol 2006; 60: 420-9.63. Baybis M, et al. mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol

2004; 56: 478-87.64. Schick V, et al. Differential Pi3K-pathway activation in cortical tubers and focal cortical dysplasias with

balloon cells. Brain Pathol 2007; 17: 165-73.65. Schick V, et al. Alterations of phosphatidylinositol 3-kinase pathway components in epilepsy-associated

glioneuronal lesions. Epilepsia 2007; 48 Suppl 5: 65-73.66. Johnson MW, Miyata H, Vinters HV. Ezrin and moesin expression within the developing human cerebrum

and tuberous sclerosis-associated cortical tubers. Acta Neuropathol 2002; 104: 188-96.

193

67. Majores M, et al. Mutational and immunohistochemical analysis of ezrin-, radixin-, moesin (ERM) molecules in epilepsy-associated glioneuronal lesions. Acta Neuropathol 2005; 110: 537-46.

68. Steinhauser C, Seifert G. Glial membrane channels and receptors in epilepsy: impact for generation and spread of seizure activity. Eur J Pharmacol 2002; 447: 227-37.

69. Thom M. Recent advances in the neuropathology of focal lesions in epilepsy. Expert Rev Neurother 2004; 4: 973-84.

70. Kofuji P, Newman EA. Potassium buffering in the central nervous system. Neuroscience 2004; 129: 1045-56.71. Najm I, et al. Mechanisms of epileptogenicity in cortical dysplasias. Neurology 2004; 62: S9-13.72. Cepeda C, et al. Are cytomegalic neurons and balloon cells generators of epileptic activity in pediatric

cortical dysplasia? Epilepsia 2005; 46: 82-8.73. Andre VM, et al. NMDA receptor alterations in neurons from pediatric cortical dysplasia tissue. Cereb

Cortex 2004; 14: 634-46.74. Aronica E, et al. Glioneuronal tumors and medically intractable epilepsy: a clinical study with long-term

follow-up of seizure outcome after surgery. Epilepsy Res 2001; 43: 179-91.75. Lopes da Silva F., et al. Epilepsies as dynamical diseases of brain systems: basic models of the transition

between normal and epileptic activity. Epilepsia 2003; 44 Suppl 12: 72-83.76. Percha B, et al. Transition from local to global phase synchrony in small world neural network and its

possible implications for epilepsy. Phys Rev E Stat Nonlin Soft Matter Phys 2005; 72: 031909.77. Ponten SC, Bartolomei F, Stam CJ. Small-world networks and epilepsy: graph theoretical analysis of

intracerebrally recorded mesial temporal lobe seizures. Clin Neurophysiol 2007; 118: 918-27.78. Wong M. Mechanisms of epileptogenesis in tuberous sclerosis complex and related malformations of

cortical development with abnormal glioneuronal proliferation. Epilepsia 2008; 49: 8-21.79. Lucas SM, Rothwell NJ, Gibson RM. The role of inflammation in CNS injury and disease. Br J Pharmacol

2006; 147 Suppl 1: S232-40.80. Becher B, Prat A, Antel JP. Brain-immune connection: immuno-regulatory properties of CNS-resident cells.

GLIA 2000; 29: 293-304.81. Nguyen MD, Julien JP, Rivest S. Innate immunity: the missing link in neuroprotection and neurodegeneration?

Nat Rev Neurosci 2002; 3: 216-27.82. Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia 2005;

46: 1724-43.83. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat. Rev. Immunol. 2005; 5: 629-40.84. Oprica M, Eriksson C, Schultzberg M. Inflammatory mechanisms associated with brain damage induced by

kainic acid with special reference to the interleukin-1 system. J Cell Mol Med 2003; 7: 127-40.85. Vezzani A. Inflammation and epilepsy. Epilepsy Curr 2005; 5: 1-6.86. Lai AY, et al. Interleukin-1 beta modulates AMPA receptor expression and phosphorylation in hippocampal

neurons. J Neuroimmunol 2006; 175: 97-106.87. Viviani B, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase

through activation of the Src family of kinases. J Neurosci 2003; 23: 8692-700.88. Wang S, et al. Interleukin-1beta inhibits gamma-aminobutyric acid type A (GABA(A)) receptor current in

cultured hippocampal neurons. J Pharmacol Exp Ther 2000; 292: 497-504.89. Yu B, Shinnick-Gallagher P. Interleukin-1 beta inhibits synaptic transmission and induces membrane

hyperpolarization in amygdala neurons. J Pharmacol Exp Ther 1994; 271: 590-600.90. Zhu G, et al. Effects of interleukin-1beta on hippocampal glutamate and GABA releases associated with

Ca2+-induced Ca2+ releasing systems. Epilepsy Res 2006; 71: 107-16.91. Dube C, et al. Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol

2005; 57: 152-5.92. Heida JG, Pittman QJ. Causal links between brain cytokines and experimental febrile convulsions in the rat.

Epilepsia 2005; 46.: 1906-1913.93. Vezzani A, et al. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus

by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci 1999; 19: 5054-65.

94. De Simoni MG, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000; 12: 2623-33.

95. Vezzani A, et al. Functional role of inflammatory cytokines and antiinflammatory molecules in seizures and epileptogenesis. Epilepsia 2002; 43 Suppl 5: 30-5.

96. Vezzani A, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci USA 2000; 97: 11534-9.

194

97. Ravizza T, et al. Inactivation of caspase-1 in rodent brain: a novel anticonvulsive strategy. Epilepsia 2006; 47: 1160-8.

98. Haspolat S, et al. Interleukin-1beta, tumor necrosis factor-alpha, and nitrite levels in febrile seizures. J Child Neurol 2002; 17: 749-51.

99. Hulkkonen J, et al. The balance of inhibitory and excitatory cytokines is differently regulated in vivo and in vitro among therapy resistant epilepsy patients. Epilepsy Res 2004; 59: 199-205.

100. Peltola J, et al. Elevated levels of interleukin-6 may occur in cerebrospinal fluid from patients with recent epileptic seizures. Epilepsy Res 1998; 31: 129-33.

101. Pacifici R, et al. Cytokine production in blood mononuclear cells from epileptic patients. Epilepsia 1995; 36: 384-7.

102. Liu ZS, et al. Serum cytokine levels are altered in patients with West syndrome. Brain Dev 2001; 23: 548-51.103. Peltola J, et al. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with

recent tonic-clonic seizures. Epilepsy Res 2000; 41: 205-11.104. Lahat E, et al. Interleukin-1beta levels in serum and cerebrospinal fluid of children with febrile seizures.

Pediatr Neurol 1997; 17: 34-6.105. Crespel A, et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal

sclerosis. Brain Res 2002; 952: 159-69.106. Sheng JG, et al. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe

epilepsy: association with interleukin-1 alpha immunoreactivity. J Neurochem 1994; 63: 1872-9.107. Maldonado M, et al. Expression of ICAM-1, TNF-alpha, NF kappa B, and MAP kinase in tubers of the

tuberous sclerosis complex. Neurobiol Dis 2003; 14: 279-90.108. Aronica E, et al. Distribution, characterization and clinical significance of microglia in glioneuronal tumours

from patients with chronic intractable epilepsy. Neuropathol Appl Neurobiol 2005; 31: 280-91.109. Boer K, et al. Evidence of activated microglia in focal cortical dysplasia. J Neuroimmunol 2006; 173: 188-195.110. Kew JN, Kemp JA. Ionotropic and metabotropic glutamate receptor structure and pharmacology.

Psychopharmacology (Berl) 2005; 179: 4-29.111. Crino PB, et al. Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical

dysplasia. Neurology 2001; 56: 906-13.112. Ying Z, et al. Induced expression of NMDAR2 proteins and differential expression of NMDAR1 splice variants

in dysplastic neurons of human epileptic neocortex. J Neuropathol Exp Neurol 1998; 57: 47-62.113. Aronica E, et al. Expression and cell distribution of group I and group II metabotropic glutamate receptor

subtypes in taylor-type focal cortical dysplasia. Epilepsia 2003; 44: 785-95.114. White R, et al. Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic

neurons and giant cells of cortical tubers. Ann Neurol 2001; 49: 67-78.115. Aronica E, et al. Ionotropic and metabotropic glutamate receptor protein expression in glioneuronal

tumors from patients with intractable epilepsy. Neuropathol Appl Neurobiol 2001; 27: 1-16.116. Treiman DM. GABAergic mechanisms in epilepsy. Epilepsia 2001; 42 Suppl 3: 8-12.117. Levitt P. Disruption of interneuron development. Epilepsia 2005; 46: 22-8.118. Spreafico R, et al. Cortical dysplasia: an immunocytochemical study of three patients. Neurology 1998; 50:

27-36.119. Thom M, et al. Cajal-Retzius cells, inhibitory interneuronal populations and neuropeptide Y expression in

focal cortical dysplasia and microdysgenesis. Acta Neuropathol 2003; 105: 561-9.120. Alonso-Nanclares L, et al. Microanatomy of the dysplastic neocortex from epileptic patients. Brain 2005;

128: 158-73.121. Valencia I, et al. Anomalous inhibitory circuits in cortical tubers of human tuberous sclerosis complex

associated with refractory epilepsy: aberrant expression of parvalbumin and calbindin-D28k in dysplastic cortex. J Child Neurol 2006; 21: 1058-63.

122. Wolf HK, et al. Neurochemical profile of glioneuronal lesions from patients with pharmacoresistant focal epilepsies. J Neuropathol Exp Neurol 1995; 54: 689-97.

123. Aronica E, et al. Inhibitory networks in epilepsy-associated gangliogliomas and in the perilesional epileptic cortex. Epilepsy Res 2007; 74: 33-44.

124. Wolf HK, et al. Perilesional neurochemical changes in focal epilepsies. Acta Neuropathol 1996; 91: 376-84.125. Calcagnotto ME, et al. Dysfunction of synaptic inhibition in epilepsy associated with focal cortical dysplasia.

J Neurosci 2005; 25: 9649-57.126. Wolf HK, Wiestler OD. Malformative and neoplastic glioneuronal lesions in patients with chronic

pharmacoresistant epilepsies. Adv Neurol 1999; 81: 69-79.

195

127. Morris HH, et al. Ganglioglioma and intractable epilepsy: clinical and neurophysiologic features and predictors of outcome after surgery. Epilepsia 1998; 39: 307-13.

128. Nolan MA, et al. Dysembryoplastic neuroepithelial tumors in childhood: long-term outcome and prognostic features. Neurology 2004; 62: 2270-6.

129. Majores M, et al. Tumor recurrence and malignant progression of gangliogliomas. Cancer 2008; 113: 3355-63.130. Wolf HK, et al. Glioneuronal malformative lesions and dysembryoplastic neuroepithelial tumors in patients

with chronic pharmacoresistant epilepsies. J Neuropathol Exp Neurol 1995; 54: 245-54.131. Louis DN, et al. WHO Classification of Tumours of the Central Nervous System, ed. DN Louis, et al. 2007,

IARC Press, Lyon.132. Takahashi A., et al. Frequent association of cortical dysplasia in dysembryoplastic neuroepithelial tumor

treated by epilepsy surgery. Surg Neurol 2005; 64: 419-27.133. Blümcke I, et al. Evidence for developmental precursor lesions in epilepsy-associated glioneuronal tumors.

Microsc Res Tech 1999; 46: 53-8.134. Deb P, et al. Expression of CD34 as a novel marker for glioneuronal lesions associated with chronic

intractable epilepsy. Neuropathol Appl Neurobiol 2006; 32: 461-8.135. Ferrier CH, et al. Electrocorticographic discharge patterns in glioneuronal tumors and focal cortical

dysplasia. Epilepsia 2006; 47: 1477-86.136. Becker AJ, et al. Molecular neuropathology of epilepsy-associated glioneuronal malformations. J

Neuropathol Exp Neurol 2006; 65: 99-108.137. Aronica E, et al. Gene expression profile analysis of epilepsy-associated gangliogliomas. Neuroscience

2008; 151: 272-92.138. Fassunke J, et al. Array analysis of epilepsy-associated gangliogliomas reveals expression patterns related

to aberrant development of neuronal precursors. Brain 2008; 131: 3034-50.139. Holmes GL, Stafstrom CE. Tuberous sclerosis complex and epilepsy: recent developments and future

challenges. Epilepsia 2007; 48: 617-30.140. Meikle L, et al. A mouse model of tuberous sclerosis: neuronal loss of Tsc1 causes dysplastic and ectopic

neurons, reduced myelination, seizure activity, and limited survival. J Neurosci 2007; 27: 5546-58.141. Scheidenhelm DK, et al. Akt-dependent cell size regulation by the adhesion molecule on glia occurs

independently of phosphatidylinositol 3-kinase and Rheb signaling. Mol Cell Biol 2005; 25: 3151-62.142. McClatchey AI. Merlin and ERM proteins: unappreciated roles in cancer development? Nature Reviews.

Cancer 2003; 3: 877-83.143. Lamb RF, et al. The TSC1 tumour suppressor hamartin regulates cell adhesion through ERM proteins and

the GTPase Rho. Nat Cell Biol 2000; 2: 281-7.144. van Veelen CW, et al. Combined use of subdural and intracerebral electrodes in preoperative evaluation of

epilepsy. Neurosurgery 1990; 26: 93-101.145. Engel JJ. Outcome with respect to epileptic seizures, in Surgical treatment of the epilepsies, Engel JJ. 1993,

Raven Press, New York, p. 609–621.146. Aronica E, et al. Co-expression of cyclin D1 and phosphorylated ribosomal S6 proteins in hemimegalencephaly.

Acta Neuropathol 2007; 114: 287-93.147. Bellacosa A, et al. Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer

Res 2005; 94: 29-86.148. Bhaskar PT, Hay N. The two TORCs and Akt. Dev Cell 2007; 12: 487-502.149. Mizuguchi M, et al. Novel cerebral lesions in the Eker rat model of tuberous sclerosis: cortical tuber and

anaplastic ganglioglioma. J Neuropathol Exp Neurol 2000; 59: 188-96.150. Paglini G, et al. Suppression of radixin and moesin alters growth cone morphology, motility, and process

formation in primary cultured neurons. J Cell Biol 1998; 143: 443-55.151. Derouiche A, Frotscher M. Peripheral astrocyte processes: monitoring by selective immunostaining for the

actin-binding ERM proteins. GLIA 2001; 36: 330-41.152. Pullen N, Thomas G. The modular phosphorylation and activation of p70s6k. FEBS Lett 1997; 410: 78-82.153. El-Hashemite N, et al. Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through

mammalian target of rapamycin. Cancer Res 2003; 63: 5173-7.154. Kwiatkowski DJ, Manning BD. Tuberous sclerosis: a GAP at the crossroads of multiple signaling pathways.

Hum Mol Genet 2005; 14 Spec No. 2: R251-8.155. Astrinidis A, Henske EP. Tuberous sclerosis complex: linking growth and energy signaling pathways with

human disease. Oncogene 2005; 24: 7475-81.156. Jozwiak J, Wlodarski P. Hamartin and tuberin modulate gene transcription via beta-catenin. J Neurooncol

2006; 79: 229-34.

196

157. Mak BC, et al. Aberrant beta-catenin signaling in tuberous sclerosis. Am J Pathol 2005; 167: 107-16.158. Sosunov AA, et al. Tuberous sclerosis: a primary pathology of astrocytes? Epilepsia 2008; 49 Suppl 2: 53-62.159. Pagliusi SR, et al. The Adhesion Molecule on Glia (AMOG) Is Widely Expressed by Astrocytes in Developing

and Adult Mouse Brain. Eur J Neurosci 1990; 2: 471-480.160. Lecuona E, et al. Expression of the beta 1 and beta 2(AMOG) subunits of the Na,K-ATPase in neural tissues:

cellular and developmental distribution patterns. Brain Res Bull 1996; 40: 167-74.161. Senner V, et al. AMOG/beta2 and glioma invasion: does loss of AMOG make tumour cells run amok?

Neuropathol Appl Neurobiol 2003; 29: 370-7.162. Hoischen A, et al. Comprehensive characterization of genomic aberrations in gangliogliomas by CGH, array-

based CGH and interphase FISH. Brain Pathol 2008; 18: 326-37.163. Roy H, Bhardwaj S, Yla-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett 2006; 580:

2879-87.164. Yamazaki Y, Morita T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers

2006; 10: 515-27.165. Ferrara N, Gerber HP. The role of vascular endothelial growth factor in angiogenesis. Acta Haematol 2001;

106: 148-56.166. Carmeliet P, Storkebaum E. Vascular and neuronal effects of VEGF in the nervous system: implications for

neurological disorders. Semin Cell Dev Biol 2002; 13: 39-53.167. Dvorak HF. Angiogenesis: update 2005. J Thromb Haemost 2005; 3: 1835-42.168. Greenberg DA, Jin K. From angiogenesis to neuropathology. Nature 2005; 438: 954-959.169. Galvan V, Greenberg DA, Jin K. The role of vascular endothelial growth factor in neurogenesis in adult brain.

Mini Rev Med Chem 2006; 6: 667-9.170. Raab S, Plate KH. Different networks, common growth factors: shared growth factors and receptors of the

vascular and the nervous system. Acta Neuropathol 2007; 113: 607-26.171. Olofsson B, et al. Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proc Natl

Acad Sci USA 1996; 93: 2576-81.172. Aase K, et al. Localization of VEGF-B in the mouse embryo suggests a paracrine role of the growth factor in

the developing vasculature. Dev Dyn 1999; 215: 12-25.173. Lagercrantz J, et al. A comparative study of the expression patterns for vegf, vegf-b/vrf and vegf-c in the

developing and adult mouse. Biochim Biophys Acta 1998; 1398: 157-63.174. Silvestre JS, et al. Vascular endothelial growth factor-B promotes in vivo angiogenesis. Circ Res 2003; 93:

114-23.175. Jin KL, Mao XO, Greenberg DA. Vascular endothelial growth factor: direct neuroprotective effect in in vitro

ischemia. Proc Natl Acad Sci USA 2000; 97: 10242-7.176. Sun Y, et al. Increased severity of cerebral ischemic injury in vascular endothelial growth factor-B-deficient

mice. J Cereb Blood Flow Metab 2004; 24: 1146-52.177. Sun Y, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia.

J Clin Invest 2003; 111: 1843-51.178. Sun Y, et al. Vascular endothelial growth factor-B (VEGFB) stimulates neurogenesis: evidence from knockout

mice and growth factor administration. Dev Biol 2006; 289: 329-35.179. Petrova TV, Makinen T, Alitalo K. Signaling via vascular endothelial growth factor receptors. Exp Cell Res

1999; 253: 117-30.180. Croll SD, Goodman JH, Scharfman HE. Vascular endothelial growth factor (VEGF) in seizures: a double-

edged sword. Adv Exp Med Biol 2004; 548: 57-68.181. Nicoletti JN, et al. Vascular endothelial growth factor is up-regulated after status epilepticus and protects

against seizure-induced neuronal loss in hippocampus. Neuroscience 2008; 151: 232-41.182. Rigau V, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy.

Brain. 2007; 130: 1942-56.183. Pietsch T, et al. Expression and distribution of vascular endothelial growth factor protein in human brain

tumors. Acta Neuropathol 1997; 93: 109-17.184. Partanen TA, et al. Endothelial growth factor receptors in human fetal heart. Circulation 1999; 100: 583-6.185. Simon M, et al. Receptors of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) in

fetal and adult human kidney: localization and [125I]VEGF binding sites. J Am Soc Nephrol 1998; 9: 1032-44.186. Witmer AN, et al. Expression of vascular endothelial growth factor receptors 1, 2, and 3 in quiescent

endothelia. J Histochem Cytochem 2002; 50: 767-77.187. Smith PK, et al. Measurement of protein using bicinchoninic acid. Anal Biochem 1985; 150: 76-85.

197

188. Brockington A, et al. Expression of vascular endothelial growth factor and its receptors in the central nervous system in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol 2006; 65: 26-36.

189. Aronica E, et al. Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 2007; 26: 497-511.

190. Ravizza T, et al. The IL-1beta system in epilepsy-associated malformations of cortical development. Neurobiol Dis. 2006; 24: 128-43.

191. Geurts JJ, et al. Altered expression patterns of group I and II metabotropic glutamate receptors in multiple sclerosis. Brain 2003; 126: 1755-66.

192. Newton SS, et al. Gene profile of electroconvulsive seizures: induction of neurotrophic and angiogenic factors. J Neurosci 2003; 23: 10841-51.

193. Kim BK, et al. Neurogenic effect of vascular endothelial growth factor during germ layer formation of human embryonic stem cells. FEBS Lett 2006; 580: 5869-74.

194. Hashimoto T, et al. VEGF activates divergent intracellular signaling components to regulate retinal progenitor cell proliferation and neuronal differentiation. Development 2006; 133: 2201-10.

195. Vezzani A. VEGF and seizures: cross-talk between endothelial and neuronal environments. Epilepsy Curr. 2005; 5: 72-4.

196. Marti HH, Risau W. Systemic hypoxia changes the organ-specific distribution of vascular endothelial growth factor and its receptors. Proc Natl Acad Sci USA 1998; 95: 15809-14.

197. Monacci WT, Merrill MJ, Oldfield EH. Expression of vascular permeability factor/vascular endothelial growth factor in normal rat tissues. Am J Physiol 1993; 264: C995-1002.

198. Nag S, et al. Differential expression of vascular endothelial growth factor-A (VEGF-A) and VEGF-B after brain injury. J Neuropathol Exp Neurol 2002; 61: 778-88.

199. Tham E, et al. Decreased expression of VEGF-A in rat experimental autoimmune encephalomyelitis and in cerebrospinal fluid mononuclear cells from patients with multiple sclerosis. Scand J Immunol 2006; 64: 609-22.

200. Wada K, et al. Expression levels of vascular endothelial growth factor and its receptors in Parkinson’s disease. Neuroreport 2006; 17: 705-9.

201. Gollmer JC, et al. Expression of vascular endothelial growth factor-b in human astrocytoma. Neuro Oncol 2000; 2: 80-6.

202. Issa R, et al. Vascular endothelial growth factor and its receptor, KDR, in human brain tissue after ischemic stroke. Lab Invest 1999; 79: 417-25.

203. Salhia B, et al. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Res 2000; 883: 87-97.

204. Wang WY, et al. Vascular endothelial growth factor and its receptor Flk-1 are expressed in the hippocampus following entorhinal deafferentation. Neuroscience 2005; 134: 1167-78.

205. Crino PB, Miyata H, Vinters HV. Neurodevelopmental disorders as a cause of seizures: neuropathologic, genetic, and mechanistic considerations. Brain Pathol 2002; 12: 212-33.

206. Liu Y, et al. Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5’ enhancer. Circ Res 1995; 77: 638-43.

207. Forsythe JA, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604-13.

208. Semenza GL. HIF-1: using two hands to flip the angiogenic switch. Cancer Metastasis Rev 2000; 19: 59-65.209. Joko J, Mazurek M. Transcription factors having impact on vascular endothelial growth factor (VEGF) gene

expression in angiogenesis. Med Sci Monit 2004; 10: RA89-98.210. Argaw AT, et al. IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-

angiogenesis program. J Immunol 2006; 177: 5574-84.211. Croll SD, et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp Neurol 2004; 187:

388-402.212. Kuldo JM, et al. Molecular pathways of endothelial cell activation for (targeted) pharmacological

intervention of chronic inflammatory diseases. Curr Vasc Pharmacol 2005; 3: 11-39.213. Sunderkotter C, et al. Macrophages and angiogenesis. J Leukoc Biol 1994; 55: 410-22.214. Plate KH, et al. Cell type specific upregulation of vascular endothelial growth factor in an MCA-occlusion

model of cerebral infarct. J Neuropathol Exp Neurol 1999; 58: 654-66.215. Choi JS, et al. Upregulation of vascular endothelial growth factor receptors Flt-1 and Flk-1 in rat hippocampus

after transient forebrain ischemia. J Neurotrauma 2007; 24: 521-31.216. Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes

vascular leakage in the brain. Brain 2002; 125: 2549-57.

198

217. van Vliet EA, et al. Long-lasting increased permeability of the blood-brain barrier may contribute to seizure progression in temporal lobe epilepsy. Brain 2007; 130: 521-534.

218. Ravizza T, et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008; 29: 142-60

219. Oosthuyse B, et al. Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 2001; 28: 131-8.

220. Cao L, et al. VEGF links hippocampal activity with neurogenesis, learning and memory. Nat Genet 2004; 36: 827-35.

221. Jin K, et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci USA 2002; 99: 11946-50.

222. Sun FY, Guo X. Molecular and cellular mechanisms of neuroprotection by vascular endothelial growth factor. J Neurosci Res 2005; 79: 180-4.

223. Kilic E, et al. The phosphatidylinositol-3 kinase/Akt pathway mediates VEGF’s neuroprotective activity and induces blood brain barrier permeability after focal cerebral ischemia. FASEB J 2006; 20: 1185-7.

224. Enholm B, et al. Comparison of VEGF, VEGF-B, VEGF-C and Ang-1 mRNA regulation by serum, growth factors, oncoproteins and hypoxia. Oncogene 1997; 14: 2475-83.

225. Silins G, et al. Analysis of the promoter region of the human VEGF-related factor gene. Biochem Biophys Res Commun 1997; 230: 413-8.

226. Nash AD, et al. The biology of vascular endothelial growth factor-B (VEGF-B). Pulm Pharmacol Ther 2006; 19: 61-9.

227. Lennmyr, F., et al. Expression of vascular endothelial growth factor (VEGF) and its receptors (Flt-1 and Flk-1) following permanent and transient occlusion of the middle cerebral artery in the rat. J Neuropathol Exp Neurol 1998; 57: 874-82.

228. Spliet WG, et al. Immunohistochemical localization of vascular endothelial growth factor receptors-1, -2 and -3 in human spinal cord: altered expression in amyotrophic lateral sclerosis. Neuropathol Appl Neurobiol 2004; 30: 351-9.

229. Jin KL, et al. Induction of vascular endothelial growth factor receptors and phosphatidylinositol 3’-kinase/Akt signaling by global cerebral ischemia in the rat. Neuroscience 2000; 100: 713-7.

230. Krum JM, Mani N, Rosenstein JM. Angiogenic and astroglial responses to vascular endothelial growth factor administration in adult rat brain. Neuroscience 2002; 110: 589-604.

231. Rosenstein JM, et al. Patterns of brain angiogenesis after vascular endothelial growth factor administration in vitro and in vivo. Proc Natl Acad Sci USA 1998; 95: 7086-91.

232. McCloskey DP, Croll SD, Scharfman HE. Depression of synaptic transmission by vascular endothelial growth factor in adult rat hippocampus and evidence for increased efficacy after chronic seizures. J Neurosci 2005; 25: 8889-97.

233. Forstreuter F, Lucius R, Mentlein R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J Neuroimmunol 2002; 132: 93-8.

234. Farrell MA, Vinters HV. General neuropathology of epilepsy, in Epilepsy: A comprehensive textbook. Engel J, Pedley TA. 1997, Lippincott-Raven, Philadelphia, p. 157-174.

235. Mattia D, Olivier A, Avoli M. Seizure-like discharges recorded in human dysplastic neocortex maintained in vitro. Neurology 1995; 45: 1391-5.

236. Palmini A, et al. Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 1995; 37: 476-87.

237. Avoli M, et al. Epileptiform synchronization in the human dysplastic cortex. Epileptic Disorders 2003; 5: 45-50.

238. Cepeda C, et al. Pediatric cortical dysplasia: correlations between neuroimaging, electrophysiology and location of cytomegalic neurons and balloon cells and glutamate/GABA synaptic circuits. Dev Neurosci 2005; 27: 59-76.

239. Aronica E, et al. Expression of connexin 43 and connexin 32 gap junction proteins in epilepsy-associated brain tumors and in the perilesional epileptic cortex. Acta Neuropathol 2001; 101: 449-459.

240. Aronica E, et al. Expression and cellular distribution of high- and low-affinity neurotrophin receptors in malformations of cortical development. Acta Neuropathol 2004; 108: 422-34.

241. Vezzani A, et al. Functional role of proinflammatory and anti-inflammatory cytokines in seizures. Adv Exp Med Biol 2004; 548: 123-33.

242. Minami M, Kuraishi Y, Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun 1991; 176: 593-8.

199

243. Eriksson C, et al. Immunohistochemical localization of interleukin-1beta, interleukin-1 receptor antagonist and interleukin-1beta converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience 1999; 93: 915-30.

244. Plata-Salaman CR, et al. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res 2000; 75: 248-58.

245. Turrin NP, Rivest S. Innate immune reaction in response to seizures: implications for the neuropathology associated with epilepsy. Neurobiol Dis 2004; 16: 321-34.

246. Baranzini SE, et al. Gene expression analysis reveals altered brain transcription of glutamate receptors and inflammatory genes in a patient with chronic focal (Rasmussen’s) encephalitis. J Neuroimmunol 2002; 128: 9-15.

247. Kanemoto K, et al. Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000; 47: 571-4.

248. Virta M, Hurme M, Helminen M. Increased frequency of interleukin-1beta (-511) allele 2 in febrile seizures. Pediatr Neurol 2002; 26: 192-5.

249. Tan NC, Mulley JC, Berkovic SF. Genetic association studies in epilepsy: “the truth is out there”. Epilepsia 2004; 45: 1429-42.

250. Kleihues P, Cavenee WK. World Health Organisation classification of tumours: Pathology and genetics of tumours of the nervous system. Kleihues P, Cavenee WK. 2000, IARC Press, Lyon.

251. Ricote M, et al. Interleukin-1 (IL-1alpha and IL-1beta) and its receptors (IL-1RI, IL-1RII, and IL-1Ra) in prostate carcinoma. Cancer 2004; 100: 1388-96.

252. Akoum A, et al. Decreased expression of the decoy interleukin-1 receptor type II in human endometriosis. Am J Pathol 2001; 158: 481-9.

253. Giometto B, et al. Immune infiltrates and cytokines in gliomas. Acta Neuroch 1996; 138: 50-6.254. Sasaki A, et al. Expression of interleukin-1beta mRNA and protein in human gliomas assessed by RT-PCR

and immunohistochemistry. J Neuropathol Exp Neurol 1998; 57: 653-63.255. Huitinga I, et al. IL-1beta immunoreactive neurons in the human hypothalamus: reduced numbers in

multiple sclerosis. J Neuroimmunol 2000; 107: 8-20.256. Aronica E, et al. Expression of brain-derived neurotrophic factor and tyrosine kinase B receptor proteins in

glioneuronal tumors from patients with intractable epilepsy: colocalization with N-methyl-D-aspartic acid receptor. Acta Neuropathol 2001; 101: 383-92.

257. Vandeputte DA, et al. Expression and distribution of id helix-loop-helix proteins in human astrocytic tumors. Glia 2002; 38: 329-38.

258. Sisodiya SM. Malformations of cortical development: burdens and insights from important causes of human epilepsy. Lancet Neurol 2004; 3: 29-38.

259. Prayson RA, Estes ML, Morris HH. Coexistence of neoplasia and cortical dysplasia in patients presenting with seizures. Epilepsia 1993; 34: 609-15.

260. Sakuta R, et al. Recurrent intractable seizures in children with cortical dysplasia adjacent to dysembryoplastic neuroepithelial tumor. J Child Neurol 2005; 20: 377-84.

261. Evert BO, et al. Inflammatory genes are upregulated in expanded ataxin-3-expressing cell lines and spinocerebellar ataxia type 3 brains. J Neurosci 2001; 21: 5389-96.

262. Kadhim H, et al. Cytokine immunoreactivity in cortical and subcortical neurons in periventricular leukomalacia: are cytokines implicated in neuronal dysfunction in cerebral palsy? Acta Neuropathol 2003; 105: 209-16.

263. Vitkovic L, Bockaert J, Jacque C. “Inflammatory” cytokines: neuromodulators in normal brain? J Neurochem 2000; 74: 457-71.

264. Mrak RE, Griffin WS. Interleukin-1, neuroinflammation, and Alzheimer’s disease. Neurobiol Aging 2001; 22: 903-8.

265. Liu L, et al. S100B-induced microglial and neuronal IL-1 expression is mediated by cell type-specific transcription factors. J Neurochem 2005; 92: 546-53.

266. Ravizza T, Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 2006; 137: 301-308.

267. Bernardino L, et al. Modulator effects of interleukin-1beta and tumor necrosis factor-alpha on AMPA-induced excitotoxicity in mouse organotypic hippocampal slice cultures. J Neurosci 2005; 25.: 6734-44.

268. Rothwell NJ, Strijbos PJ. Cytokines in neurodegeneration and repair. Int J Dev Neurosci 1995; 13: 179-85.269. Pringle AK, et al. Interleukin-1beta exacerbates hypoxia-induced neuronal damage, but attenuates toxicity

produced by simulated ischaemia and excitotoxicity in rat organotypic hippocampal slice cultures. Neurosci Lett 2001; 305: 29-32.

200

270. Strijbos PJ, Rothwell NJ. Interleukin-1 beta attenuates excitatory amino acid-induced neurodegeneration in vitro: involvement of nerve growth factor. J Neurosci 1995; 15: 3468-74.

271. Miklic S, Juric DM, Carman-Krzan M. Differences in the regulation of BDNF and NGF synthesis in cultured neonatal rat astrocytes. Int. J. Dev. Neurosci. 2004; 22: 119-30.

272. Colotta F, et al. Interleukin-1 type II receptor: a decoy target for IL-1 that is regulated by IL-4. Science 1993; 261: 472-5.

273. Sims JE, et al. Interleukin 1 signaling occurs exclusively via the type I receptor. Proc Natl Acad Sci USA 1993; 90: 6155-9.

274. Dinarello CA. Biologic basis for interleukin-1 in disease. Blood 1996; 87: 2095-147.275. Gibson RM, Rothwell NJ, Le Feuvre RA. CNS injury: the role of the cytokine IL-1. Vet J 2004; 168: 230-7.276. Lachman LB, Brown DC, Dinarello CA. Growth-promoting effect of recombinant interleukin 1 and tumor

necrosis factor for a human astrocytoma cell line. J Immunol 1987; 138: 2913-6.277. Kasahara T, et al. IL1 induces proliferation and IL6 mRNA expression in a human astrocytoma cell line:

positive and negative modulation by chorela toxin and cAMP. Biochem Biophys Res Commun 1990; 167: 1242-8.

278. Ye ZC, Sontheimer H. Cytokine modulation of glial glutamate uptake: a possible involvement of nitric oxide. Neuroreport 1996; 7: 2181-5.

279. Aronica E, et al. Upregulation of metabotropic glutamate receptor subtype mGluR3 and mGluR5 in reactive astrocytes in a rat model of mesial temporal lobe epilepsy. Eur J Neurosci 2000; 12: 2333-44.

280. Aronica E, et al. Activation of metabotropic glutamate receptor 3 enhances interleukin (IL)-1beta-stimulated release of IL-6 in cultured human astrocytes. Neuroscience 2005; 130: 927-33.

281. Rosenow F, et al. Histopathological correlates of epileptogenicity as expressed by electrocorticographic spiking and seizure frequency. Epilepsia 1998; 39: 850-6.

282. Boonyapisit K, et al. Epileptogenicity of focal malformations due to abnormal cortical development: direct electrocorticographic-histopathologic correlations. Epilepsia 2003; 44: 69-76.

283. Farrell MA, et al. Neuropathologic findings in cortical resections (including hemispherectomies) performed for the treatment of intractable childhood epilepsy. Acta Neuropathol 1992; 83: 246-59.

284. Vinters HV, et al. Morphological substrates of infantile spasms: studies based on surgically resected cerebral tissue. Childs Nerv Syst 1992; 8: 8-17.

285. Aronica E, et al. Interleukin-1 beta down-regulates the expression of metabotropic glutamate receptor 5 in cultured human astrocytes. J Neuroimmunol 2005; 160: 188-94.

286. Hu S, et al. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 2000; 7: 153-9.

287. Hewett SJ, Csernansky CA, Choi DW. Selective potentiation of NMDA-induced neuronal injury following induction of astrocytic iNOS. Neuron 1994; 13: 487-94.

288. Casamenti F, et al. Interleukin-1beta activates forebrain glial cells and increases nitric oxide production and cortical glutamate and GABA release in vivo: implications for Alzheimer’s disease. Neuroscience 1999; 91: 831-42.

289. Ying Z, et al. Selective coexpression of NMDAR2A/B and NMDAR1 subunit proteins in dysplastic neurons of human epileptic cortex. Exp Neurol 1999; 159: 409-18.

290. Aronica E, et al. Expression of BDNF and Tyrosine kinase B (TrkB) receptor proteins in glioneuronal tumors from patients with intractable epilepsy: colocalization with NMDA receptor. Acta Neuropathol 2001; 101: 383-392.

291. Najm IM, et al. Epileptogenicity correlated with increased N-methyl-D-aspartate receptor subunit NR2A/B in human focal cortical dysplasia. Epilepsia 2000; 41: 971-6.

292. Moddel G, et al. The NMDA receptor NR2B subunit contributes to epileptogenesis in human cortical dysplasia. Brain Res 2005; 1046: 10-23.

293. Zeise ML, et al. Interleukin-1beta does not increase synaptic inhibition in hippocampal CA3 pyramidal and dentate gyrus granule cells of the rat in vitro. Brain Res 1997; 768: 341-4.

294. Hirsch EC, et al. The role of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci 2003; 991: 214-28.

295. Griffin WS, et al. Interleukin-1 mediates Alzheimer and Lewy body pathologies. J Neuroinflammation 2006; 3:5:

296. Griffin WS. Inflammation and neurodegenerative diseases. Am J Clin Nutr. 2006; 83: 470S-474S.297. Poser CM, Brinar VV. Epilepsy and multiple sclerosis. Epilepsy Behav 2003; 4: 6-12.298. Thomas RJ. Seizures and epilepsy in the elderly. Arch Intern Med. 1997; 157: 605-17.299. Menendez, M. Down syndrome, Alzheimer’s disease and seizures. Brain Dev 2005; 27: 246-52.

201

300. Colom LV. Septal networks: relevance to theta rhythm, epilepsy and Alzheimer’s disease. J. Neurochem. 2006; 96: 609-23.

301. Curatolo P, Verdecchia M, Bombardieri R. Tuberous sclerosis complex: a review of neurological aspects. Eur J Paediatr Neurol 2002; 6: 15-23.

302. Bolton PF. Neuroepileptic correlates of autistic symptomatology in tuberous sclerosis. Ment Retard Dev Disabil Res Rev 2004; 10: 126-31.

303. Jozwiak J, Jozwiak S, Skopinski P. Immunohistochemical and microscopic studies on giant cells in tuberous sclerosis. Histol Histopathol 2005; 20: 1321-6.

304. Goh S, Butler W, Thiele EA. Subependymal giant cell tumors in tuberous sclerosis complex. Neurology 2004; 63: 1457-61.

305. Arai Y, Takashima S, Becker LE. Downregulation of glutamate receptor subunit 2(3) in subependymal giant-cell tumor. Pediatr Neurol 2000; 23: 37-41.

306. Kyin R, et al. Differential cellular expression of neurotrophins in cortical tubers of the tuberous sclerosis complex. Am J Pathol 2001; 159: 1541-54.

307. Gomez M, Sampson J, Whittemore V. The Tuberous Sclerosis Complex. 1999, Oxford University Press, Oxford.

308. Graeber MB, Scheithauer BW, Kreutzberg GW. Microglia in brain tumors. Glia 2002; 40: 252-9.309. Niquet J, Ben-Ari Y, Represa A. Glial reaction after seizure induced hippocampal lesion: immunohistochemical

characterization of proliferating glial cells. J Neurocytol 1994; 23: 641-56.310. Shaw JA, Perry VH, Mellanby J. MHC class II expression by microglia in tetanus toxin-induced experimental

epilepsy in the rat. Neuropathol Appl Neurobiol 1994; 20: 392-8.311. Beach TG, et al. Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy.

Neurosci Lett 1995; 191: 27-30.312. Rossi ML, et al. Mononuclear cell infiltrate and HLA-DR expression in low grade astrocytomas. An

immunohistological study of 23 cases. Acta Neuropathol 1988; 76: 281-6.313. Fingar DC, et al. Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/

eIF4E. Genes Dev 2002; 16: 1472-87.314. Crino PB. Molecular pathogenesis of tuber formation in tuberous sclerosis complex. J Child Neurol 2004;

19: 716-25.315. Lim HK, et al. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-

mammalian target of rapamycin-p70 S6 kinase 1 pathway. J Biol Chem 2003; 278: 45117-27.316. Weinstein SL, et al. Phosphatidylinositol 3-kinase and mTOR mediate lipopolysaccharide-stimulated nitric

oxide production in macrophages via interferon-beta. J Leukoc Biol 2000; 67: 405-14.317. Potter MW, et al. Endotoxin (LPS) stimulates 4E-BP1/PHAS-I phosphorylation in macrophages. J Surg Res

2001; 97: 54-9.318. Cagnin A, et al. In vivo evidence for microglial activation in neurodegenerative dementia. Acta Neurol Scan

2006; Suppl 185: 107-14.319. Mlodzikowska-Albrecht J, Steinborn B, Zarowski M. Cytokines, epilepsy and epileptic drugs - is there a

mutual influence? Pharmacol Rep 2007; 59: 129-38.320. Chew LJ, Takanohashi A, Bell M. Microglia and inflammation: impact on developmental brain injuries.

Ment Retard Dev Disabil Res Rev 2006; 12: 105-12.321. Cohly HH, Panja A. Immunological findings in autism. Int Rev Neurobiol 2005; 71: 317-41.322. Sharma M, et al. Subependymal giant cell astrocytoma: a clinicopathological study of 23 cases with special

emphasis on proliferative markers and expression of p53 and retinoblastoma gene proteins. Pathology 2004; 36: 139-44.

323. Pardo CA, et al. The pathology of Rasmussen syndrome: stages of cortical involvement and neuropathological studies in 45 hemispherectomies. Epilepsia 2004; 45: 516-26.

324. Bonifati DM, Kishore U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 2007; 44: 999-1010.

325. Xiong ZQ, et al. Formation of complement membrane attack complex in mammalian cerebral cortex evokes seizures and neurodegeneration. J Neurosci 2003; 23: 955-60.

326. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16: 1-13.

327. Seiffert E, et al. Lasting blood-brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 2004; 24: 7829-36.

328. Ivens S, et al. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain 2007; 130: 535-47.

202

329. Aronica E, et al. Differential expression patterns of Chloride transporters, NKCC1 and KCC2, in epilepsy-associated malformations of cortical development. Neuroscience 2007; 145: 185-96.

330. Baybis M, et al. Altered expression of neurotransmitter-receptor subunit and uptake site mRNAs in hemimegalencephaly. Epilepsia 2004; 45: 1517-24.

331. Crino PB. Molecular pathogenesis of focal cortical dysplasia and hemimegalencephaly. J Child Neurol 2005; 20: 330-6.

332. Bammler T, et al. Standardizing global gene expression analysis between laboratories and across platforms. Nat Methods 2005; 2: 351-6.

333. Stan AD, et al. Human postmortem tissue: what quality markers matter? Brain Res 2006; 1123: 1-11.334. Gautier L, et al. Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 2004; 20: 307-15.335. Benjamini Y, et al. Controlling the false discovery rate in behavior genetics research. Behav Brain Res 2001;

125: 279-84.336. Doniger SW, et al. MAPPFinder: using Gene Ontology and GenMAPP to create a global gene-expression

profile from microarray data. Genome Biol 2003; 4: R7.337. Ramakers C, et al. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR)

data. Neurosci Lett 2003; 339: 62-6.338. Karlen Y, et al. Statistical significance of quantitative PCR. BMC Bioinformatics 2007; 8: 131.339. Meri S, et al. Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits

C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology 1990; 71: 1-9.340. Liszewski MK, et al. Control of the complement system. Adv Immunol 1996; 61: 201-83.341. Collen D. The plasminogen (fibrinolytic) system. Thromb Haemost 1999; 82: 259-70.342. Gerke V, Moss SE. Annexins: from structure to function. Physiol Rev 2002; 82: 331-71.343. Lim LH, Pervaiz S. Annexin 1: the new face of an old molecule. FASEB J 2007; 21: 968-75.344. Crino PB, Becker AJ. Gene profiling in temporal lobe epilepsy tissue and dysplastic lesions. Epilepsia 2006;

47: 1608-16.345. Malaterre J, Ramsay RG, Mantamadiotis T. Wnt-Frizzled signalling and the many paths to neural

development and adult brain homeostasis. Front Biosci 2007; 12: 492-506.346. Shao R, et al. Acquired expression of periostin by human breast cancers promotes tumor angiogenesis

through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 2004; 24: 3992-4003.

347. Bao S, et al. Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 2004; 5: 329-39.

348. Klagsbrun M, Takashima S, Mamluk R. The role of neuropilin in vascular and tumor biology. Adv Exp Med Biol 2002; 515: 33-48.

349. Iwai K, et al. An anti-proliferative gene BTG1 regulates angiogenesis in vitro. Biochem Biophys Res Commun 2004; 316: 628-35.

350. Fritschy JM, et al. Pre- and post-synaptic mechanisms regulating the clustering of type A gamma-aminobutyric acid receptors (GABAA receptors). Biochem Soc Trans 2003; 31: 889-92.

351. Staley K, Smith R. A new form of feedback at the GABA(A) receptor. Nat Neurosci 2001; 4: 674-6.352. Payne JA, et al. Cation-chloride co-transporters in neuronal communication, development and trauma.

Trends Neurosci 2003; 26: 199-206.353. Yamada J, et al. Cl- uptake promoting depolarizing GABA actions in immature rat neocortical neurones is

mediated by NKCC1. J Physiol 2004; 557: 829-41.354. Barbaccia ML, et al. DBI (diazepam binding inhibitor): the precursor of a family of endogenous modulators of

GABAA receptor function. History, perspectives, and clinical implications. Neurochem Res 1990; 15: 161-8.355. Lehmann GL, Gradilone SA, Marinelli RA. Aquaporin water channels in central nervous system. Curr

Neurovasc Res 2004; 1: 293-303.356. Ozbas-Gerceker F, et al. Serial analysis of gene expression in the hippocampus of patients with mesial

temporal lobe epilepsy. Neuroscience 2006; 138: 457-74.357. Lehtimaki KA, et al. Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced

seizures. Brain Res Mol Brain Res 2003; 110: 253-60.358. Choi JS, et al. Upregulation of gp130 and differential activation of STAT and p42/44 MAPK in the rat

hippocampus following kainic acid-induced seizures. Brain Res Mol Brain Res. 2003; 19: 10-18.359. Samland H, et al. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced

seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2003; 73: 176-87.360. Li MO, et al. Transforming growth factor-beta regulation of immune responses. Ann Rev Immunol 2006; 24:

99-146.

203

361. Wachs FP, et al. Transforming growth factor-beta1 is a negative modulator of adult neurogenesis. J Neuropathol Exp Neurol 2006; 65: 358-70.

362. Kim SK, et al. Gene expression profile analyses of cortical dysplasia by cDNA arrays. Epilepsy Res 2003; 56: 175-83.

363. Lahtinen L, Lukasiuk K, Pitkanen A. Increased expression and activity of urokinase-type plasminogen activator during epileptogenesis. Eur J Neurosci 2006; 24: 1935-45.

364. Gorter JA, et al. Potential New Antiepileptogenic Targets Indicated by Microarray Analysis in a Rat Model for Temporal Lobe Epilepsy. J Neurosci 2006; 26: 11083-110.

365. Tsirka SE, et al. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 1995; 377: 340-4.

366. Pawlak R, Strickland S. Tissue plasminogen activator and seizures: a clot-buster’s secret life. J Clin Invest 2002; 109: 1529-31.

367. Babcock AA, et al. Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 2006; 26: 12826-37.

368. Binder DK, Steinhauser C. Functional changes in astroglial cells in epilepsy. GLIA 2006; 54: 358-68.369. de Lanerolle NC, Lee TS. New facets of the neuropathology and molecular profile of human temporal lobe

epilepsy. Epilepsy Behav 2005; 7: 190-203.370. Shoham S, Youdim MB. Iron involvement in neural damage and microgliosis in models of neurodegenerative

diseases. Cell Mol Biol (Noisy-le-grand) 2000; 46: 743-60.371. Moos T, Morgan EH. The metabolism of neuronal iron and its pathogenic role in neurological disease:

review. Ann NY Acad Sci 2004; 1012: 14-26.372. Doraiswamy PM, Finefrock AE. Metals in our minds: therapeutic implications for neurodegenerative

disorders. Lancet Neurol 2004; 3: 431-4.373. Nappi AJ, Vass E. Iron, metalloenzymes and cytotoxic reactions. Cell Mol Biol (Noisy-le-grand) 2000; 46:

637-47.374. Orino K, et al. Ferritin and the response to oxidative stress. Biochem J 2001; 357: 241-7.375. Gorter JA, et al. Increased expression of ferritin, an iron-storage protein, in specific regions of the

parahippocampal cortex of epileptic rats. Epilepsia 2005; 46: 1371-9.376. Hendriksen H, et al. Altered hippocampal gene expression prior to the onset of spontaneous seizures in the

rat post-status epilepticus model. Eur J Neurosci 2001; 14: 1475-84.377. Avoli M, et al. Cellular and molecular mechanisms of epilepsy in the human brain. Prog Neurobiol. 2005;

77: 166-200.378. Houser CR, Esclapez M. Downregulation of the alpha5 subunit of the GABA(A) receptor in the pilocarpine

model of temporal lobe epilepsy. Hippocampus 2003; 13: 633-45.379. Arion D, et al. Correlation of transcriptome profile with electrical activity in temporal lobe epilepsy.

Neurobiol Dis. 2006; 22: 374-387.380. Peng Z, et al. Altered expression of the delta subunit of the GABAA receptor in a mouse model of temporal

lobe epilepsy. J Neurosci 2004; 24: 8629-39.381. Dibbens LM, et al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility

locus for generalized epilepsies. Hum Mol Genet 2004; 13: 1315-9.382. Glykys J, Mody I. Hippocampal network hyperactivity after selective reduction of tonic inhibition in GABA

A receptor alpha5 subunit-deficient mice. J Neurophysiol 2006; 95: 2796-807.383. Rorive S, et al. Exploring the distinctive biological characteristics of pilocytic and low-grade diffuse

astrocytomas using microarray gene expression profiles. J Neuropathol Exp Neurol 2006; 65: 794-807.384. Rickman DS, et al. Distinctive molecular profiles of high-grade and low-grade gliomas based on

oligonucleotide microarray analysis. Cancer Res 2001; 61: 6885-91.385. Jaffey PB, et al. The clinical significance of extracellular matrix in gangliogliomas. J Neuropathol Exp Neurol

1996; 55: 1246-52.386. Ess KC, et al. Expression profiling in tuberous sclerosis complex (TSC) knockout mouse astrocytes to

characterize human TSC brain pathology. GLIA 2004; 46: 28-40.387. Rivera S, et al. Tissue inhibitor of metalloproteinases-1 (TIMP-1) is differentially induced in neurons and

astrocytes after seizures: evidence for developmental, immediate early gene, and lesion response. J Neurosci 1997; 17: 4223-35.

388. Rieckmann P, Engelhardt B. Building up the blood-brain barrier. Nat Med 2003; 9: 828-9.389. Reiss Y, Machein MR, Plate KH. The role of angiopoietins during angiogenesis in gliomas. Brain Pathol 2005;

15: 311-7.

204

390. Yu J, et al. Targeted gene expression analysis in hemimegalencephaly: activation of beta-catenin signaling. Brain Pathol 2005; 15: 179-86.

391. Kato H, Takahashi A, Itoyama Y. Cell cycle protein expression in proliferating microglia and astrocytes following transient global cerebral ischemia in the rat. Brain Res Bull 2003; 60: 215-21.

392. Hulleman E, Helin K. Molecular mechanisms in gliomagenesis. Adv Cancer Res 2005; 94: 1-27.393. Hirasawa M, et al. Perinatal abrogation of Cdk5 expression in brain results in neuronal migration defects.

Proc Natl Acad Sci USA 2004; 101: 6249-54.394. Ohshima T, Mikoshiba K. Reelin signaling and Cdk5 in the control of neuronal positioning. Mol Neurobiol

2002; 26: 153-66.395. Kam R, et al. The reelin pathway components disabled-1 and p35 in gangliogliomas--a mutation and

expression analysis. Neuropathol Applied Neurobiol 2004; 30: 225-32.396. Jansen FE, et al. Epilepsy surgery in tuberous sclerosis: a systematic review. Epilepsia 2007; 48: 1477-84.397. Kwiatkowski DJ. Rhebbing up mTOR: new insights on TSC1 and TSC2, and the pathogenesis of tuberous

sclerosis. Cancer Biol Ther 2003; 2: 471-6.398. Boer K, et al. Cellular localization of metabotropic glutamate receptors in cortical tubers and subependymal

giant cell tumors of tuberous sclerosis complex. Neuroscience 2008; 156: 203-15.399. Talos DM, et al. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex

cortical tubers. Ann Neurol 2008; 63: 454-65.400. Boer K, et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous

sclerosis complex. Epilepsy res. 2008; 78: 7-21.401. Ashburner M, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat

Genet 2000; 25: 25-9.402. Vreugdenhil E, et al. Doublecortin-like, a microtubule-associated protein expressed in radial glia, is crucial

for neuronal precursor division and radial process stability. Eur J Neurosci 2007; 25: 635-48.403. Hevner RF, et al. Transcription factors in glutamatergic neurogenesis: conserved programs in neocortex,

cerebellum, and adult hippocampus. Neurosci Res 2006; 55: 223-33.404. Griffiths MR, Gasque P, Neal JW. The Multiple Roles of the Innate Immune System in the Regulation of

Apoptosis and Inflammation in the Brain. J Neuropathol Exp Neurol 2009; 68: 217-226.405. Liu CH, Goldberg AL, Qiu XB. New insights into the role of the ubiquitin-proteasome pathway in the

regulation of apoptosis. Chang Gung Med J 2007; 30: 469-79.406. Majores M, et al. Molecular profiling of temporal lobe epilepsy: comparison of data from human tissue

samples and animal models. Epilepsy Res 2004; 60: 173-8.407. Rakhade SN, et al. A common pattern of persistent gene activation in human neocortical epileptic foci. Ann

Neurol 2005; 58: 736-47.408. Crino PB. Gene expression, genetics, and genomics in epilepsy: some answers, more questions. Epilepsia

2007; 48 Suppl 2: 42-50.409. Aronica E, Gorter J. Gene Expression Profile in Temporal Lobe Epilepsy. Neuroscientist 2007; 13: 1-9.410. Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun

2008; 22: 797-803.411. Schmitz F, et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate

immune cells. Eur J Immunol 2008; 38: 2981-92.412. Li S, et al. MCP-1 overexpressed in tuberous sclerosis lesions acts as a paracrine factor for tumor

development. J Exp Med 2005; 202: 617-24.413. Thompson WL, Karpus WJ, Van Eldik LJ. MCP-1-deficient mice show reduced neuroinflammatory responses

and increased peripheral inflammatory responses to peripheral endotoxin insult. J Neuroinflammation 2008; 5: 35.

414. Stamatovic SM, et al. Monocyte chemoattractant protein-1 regulation of blood-brain barrier permeability. J Cereb Blood Flow Metab 2005; 25: 593-606.

415. Oby E, Janigro D. The blood-brain barrier and epilepsy. Epilepsia 2006; 47: 1761-74.416. Pure E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol Med 2001; 7: 213-21.417. Weichhart T, Saemann MD. The multiple facets of mTOR in immunity. Trends Immunol 2009; 418. Fabene PF, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med 2008; 14:

1377-83.419. Takada Y, Ye X, Simon S. The integrins. Genome Biol 2007; 8: 215.420. Graus-Porta D, et al. Beta1-class integrins regulate the development of laminae and folia in the cerebral

and cerebellar cortex. Neuron 2001; 31: 367-79.

205

421. Milner R, Campbell IL. The integrin family of cell adhesion molecules has multiple functions within the CNS. J Neurosci Res 2002; 69: 286-91.

422. Hall PE, et al. Integrins are markers of human neural stem cells. Stem Cells 2006; 24: 2078-84.423. Arai Y, Takashima S, Becker LE. CD44 expression in tuberous sclerosis. Pathobiology 2000; 68: 87-92.424. Sierra-Paredes G, Sierra-Marcuno G. Extrasynaptic GABA and glutamate receptors in epilepsy. CNS Neurol

Disord Drug Targets 2007; 6: 288-300.425. Wong M, et al. Impaired glial glutamate transport in a mouse tuberous sclerosis epilepsy model. Ann

Neurol 2003; 54: 251-6.426. Zeng LH, et al. Abnormal glutamate homeostasis and impaired synaptic plasticity and learning in a mouse

model of tuberous sclerosis complex. Neurobiol Dis. 2007; 28:184-96.427. Uhlmann EJ, et al. Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal

organization and seizures. Ann Neurol 2002; 52: 285-96.428. Butt AM, Kalsi A. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role

for Kir4.1 in glial functions. J Cell Mol Med 2006; 10: 33-44.429. Jansen LA, et al. Epileptogenesis and reduced inward rectifier potassium current in tuberous sclerosis

complex-1-deficient astrocytes. Epilepsia 2005; 46: 1871-80.430. Benarroch EE. Potassium channels: brief overview and implications in epilepsy. Neurology 2009; 72: 664-9.431. Frohlich F, et al. Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist

2008; 14: 422-33.432. Rosner M, et al. The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins

with a wide spectrum of interacting partners. Mutat Res 2008; 658: 234-46.433. Dabora SL, et al. Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased

severity of TSC2, compared with TSC1, disease in multiple organs. Am J Hum Genet 2001; 68: 64-80.434. Sancak O, et al. Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype-phenotype

correlations and comparison of diagnostic DNA techniques in Tuberous Sclerosis Complex. Eur J Hum Genet 2005; 13: 731-41.

435. Major P, et al. Are cortical tubers epileptogenic? Evidence from electrocorticography. Epilepsia 2009; 50: 147-54.

436. Cepeda C, et al. Epileptogenesis in pediatric cortical dysplasia: The dysmature cerebral developmental hypothesis. Epilepsy Behav 2006; 9: 219-235.

437. D’Antuono M, et al. GABAA receptor-dependent synchronization leads to ictogenesis in the human dysplastic cortex. Brain 2004; 127: 1626-40.

438. Owens DF, Kriegstein AR. Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 2002; 3: 715-27.439. Ben-Ari Y. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci

2002; 3: 728-39.440. Clayton GH, et al. Ontogeny of cation-Cl- cotransporter expression in rat neocortex. Brain Res Dev Brain Res

1998; 109: 281-92.441. Rivera C, et al. The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation.

Nature 1999; 397: 251-5.442. Dzhala VI, et al. NKCC1 transporter facilitates seizures in the developing brain. Nat Med 2005; 11: 1205-13.443. Palma E, et al. Anomalous levels of Cl- transporters in the hippocampal subiculum from temporal lobe

epilepsy patients make GABA excitatory. Proc Natl Acad Sci USA 2006; 103: 8465-8.444. Moore-Hoon ML, Turner RJ. Molecular and topological characterization of the rat parotid Na+-K+-2Cl-

cotransporter1. Biochim Biophys Acta 1998; 1373: 261-9.445. Williams JR, et al. The neuron-specific K-Cl cotransporter, KCC2. Antibody development and initial

characterization of the protein. J Biol Chem 1999; 274: 12656-64.446. Ludwig A, et al. Developmental up-regulation of KCC2 in the absence of GABAergic and glutamatergic

transmission. Eur J Neurosci 2003; 18: 3199-206.447. Prayson RA, et al. Linear epidermal nevus and nevus sebaceus syndromes: a clinicopathologic study of 3

patients. Arch Pathol Lab Med 1999; 123: 301-5.448. Flores-Sarnat L, et al. Hemimegalencephaly: part 2. Neuropathology suggests a disorder of cellular lineage.

J Child Neurol 2003; 18: 776-85.449. Levada R, et al. Developmental expression of the cloride transporters KCC2 and NKCC1 in rat and human

cortex. Epilepsia 2005; 46: 13, IW23.450. Jin X, Huguenard JR, Prince DA. Impaired Cl- extrusion in layer V pyramidal neurons of chronically injured

epileptogenic neocortex. J Neurophysiol 2005; 93: 2117-26.

206

451. Staley KJ. Wrong-way cloride transport:is it a treatable cause of some intractable seizures. Epilepsy Curr 2006; 6: 124-127.

452. Kanaka C, et al. The differential expression patterns of messenger RNAs encoding K-Cl cotransporters (KCC1,2) and Na-K-2Cl cotransporter (NKCC1) in the rat nervous system. Neuroscience 2001; 104: 933-46.

453. Mikawa S, et al. Developmental changes in KCC1, KCC2 and NKCC1 mRNAs in the rat cerebellum. Brain Res Dev Brain Res 2002; 136: 93-100.

454. Li H, et al. Patterns of cation-chloride cotransporter expression during embryonic rodent CNS development. Eur J Neurosci 2002; 16: 2358-70.

455. Okabe A, et al. Amygdala kindling induces upregulation of mRNA for NKCC1, a Na(+), K(+)-2Cl(-) cotransporter, in the rat piriform cortex. Neurosci Res 2002; 44: 225-9.

456. Gulyas AI, et al. The KCl cotransporter, KCC2, is highly expressed in the vicinity of excitatory synapses in the rat hippocampus. Eur J Neurosci 2001; 13: 2205-17.

457. Yan Y, Dempsey RJ, Sun D. Expression of Na(+)-K(+)-Cl(-) cotransporter in rat brain during development and its localization in mature astrocytes. Brain Res 2001; 911: 43-55.

458. Lenart B, et al. Na-K-Cl cotransporter-mediated intracellular Na+ accumulation affects Ca2+ signaling in astrocytes in an in vitro ischemic model. J Neurosci 2004; 24: 9585-97.

459. Binder DK, Steinhauser C. Functional changes in astroglial cells in epilepsy. GLIA. 2006; 54: 358-68.460. Chen H, Sun D. The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res 2005; 27: 280-6.461. Englund C, et al. Aberrant neuronal-glial differentiation in Taylor-type focal cortical dysplasia (type IIA/B).

Acta Neuropathol 2005; 109: 519-33.462. Weiner HL, et al. Epilepsy surgery for children with tuberous sclerosis complex. J Child Neurol 2004; 19:

687-9.463. Wang Y, et al. Neocortical hyperexcitability in a human case of tuberous sclerosis complex and mice lacking

neuronal expression of TSC1. Ann Neurol 2007; 61: 139-52.464. Tavazoie SF, et al. Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and

Tsc2. Nat Neurosci 2005; 8: 1727-34.465. Pin JP, Acher F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology.

Curr Drug Targets CNS Neurol Disord 2002; 1: 297-317.466. Conn PJ. Physiological roles and therapeutic potential of metabotropic glutamate receptors. Ann NY Acad

Sci 2003; 1003: 12-21.467. Aronica E, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma

cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci 2003; 17: 2106-18.468. Meldrum BS, Rogawski MA. Molecular targets for antiepileptic drug development. Neurotherapeutics

2007; 4: 18-61.469. Catania MV, et al. Group I Metabotropic Glutamate Receptors: A Role in Neurodevelopmental Disorders?

Molecular Neurobiology 2007; 35:298-307.470. Banko JL, et al. Regulation of eukaryotic initiation factor 4E by converging signaling pathways during

metabotropic glutamate receptor-dependent long-term depression. J Neurosci 2006; 26: 2167-73.471. Page G, et al. Group I metabotropic glutamate receptors activate the p70S6 kinase via both mammalian

target of rapamycin (mTOR) and extracellular signal-regulated kinase (ERK 1/2) signaling pathways in rat striatal and hippocampal synaptoneurosomes. Neurochem Int 2006; 49: 413-21.

472. Hou L, Klann E. Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 2004; 24: 6352-61.

473. Bradley SR, et al. Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J Neurosci 1996; 16: 2044-56.

474. Tang FR, Lee WL, Yeo TT. Expression of the group I metabotropic glutamate receptor in the hippocampus of patients with mesial temporal lobe epilepsy. J Neurocytol 2001; 30: 403-11.

475. Shigemoto R, et al. Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 1997; 17: 7503-22.

476. Aronica E, et al. Immunohistochemical localization of group I and II metabotropic glutamate receptors in control and amyotrophic lateral sclerosis human spinal cord: upregulation in reactive astrocytes. Neuroscience 2001; 105: 509-20.

477. Geurts JJ, et al. Expression patterns of Group III metabotropic glutamate receptors mGluR4 and mGluR8 in multiple sclerosis lesions. J Neuroimmunol 2005; 158: 182-90.

478. Thom M, et al. Cortical neuronal densities and lamination in focal cortical dysplasia. Acta Neuropathol 2005; 110: 383-92.

207

479. van der Loos CM. Multiple immunoenzyme staining: methods and visualizations for the observation with spectral imaging. J Histochem Cytochem. 2008; 56.: 313-28.

480. Ong WY, et al. Differential localisation of the metabotropic glutamate receptor mGluR1a and the ionotropic glutamate receptor GluR2/3 in neurons of the human cerebral cortex. Exp Brain Res 1998; 119: 367-74.

481. Tang FR, Lee WL. Expression of the group II and III metabotropic glutamate receptors in the hippocampus of patients with mesial temporal lobe epilepsy. J Neurocytol 2001; 30: 137-43.

482. Blümcke I., et al. Immunohistochemical distribution of metabotropic glutamate receptor subtypes mGluR1b, mGluR2/3, mGluR4a and mGluR5 in human hippocampus. Brain Res 1996; 736: 217-26.

483. Talos DM, et al. Cell-specific alterations of glutamate receptor expression in tuberous sclerosis complex cortical tubers. Ann Neurol 2008; 63:454-65.

484. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron 2004; 44: 5-21.485. Dudek SM, Bear MF. A biochemical correlate of the critical period for synaptic modification in the visual

cortex. Science 1989; 246: 673-5.486. Catania MV, et al. Metabotropic glutamate receptors are differentially regulated during development.

Neuroscience 1994; 61: 481-95.487. Lopez-Bendito G, et al. Differential distribution of group I metabotropic glutamate receptors during rat

cortical development. Cereb Cortex 2002; 12: 625-38.488. Di Giorgi Gerevini VD, et al. The mGlu5 metabotropic glutamate receptor is expressed in zones of active

neurogenesis of the embryonic and postnatal brain. Brain Res Dev Brain Res 2004; 150: 17-22.489. Di Giorgi-Gerevini V, et al. Endogenous activation of metabotropic glutamate receptors supports the

proliferation and survival of neural progenitor cells. Cell Death Differ 2005; 12: 1124-33.490. Kawabata S, et al. Diversity of calcium signaling by metabotropic glutamate receptors. J Biol Chem 1998;

273: 17381-5.491. Prather RS. Basic mechanisms of fertilization and parthenogenesis in pigs. Reprod Suppl 2001; 58: 105-12.492. Spinsanti P, et al. Endogenously activated mGlu5 metabotropic glutamate receptors sustain the increase

in c-Myc expression induced by leukaemia inhibitory factor in cultured mouse embryonic stem cells. J Neurochem 2006; 99: 299-307.

493. Inoki K, Corradetti MN, Guan KL. Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 2005; 37: 19-24.

494. Alagarsamy S, et al. NMDA-induced potentiation of mGluR5 is mediated by activation of protein phosphatase 2B/calcineurin. Neuropharmacology 2005; 49 Suppl 1: 135-45.

495. Antar LN, et al. Metabotropic glutamate receptor activation regulates fragile x mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci 2004; 24: 2648-55.

496. Jin P, Warren ST. New insights into fragile X syndrome: from molecules to neurobehaviors. Trends Biochem Sci 2003; 28: 152-8.

497. Yan QJ, et al. Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP. Neuropharmacology 2005; 49: 1053-66.

498. Akbar MT, et al. Altered expression of group I metabotropic glutamate receptors in the hippocampus of amygdala-kindled rats. Brain Res Mol Brain Res 1996; 43: 105-16.

499. Aronica EM, et al. Status epilepticus-induced alterations in metabotropic glutamate receptor expression in young and adult rats. J Neurosci 1997; 17: 8588-95.

500. Blümcke I, et al. Temporal lobe epilepsy associated up-regulation of metabotropic glutamate receptors: correlated changes in mGluR1 mRNA and protein expression in experimental animals and human patients. J Neuropathol Exp Neurol 2000; 59: 1-10.

501. Bruno V, et al. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 2001; 21: 1013-33.

502. Ciccarelli R, et al. Opposite influence of the metabotropic glutamate receptor subtypes mGlu3 and -5 on astrocyte proliferation in culture. Glia 1997; 21: 390-8.

503. Battaglia G, et al. Selective activation of group-II metabotropic glutamate receptors is protective against excitotoxic neuronal death. Eur J Pharmacol 1998; 356: 271-4.

504. Ciccarelli R, et al. Activation of A(1) adenosine or mGlu3 metabotropic glutamate receptors enhances the release of nerve growth factor and S-100beta protein from cultured astrocytes. Glia 1999; 27: 275-81.

505. Zonta M, et al. Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat Neurosci 2003; 6: 43-50.

506. Gegelashvili G, et al. The high-affinity glutamate transporters GLT1, GLAST, and EAAT4 are regulated via different signalling mechanisms. Neurochem Int 2000; 37: 163-70.

208

507. Arcella A, et al. Pharmacological blockade of group II metabotropic glutamate receptors reduces the growth of glioma cells in vivo. Neuro Oncol 2005; 7: 236-45.

508. D’Onofrio M, et al. Pharmacological blockade of mGlu2/3 metabotropic glutamate receptors reduces cell proliferation in cultured human glioma cells. J Neurochem 2003; 84: 1288-95.

509. Nicoletti F, et al. Metabotropic glutamate receptors: new targets for the control of tumor growth? Trends Pharmacol Sci 2007; 28: 206-13.

510. Blümcke, I. Neuropathology of focal epilepsies: a critical review. Epilepsy Behav 2009; 15: 34-9.511. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev

Immunol 2009; 9: 324-37.512. Meric-Bernstam F, Gonzalez-Angulo AM. Targeting the mTOR signaling network for cancer therapy. J Clin

Oncol 2009; 27: 2278-87.513. Vezina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the

producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 1975; 28: 721-6.514. Garber K. Rapamycin’s resurrection: a new way to target the cancer cell cycle. J Natl Cancer Inst 2001; 93:

1517-9.515. Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation

and characterization. J Antibiot (Tokyo) 1975; 28: 727-32.516. Bissler JJ, et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis.

N Engl J Med 2008; 358: 140-51.517. Davies DM, et al. Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J

Med 2008; 358: 200-3.518. Franz DN, et al. Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol

2006; 59: 490-8.519. Zeng LH, et al. Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol

2008; 63: 444-53.520. Ljungberg MC, et al. Rapamycin suppresses seizures and neuronal hypertrophy in a mouse model of cortical

dysplasia. Dis Model Mech 2009; 521. Zeng LH, Rensing NR, Wong M. The mammalian target of rapamycin signaling pathway mediates

epileptogenesis in a model of temporal lobe epilepsy. J Neurosci 2009; 29: 6964-72.522. Muncy J, Butler IJ, Koenig MK. Rapamycin reduces seizure frequency in tuberous sclerosis complex. J Child

Neurol 2009; 24: 477.523. Li RX, et al. Frequency modulation of synchronized Ca(2+) spikes in cultured hippocampal networks through

mTOR. Neurosci Lett 2008; 441: 50-5.524. Klann E, Dever TE. Biochemical mechanisms for translational regulation in synaptic plasticity. Nat Rev

Neurosci 2004; 5: 931-42.525. Bresnihan B. The safety and efficacy of interleukin-1 receptor antagonist in the treatment of rheumatoid

arthritis. Semin Arthritis Rheum 2001; 30: 17-20.526. Emsley HC, et al. A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients.

J Neurol Neurosurg Psychiatry 2005; 76: 1366-72.527. Stevens B, et al. The classical complement cascade mediates CNS synapse elimination. Cell 2007; 131:

1164-78.528. Jin X, et al. Enhanced excitatory synaptic connectivity and spontaneous seizures in c1q knock-out mice.

Abstract at the 38th annual meeting of the Society for Neuroscience 2008 529. Czapinski P, Blaszczyk B, Czuczwar SJ. Mechanisms of action of antiepileptic drugs. Curr Top Med Chem

2005; 5: 3-14.530. Kahle KT, Staley KJ. The bumetanide-sensitive Na-K-2Cl cotransporter NKCC1 as a potential target of a novel

mechanism-based treatment strategy for neonatal seizures. Neurosurg Focus 2008; 25: E22.531. Kilb W, Sinning A, Luhmann HJ. Model-specific effects of bumetanide on epileptiform activity in the in-vitro

intact hippocampus of the newborn mouse. Neuropharmacology 2007; 53: 524-33.532. Vanhatalo S, Hellstrom-Westas L, De Vries LS. Bumetanide for neonatal seizures: Based on evidence or

enthusiasm? Epilepsia 2009; 50: 1292-3.533. Bear MF. Therapeutic implications of the mGluR theory of fragile X mental retardation. Genes Brain Behav

2005; 4: 393-8.534. McBride SM, et al. Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body

defects in a Drosophila model of fragile X syndrome. Neuron 2005; 45: 753-64.535. Berry-Kravis E, et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med

Genet 2009; 46: 266-71.

209

536. Sarkisian MR. Overview of the Current Animal Models for Human Seizure and Epileptic Disorders. Epilepsy Behav 2001; 2: 201-216.

537. Najm IM, Tilelli CQ, Oghlakian R. Pathophysiological mechanisms of focal cortical dysplasia: a critical review of human tissue studies and animal models. Epilepsia 2007; 48 Suppl 2: 21-32.

538. Majores M, et al. Molecular neuropathology of temporal lobe epilepsy: complementary approaches in animal models and human disease tissue. Epilepsia 2007; 48 Suppl 2: 4-12.