u/U = sin( /2); = y

109
u/U = sin(/2); = y/ Given U and viscosity table 9.2 Sketch (x), *(x), w (x) L A M I N A R T A B L E 9.2

description

u/U = sin( /2);  = y/. L A M I N A R. T A B L E 9.2. Given U and viscosity table 9.2 Sketch (x), *(x),  w (x). u/U = sin( /2);  = y/. Sketch (x), *(x),  w (x). u/U = sin( /2);  = y/. …. . W H I C H H A S M O R E F D ?. A. VS. B. U. - PowerPoint PPT Presentation

Transcript of u/U = sin( /2); = y

Page 1: u/U = sin( /2);  = y

u/U = sin(/2); = y/

Given U and viscosity table 9.2

Sketch (x), *(x), w(x)

LAMINAR

TABLE

9.2

Page 2: u/U = sin( /2);  = y

Sketch (x), *(x), w(x)

u/U = sin(/2); = y/

Page 3: u/U = sin( /2);  = y

…..

u/U = sin(/2); = y/

Page 4: u/U = sin( /2);  = y

WHICH

HAS

MORE

FD

?

A

VS

B

Page 5: u/U = sin( /2);  = y

A

B

U

Which plate experiences the most drag?

LAMINAR / dp/dx = 0Incompressible, steady, 2-D…

Page 6: u/U = sin( /2);  = y

A

B

U Which plate experiences the most drag?

FD = wdA A = bL

Cf = w/( ½ U2) = 0.730/Rex

FD = 0.73b(LU3)1/2

FD(A) = 0.73(4L)(LU3)1/2

FD(B) = 0.73(L)(4LU3)1/2

FD(A)/FD(B) = 2

b=4L

b=L

L=4L

L=L

Page 7: u/U = sin( /2);  = y

A

U

How Does Drag Change if 2U?

b

L

Page 8: u/U = sin( /2);  = y

A

U How Does Drag Change if 2U?

FD = wdA A = bL

Cf = w/( ½ U2) = 0.730/Rex

FD = 0.73b(LU3)1/2

If U goes to 2U, FD goes to (8)1/2

b

L

Page 9: u/U = sin( /2);  = y
Page 10: u/U = sin( /2);  = y

(*/ = 0.344) Table 9.2

Page 11: u/U = sin( /2);  = y

(*/ = 0.344)

Page 12: u/U = sin( /2);  = y

0.344

Page 13: u/U = sin( /2);  = y

y /

u / USinusoidal, parabolic, cubic look similar to Blasius solution.

Page 14: u/U = sin( /2);  = y

u/Ue = 2(y/) – (y/)2

u/Umax = (y/)1/7

Page 15: u/U = sin( /2);  = y

I give you Rex and x, how do you get w(x)? DL?

Page 16: u/U = sin( /2);  = y
Page 17: u/U = sin( /2);  = y

Laminar boundary-layer over flat plate, zero pressure gradient

1.8 m

0.9 mU = 3.2 m/s

u/U = sin[(/2)(/y)]

Drag = ?using Table 9.2

Page 18: u/U = sin( /2);  = y

FD = wdA = U2 d/dx bdx = U2 bL

Page 19: u/U = sin( /2);  = y

FD = wdA = U2 d/dx bdx = U2 bL

x=L

Page 20: u/U = sin( /2);  = y
Page 21: u/U = sin( /2);  = y
Page 22: u/U = sin( /2);  = y

u/y|Wall = /y U[(2y/) – (y/)2]y=0

u/y|Wall = U2/

PIPE: u/y|Wall = Ucl2/R

Fully developed laminar flow

Page 23: u/U = sin( /2);  = y
Page 24: u/U = sin( /2);  = y

u/y = /y {y/}1/7 = 1/7 {y/}-6/7

u/y|y=0 =

Page 25: u/U = sin( /2);  = y

So how get

wall

for turbulent velocity profile

u/U0 = (y/)1/7

?

Page 26: u/U = sin( /2);  = y

u/Uo = (y/)1/7

w = 0.0332 (V)2[/(RV)]1/4 Eq(8.39)

V/Uc/l = (2n2)/[(n+1)(2n+1)] Eq(8.24)

w = 0.0233 (U0)2[/(Uo)]1/4

Page 27: u/U = sin( /2);  = y
Page 28: u/U = sin( /2);  = y

If Re transition occurs at 500,000 what is the skin friction drag on fin?

Page 29: u/U = sin( /2);  = y

FD = CD (½ Uo2A)

Laminar Flow – starting at x=0

CD = 1.33/ReL1/2

Turbulent Flow – starting at x=0

CD = 0.0742/Re1/5 {u/U = (y/)1/7}for 5x105<ReL<107

CD = 0.455 /(log ReL)2.58

For ReL < 109

Page 30: u/U = sin( /2);  = y

Calculating transition location, x:Assume xtr occurs at 500,000

Rex = Ux/ = 500,000

ReL = UL/ = 1.54 x 107

Rex/ReL = xtr/L = 500,000 / 1.54 x 107

xtr = 0.0325 L = 0.0325 x 1.65 = 0.0536 m

Page 31: u/U = sin( /2);  = y

ReL = UL/ = 1.54 x 107

Turbulent Flow – starting at x=0

CD = 0.455 /(log ReL)2.58

L = 1.65m

xtr = 0.054m

Page 32: u/U = sin( /2);  = y

FLAT PLATE dp/dx = 0

LAMINAR:From Theory

CD = 1.33 / ReL1/2

Eq. 9.33

TURBULENT:From Experiment

5x105< ReL<107

xtransition = 0CD = 0.0742/ReL

1/5

ReL<109

xtransition = 0CD = 0.455/(logReL)2.58

Page 33: u/U = sin( /2);  = y

For Re transition of 500,000 and 5x105 < ReL < 109

CD = 0.455/(log ReL)2.58 – 1610/ReL (Eq. 9.37b) CD = 0.00281 – 0.000105 = 0.0027

~ 4% less

FD = CD2LH(1/2)U2 = 91.6 N2 sides so 2 x Area

Page 34: u/U = sin( /2);  = y

Smooth flat plate, dp/dx = 0; flow parallel to plate

CD ~ 0.0028

CD = FD/( ½ Uo2); Cf(x) = w(x) /(1/2 Uo

2)

Page 35: u/U = sin( /2);  = y

CD = FD/( ½ Uo2); Cf(x) = w(x) /(1/2 Uo

2)

Where does transition occur for these data?

These data include rough plates?

Page 36: u/U = sin( /2);  = y

CD = FD/( ½ Uo2); Cf(x) = w(x) /(1/2 Uo

2)

ReL

Page 37: u/U = sin( /2);  = y

breath

Page 38: u/U = sin( /2);  = y

Plastic plate falling in water, find terminal velocity -

Page 39: u/U = sin( /2);  = y

Plastic plate falling in water, find terminal velocity -

Sum of forces = 0

DRAGBOUYANCY

WEIGHT

+ z

- z

FD = CD ½ U2A

Given of water

and plastic

Page 40: u/U = sin( /2);  = y

Assume: turbulent flow, transition at leading edge, doesn’t flutter, 5 x 105 < ReL < 107

Then CD = 0.0742/Reh1/5

Plastic plate falling in water, find terminal velocity -

Sum of forces = 0Drag Force = f (U)

DRAGBOUYANCY

WEIGHT

+ z

- z

Page 41: u/U = sin( /2);  = y

Net Force = 0 = FB + FD - W

FB – W = (plastic - water) g (hLt)FD = CD ½ U2A = [0.0742/Reh

1/5] ½ water U2AReh = Uh/

Solving for U get 11.0 ft /sec

Check Re number: 1.86 x 106

5 x 105 < ReL < 107

Page 42: u/U = sin( /2);  = y

THE END

Page 43: u/U = sin( /2);  = y

THE

END

Page 44: u/U = sin( /2);  = y

Extra Examples

Page 45: u/U = sin( /2);  = y

U1 = Uo = 80 ft/sec1= 0.8 in.

U2 = ?P2 – P1 = ?2= 1.2 in.

Page 46: u/U = sin( /2);  = y

Continuity U1A1eff = U2A2eff

A1eff = (h -2 *1 ) (h -2 *1 ) A2eff = (h -2 *2 ) (h -2 *2 )

*1

*1

* = 0.8 in *1

u/U = y/ =

Page 47: u/U = sin( /2);  = y

Continuity U1A1eff = U2A2eff

A1eff = (h -2 *1 ) (h -2 *1 ) A2eff = (h -2 *2 ) (h -2 *2 )

*2

*2

*2 = 1.2 in *2

Page 48: u/U = sin( /2);  = y
Page 49: u/U = sin( /2);  = y
Page 50: u/U = sin( /2);  = y

First a bit of mathematic legerdemain before attempting Ex. 9.3 ~

= ?

Page 51: u/U = sin( /2);  = y

L = 1.8 m

U = 3.2 m/s

= ?; * = ?; w = ?

b = 0.9m

Laminar and assume u/U = sin(/2); = y/

*/ = 1o (1-u/U) d

/ = 1o u/U(1-u/U) d

w = U2 d/dx = u/y0

Page 52: u/U = sin( /2);  = y

w = u/y0 = (U/)d(u/U)/d(y/)0

w = (U/)dsin(/2)/d0

w = (U/)(/2)cos(/2)0

w = (U/)(/2) = U/(2)

u/U = sin(/2); = y/

Page 53: u/U = sin( /2);  = y

*/ = 1o (1-u/U) d

u/U = sin(/2); = y/

*/ = 1o (1 – sin(/2) )d

*/ = + (2/)cos (/2)from 1 to 0

*/ = 1 - 2/ = 0.363* = 0.363

Page 54: u/U = sin( /2);  = y

/ = 1o u/U(1-u/U) d

= 0.137

Page 55: u/U = sin( /2);  = y

Finding */ = 1o (1-u/U) d

/ = 1o u/U(1-u/U) d

w = U2 d/dx

Page 56: u/U = sin( /2);  = y

w = U2 d/dxw = u/y0

Page 57: u/U = sin( /2);  = y

…..

u/U = sin(/2); = y/

Page 58: u/U = sin( /2);  = y
Page 59: u/U = sin( /2);  = y

u/U = sin(/2); = y/

Page 60: u/U = sin( /2);  = y

Fdrag = 0L wbdx = 0

L U2(d/dx)bdx = 0

L U2bd = U2b0L

Fdrag = U2bL

(whew!)

Page 61: u/U = sin( /2);  = y
Page 62: u/U = sin( /2);  = y

Calculating drag on a flat plate, zero pressure gradient – turbulent flow

*

*u/y blows up at y = 0

Can’t usewall = du/dy y=0*

Page 63: u/U = sin( /2);  = y
Page 64: u/U = sin( /2);  = y

Turbulent Flow

Tripped at leading edge so turbulent flow everywhere on plate

= 0.424 Rex-1/5x

Page 65: u/U = sin( /2);  = y

w = 0.0243 U2 (/(U))1/4

w = 0.0243 U2 (/(U 0.424 Rex-1/5x ))1/4

= 0.424 Rex-1/5x

w = 0.0301 U2 Rex-1/5

Page 66: u/U = sin( /2);  = y
Page 67: u/U = sin( /2);  = y

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

u/U = (y / )1/6

u/U = (y / )1/7

u/U = (y / )1/8

u/U

y/

Re increases, n increases, wall shear stress increases, boundary layer increases, viscous sublayer decrease

Page 68: u/U = sin( /2);  = y
Page 69: u/U = sin( /2);  = y

LAMINAR BOUNDARY LAYER AT SEPARATION

Given: u/U = a + b + c2 + d 3

What are boundary conditions?

Page 70: u/U = sin( /2);  = y

Given: u/U = a + b + c2 + d 3

= y/

= 0; u = 0; a = 0= 0; u/y = 0; b = 0= ; u =U; 1 = c + d= ; u/y = 0; 2c + 3d = 02(1-d) + 3d = 2 + d = 0 so d = -2 and c = 3

Separatingu/y = 0

u/U = 3 2 -2 3

Page 71: u/U = sin( /2);  = y

dp/dx = 0

Separating Flowu/U = 3 2 -2 3

dp/dx > 0

Page 72: u/U = sin( /2);  = y

U

Page 73: u/U = sin( /2);  = y

mg = 120 kgU = 6 m/s

FD = CD ½ U2A

Sum of forces = 0,pick A so U = 6 m/s

Page 74: u/U = sin( /2);  = y

mg = 120 kgU = 6 m/s

FD = CD ½ U2A

Sum of forces = 0,pick A so U = 6 m/s

CD = 1.42 for open hemisphereFD = CD ½ U2A = W = mg

A = d2/4d2 = [mg]/[CD U2 /8]

d = [(8/)(120kg)(9.8 m/s2) (1/1.42)(1/1.23 kg/m3)(1/6m/s)2

d = 6.9 m

Page 75: u/U = sin( /2);  = y
Page 76: u/U = sin( /2);  = y

FD = CD ½ U2A

FD = ma = m(dU/dt) = m(dU/dx)(dx/dt)

CD ½ U2A = m (dU/dx) U

Page 77: u/U = sin( /2);  = y

CD ½ U2A = m (dU/dx) UdU/U = CD A dx /(2m)

Integrating from x=0

to x=x gives:ln Uf – lnUi = CD Ax /(2m)CD = 2m ln {Uf/Ui} /[ Ax]

CD = 0.299

Page 78: u/U = sin( /2);  = y
Page 79: u/U = sin( /2);  = y

Find POWER = F U for this conditionAnd then see if that is enough to win bet.

Page 80: u/U = sin( /2);  = y

air

Page 81: u/U = sin( /2);  = y

8.33 m/s

2.78 m/s

Page 82: u/U = sin( /2);  = y
Page 83: u/U = sin( /2);  = y
Page 84: u/U = sin( /2);  = y

FD = CD ½ U2AA = 23.4 ft2

CD = 0.5FR = 0.015 x 4500 lbf

FD = FR to find U where aerodynamic force = frictional force

Total Power = FDU + FRU

Page 85: u/U = sin( /2);  = y

FD [CD ½ U2A] = FR[.015xW](0.5)½ 0.00238slug/ft3U2(23.4ft2)

= 0.015 x 4500 lbf

U2 = 67.5/0.0139

U = 69.7 ft/s = 47.5 mph

Where does aerodynamic force = frictional force ?

Page 86: u/U = sin( /2);  = y
Page 87: u/U = sin( /2);  = y
Page 88: u/U = sin( /2);  = y
Page 89: u/U = sin( /2);  = y

Average of 44 sport cars is 0 43, not much better than the 0.47 of ’37 the Lincoln Zephyr

Page 90: u/U = sin( /2);  = y
Page 91: u/U = sin( /2);  = y
Page 92: u/U = sin( /2);  = y
Page 93: u/U = sin( /2);  = y

(245 km/hr)

Page 94: u/U = sin( /2);  = y
Page 95: u/U = sin( /2);  = y

A model of a river boat is to be tested at 1:13.5 scale. The boat is designed to travel at 9mph in fresh water at 10o C. (1)Estimate the distance from the bow on the full-scaleship where transition occurs. (2) Where should transition be stimulated on model?

What equations are relevant to this problem?

What approach should we take?

Page 96: u/U = sin( /2);  = y

A model of a river boat is to be tested at 1:13.5 scale. The boat is designed to travel at 9mph in fresh water at 10o C.Estimate the distance from the bow where transition occurs.Where should transition be stimulated on model?

Things we know: Re = UL/ ReL transitions ~ 5 x 105 (experimentally determined for flat plate and dP/dx = 0)

Want same fraction of L to be turbulent for both cases: [xtr/L]model = [xtr/L]boat so ration of xtr = ratio of boat lengths

= 13.5

Page 97: u/U = sin( /2);  = y

?

Page 98: u/U = sin( /2);  = y
Page 99: u/U = sin( /2);  = y

Three unknowns, A, B, and C- will need three boundary conditions. What are they?

Page 100: u/U = sin( /2);  = y
Page 101: u/U = sin( /2);  = y
Page 102: u/U = sin( /2);  = y
Page 103: u/U = sin( /2);  = y

1 m

U = 2.7 m/s

cd

Page 104: u/U = sin( /2);  = y

(5) Two-Dimensional(6) Incompressible assumed assumptions

Page 105: u/U = sin( /2);  = y
Page 106: u/U = sin( /2);  = y

cd

u(x,y)/U = y/ = (y)

1

0

Page 107: u/U = sin( /2);  = y

cd

Page 108: u/U = sin( /2);  = y

FDrag

cd

Page 109: u/U = sin( /2);  = y

d c