Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300...

67
Using quasar physics to improve the VLBI reference frame with: Lucia Plank, Jamie McCallum, Rob Schaap (UTAS) Johannes Böhm, Hana Krásná (TU Wien) Jing Sun (Shanghai Astronomical Observatory) Stas Shabala University of Tasmania

Transcript of Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300...

Page 1: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Using quasar physics to

improve the VLBI reference frame

with:    Lucia  Plank,  Jamie  McCallum,  Rob  Schaap  (UTAS)      Johannes  Böhm,  Hana  Krásná  (TU  Wien)      Jing  Sun  (Shanghai  Astronomical  Observatory)  

Stas Shabala University of Tasmania

Page 2: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Outline

①  What are these radio sources we look at ?

②  Quantifying the effects of quasar structure

③  VieVS structure simulator §  Simulation strategy §  Effect on the reference frame (Station positions : mm level)

④  Mitigation strategies Stas  Shabala  -­‐  REFAG14  

Page 3: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Uncooperative quasars What  you  want  them  to  be  ² Bright  point  sources  ² Fixed  in  space  and  Sme  

Image:  N.  Reid  

What  they  are  ² Supermassive  black  holes  ² Jets  è  structure  ² Evolve  on  human  Smescales  

Image:  NASA  

Image:  C.  Mueller  

Lister  et  al.  (2009)  Stas  Shabala  -­‐  REFAG14  

Page 4: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Inner regions of an Active Galactic Nucleus

Stas  Shabala  -­‐  REFAG14  

Image:  BU  /  A.  Marscher  

core   jet  jet  origin  

One  jet  towards  us  (Doppler  boosted)  -­‐>  seen  One  jet  away  from  us  (D.  deboosted)  -­‐>  unseen  

1  mas  @  z=1  

Page 5: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

uv plane  

separation

²  interferometers measure correlated amplitude and phase

u (Mh)v

(Mh)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10

distances measured in units of wavelength λ=c/ν

N-E plane projected in source direction

Visibility  phase  

Page 6: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

uv plane  

separation

²  interferometers measure correlated amplitude and phase ²  image çFourierTransformè

amplitudes/phases in uv plane

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10

N-E plane projected in source direction

Lister  et  al.  (2009)  

Page 7: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Simulated source  

Right Ascension (mas)

Dec

linat

ion

(mas

)

−2 −1 0 1 2−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Stas  Shabala  -­‐  REFAG14  

Page 8: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Visibility phase  

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10N-E plane projected in source direction

distances measured in units of wavelength λ=c/ν

different location in uv plane depending on frequency and baseline  

Page 9: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Source structure in geodetic VLBI  ² Group delay = (1 / 2π) (Δ phase / Δ frequency)

ª  phase depends on projected structure as seen by a given baseline

ª  function of: •  baseline •  observing time •  amount and direction of structure

ª effect is different at each of 8 sub-bands at X-band (because frequencies are slightly different)

² Hence group delay (= slope across band) changes

 Stas  Shabala  -­‐  REFAG14  

Page 10: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Visibility phase  

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10N-E plane projected in source direction

distances measured in units of wavelength λ=c/ν

different location in uv plane depending on frequency and baseline  

Page 11: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Structure phase on 9000 km baseline  

8200 8300 8400 8500 8600 8700 8800 8900 9000−8

−7

−6

−5

−4

−3

−2

Frequency (MHz)

Phas

e (d

egre

es)

slope = structure delay

Stas  Shabala  -­‐  REFAG14  

Page 12: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Visibility phase  

u (Mh)

v (M

h)

−300 −200 −100 0 100 200 300−300

−200

−100

0

100

200

300

−10

−8

−6

−4

−2

0

2

4

6

8

10N-E plane projected in source direction

distances measured in units of wavelength λ=c/ν

different location in uv plane depending on frequency, baseline and time  

Page 13: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.04

-0.02

0

0.02

0.04

8.2 8.4 8.6 8.8

phas

e / r

adia

ns

frequency / GHz

structure delay = 11 ps(3.3 mm light travel time)

structure delay = 6.9 ps(2.1 mm light travel time)

jet orthogonal to baseline

Hobart - HartRAOHobart - Katherine

Jet – baseline orientation  

How a source is observed is important

slope = extra (structure) delay

Stas  Shabala  -­‐  REFAG14  

Page 14: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

1.  Measure  incorrect  posiSon  •  PosiSon  offset  (X,  Y,  Z)  from  “correct”  value  

2.  Measure  different  posiSons  for  different  schedules  

•  Scaier  in  staSon  posiSons  for  different  baseline/schedule  combinaSons  (even  with  same  quasars)  

   è    increased  rms  for  posiSons  derived  from        different  schedules  

3.  MulSple  observaSons  inconsistent  with  each  other  

•  Larger  formal  uncertainSes,  within  a  single  session  

3 effects of quasar structure  

slope changes with projected structure

slope ≠ 0

Stas  Shabala  -­‐  REFAG14  

Page 15: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Vienna  VLBI  Solware  (VieVS)  •  Simulate  geodeSc  observaSons  •  Process  simulated  observaSons   è  staSon  /  source  posiSons,  EOPs  

Quasar  structure  simulaSons  •  Quasars  ≠  point-­‐like  •  Extra  structure  delay  per  observaSon  •  (mostly)  Mock  source  catalogues  

VieVS source structure simulator  

VIEVS

Stas  Shabala  -­‐  REFAG14  

Page 16: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Simulated catalogues  

² Structure indices è mock quasar images SI = 1 + 2 log (τ / ps) u  Choose SI (none, 1, 2, 3, 4, ICRF2 distribution) u  2-component sources u  Also one “real” CONT11 catalogue

² Simulate realistic schedules with VieVS u  CONT11

o  15 – 29 September 2011 o  13 stations o  30 realizations of each day

u  Additional delay term due to source structure

Stas  Shabala  -­‐  REFAG14  

SI 3 = 10 ps

Page 17: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

CONT11  

Stas  Shabala  -­‐  REFAG14  

Page 18: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

X po

sitio

n of

fset

/ cm

real structureno structure

Real sources – X coord  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 19: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

Y po

sitio

n of

fset

/ cm

real structureno structure

Real sources – Y coord  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 20: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

Z po

sitio

n of

fset

/ cm

real structureno structure

Real sources – Z coord  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 21: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.1

0.2

0.3

0.4

0.5

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

posi

tion

offs

et /

cmreal structureno structure

Real sources – 3D coord offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 22: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.1

0.2

0.3

0.4

0.5

Bd Hh Hb Zc Wf Wz On Ts Ny Ys Kk Tc Ft

med

ian

posi

tion

offs

et /

cmreal structureno structure

Offset > 2 mm

Real sources – 3D coord offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 23: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps) Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 24: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps) Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Higher SIs give worse positions

Page 25: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertaintytheory

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps) Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 26: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps)

0.5 – 1 mm error

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 27: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.05

0.1

0.15

0.2

0.25

0.3

none 1 2 3 4ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

How important is quasar structure ?  

SI = 1 + 2 log (τ / ps)

Rms  and  σ  underes1mate  how  wrong  the  soluSon  really  is  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 28: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.01

0.02

0.03

none 1 2 3 4ICRF2 real 0

0.001

0.002

pol r

ms

/ mas

(UT1

-UTC

) rm

s / m

s

structure index

xpolypol(UT1-UTC)

EOP rms  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 29: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

What happens if we include troposphere ?

Stas  Shabala  -­‐  REFAG14  

Page 30: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

none 1 2 3 4 ICRF2 real

posi

tion

/ cm

structure index

median offsetrms

uncertainty

Station positions (with trop.)  

SI = 1 + 2 log (τ / ps)

Troposphere dominates

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 31: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.02

0.04

0.06

0.08

0.1

0.12

none 1 2 3 4ICRF2 real 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

pol r

ms

/ mas

(UT1

-UTC

) rm

s / m

s

structure index

xpolypol(UT1-UTC)

EOP rms (with troposphere)  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 32: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Source structure : effects on CRF  

SIMULATED

Simulation (Cont11), with troposphere & measurement noise

NO STRUCTURE STRUCTURE, SI=3

Stas  Shabala  -­‐  REFAG14  

Page 33: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Source structure : effects on CRF  

SIMULATED

Simulation (Cont11), with troposphere & measurement noise

NO STRUCTURE STRUCTURE, SI=3

MEDIAN ESTIMATED POSITION

JET DIRECTION

Systematic displacement ~ 100 µas

Page 34: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

2.5

3.0

3.5

Structure Index

log

as

(0,1.5

)

(1.5,1

.75)

(1.75

,2)

(2,2.5

)

(2.5,3

)

(3,3.5

)

(3.5,4

)

(4,4.5

)

(4.5,5

)(5,

6)

less  stable  

posiS

ons  

more  structure  

Source structure : effects on CRF  

OBSERVED

More  structure    =    worse  source  posiSons  

Schaap  et  al.  2013,  MNRAS,  434,  585  

Page 35: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Problem summary  ²  Quasar structure simulations with VieVS

²  mock + real quasar catalogues

²  Station positions u  offset from true values u  larger formal uncertainties u  increased rms u  important at mm level

²  EOPs and source positions also get worse with increasing structure  

Stas  Shabala  -­‐  REFAG14  

Page 36: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

(and make corrections)

How do we improve the Reference Frames ? (with quasar physics)

Stas  Shabala  -­‐  REFAG14  Lister  et  al.  (2009)  

Page 37: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

(and make corrections)

Bad news Quasars evolve (need to to this often)  

How do we improve the Reference Frames ? (with quasar physics)

Stas  Shabala  -­‐  REFAG14  Lister  et  al.  (2009)  

Page 38: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

②  Jet direction remains constant (avoid unfavourable baseline – jet orientation)

 

Bad news Quasars evolve  

How do we improve the Reference Frames ? (with quasar physics)

Stas  Shabala  -­‐  REFAG14  

Page 39: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Good news ①  We can image quasar structure

②  Jet direction remains constant

③  Quasars evolve ! (observe quasars when they are “well behaved”)  

Bad news Quasars evolve  

✗  ✓  

How do we improve the Reference Frames ? (with quasar physics)

Page 40: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

How do we improve the Reference Frames ? (with quasar physics)

Good news ①  We can image quasar structure

②  Jet direction remains constant

③  Quasars evolve !  

Strategies ①  Use real sources to correct observations

②  Minimize projected structure through clever scheduling  

③  Include / exclude sources at appropriate times

Bad news Quasars evolve  

Stas  Shabala  -­‐  REFAG14  

Page 41: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

1. Quasar structure corrections

Impr

ovem

ent

Raw  observaSons  rms  

Corrected  using  available  images  

OBSERVED

CONT11  OBSERVATIONS  

Stas  Shabala  -­‐  REFAG14  

Page 42: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

difference    in  mm  !  

1. Quasar structure corrections

Impr

ovem

ent

Raw  observaSons  rms  

Corrected  using  available  images  

Improvement  =  raw  -­‐  corrected  

OBSERVED

Stas  Shabala  -­‐  REFAG14  

Page 43: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

difference    in  mm  !  

1. Quasar structure corrections

Impr

ovem

ent

OBSERVED

Problems  •  Dominated  by  

troposphere  •  Many  quasars  don‘t  

have  images  •  Quasars  evolve    Future  •  Imaging  from  

geodeSc  VLBI  data  

Small  improvement  •   45  bl  beier:    +0.22  mm        33  bl  worse:  -­‐0.12  mm  <  1  mm  ...  but  promising...  

Stas  Shabala  -­‐  REFAG14  

Page 44: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

baseline    length  [103  km]  

difference    in  mm  !  

1. Quasar structure corrections

Impr

ovem

ent

OBSERVED

Problems  •  Dominated  by  

troposphere  •  Many  quasars  don‘t  

have  images  •  Quasars  evolve    Future  •  Imaging  from  

geodeSc  VLBI  data  

Small  improvement  •   45  bl  beier:    +0.22  mm        33  bl  worse:  -­‐0.12  mm  <  1  mm  ...  but  promising...   Long baselines most improved

Stas  Shabala  -­‐  REFAG14  

Page 45: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

•   Jet  direcSon  is  constant  •   Worst  case:  parallel,  long  baselines  

Stru

ctur

e de

lay

in p

s

Angle + length of baseline

Stru

ctur

e de

lay

in p

s

Angle between jet & baseline [°]

R1/R4 of Oct 2013, SI=3

%... median value & % of observations

2. Re-analysis using source structure

Stas  Shabala  -­‐  REFAG14  

Page 46: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

•   Jet  direcSon  is  constant  •   Worst  case:  perpendicular,  long  baselines  

Stru

ctur

e de

lay

in p

s

Angle + length of baseline

Stru

ctur

e de

lay

in p

s

Angle between jet & baseline [°]

R1/R4 of Oct 2013, SI=3

%... median value & % of observations

2. Re-analysis using source structure

Half  the  data  is  ok  

¼  of  data  downweighted  

Stas  Shabala  -­‐  REFAG14  

Page 47: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Stru

ctur

e de

lay

in p

s

Angle + length of baseline Half  the  data  is  ok  

¼  of  data  downweighted  

Simula1on  test  •   Downweight  23%  of  

observaSons  •   Structure  only  simulaSons  Improvement  •   StaSon  posiSons  by  22%  •   Formal  uncertainSes  by  30%  

Problem    Need  these  observaSons  to  resolve  troposphere  !  

2. Re-analysis using source structure

SIMULATED Stas  Shabala  -­‐  REFAG14  

Page 48: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Scheduling  •  Complex  task  •  OpSmizing  for  max.  number  of  scans,  

sky  coverage,  etc.  Strategy  •  Schedule  w.r.t.  relaSve  orientaSon  

and  baseline  length  •  Simulate  

First  results  appear  promising  

2. Re-scheduling w.r.t source structure

SIMULATED

R1/R4 (re-scheduled) of Oct 2013

Impr

ovem

ent

Stas  Shabala  -­‐  REFAG14  

Page 49: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

2

2.5

3

3.5

1995 2000 2005 0

0.5

1

1.5

stru

ctur

e in

dex

flux

dens

ity /

Jy

Year

SIX-band

3. Quasar evolution !  NEW  !    •  Structure  anS-­‐correlates  with  flux  

density  è  Observe  sources  when  flux  density  is  high  (and  so  structure  is  small)  

Source  1357+769  

Stas  Shabala  -­‐  REFAG14  

Page 50: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

3. Quasar evolution

2

2.5

3

3.5

1995 2000 2005 0

0.5

1

1.5

stru

ctur

e in

dex

flux

dens

ity /

Jy

Year

SIX-band

!  NEW  !    •  Structure  anS-­‐correlates  with  flux  

density  è  Observe  sources  when  flux  density  is  high  (and  so  structure  is  small)  •  PosiSon  scaier  decreases  for  sources  

with  high  flux  density  

−2 −1 0 1 2

−2−1

01

2

RA Deviation (mas)

Dec

Dev

iatio

n (m

as)

−2 −1 0 1 2

−2−1

01

2

RA Deviation (mas)

Dec

Dev

iatio

n (m

as)

−2 −1 0 1 2

−2−1

01

2RA Deviation (mas)

Dec

Dev

iatio

n (m

as)Low  flux  density   Medium  flux  density   High  flux  density  

Source  1357+769  

Page 51: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Summary  q  Quasars are not point sources

o  extra group delay ²  Baseline-, time-, frequency- dependent

o  systematic error è simply more observations won’t help

q  Quasar structure simulations with VieVS 2.2 ²  new source structure simulator module ²  mock + real quasar catalogues ²  station positions affected at mm level ²  troposphere dominates (for now)

u  Mitigation strategies v  corrections using source images in analysis v  not scheduling unfavourable jet / baseline combinations

§  avoid long baselines parallel to jet v  source selection

§  radio sources vary in structure on year timescales §  more compact when flaring (bright)  

Page 52: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Stas  Shabala  -­‐  REFAG14  

Page 53: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Inner regions of an Active Galactic Nucleus

Stas  Shabala  -­‐  REFAG14  

Image:  BU  /  A.  Marscher  

Image:  Kovalev  et  al.  (2008)  

core   jet  jet  origin  

Synchrotron  self-­‐absorpSon  è core  locaSon  depends  on  frequency  è  “Core  ShiN”  

One  jet  towards  us  (Doppler  boosted)  -­‐>  seen  One  jet  away  from  us  (D.  deboosted)  -­‐>  unseen  

1  mas  @  z=1  

Page 54: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

2 3 4 5 6 7 8 9 10 11 12

phas

e (a

rbita

ry u

nits

)

frequency / GHz

total

ionosphere

non-dispersive

Quasar structure in VGOS  

How do we connect phases across 10 GHz?

-0.04

-0.02

0

0.02

0.04

2 4 6 8 10 12

phas

e / r

adia

ns

frequency / GHz

max structure delay = +/- 26 ps(7.6 mm light travel time)

max structure delay = +/- 8.2 ps(2.4 mm light travel time)

Expected  delay  accuracy  2-­‐4  ps  

Quasar  structure  >  20  ps  

Page 55: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Quasars What  you  want  them  to  be  ² Bright  point  sources  ² Fixed  in  space  and  Sme  

Image:  N.  Reid  

What  they  are  ² Supermassive  black  holes  ² 106  Smes  more  distant  than  stars  

Image:  NASA  

Image:  C.  Mueller  

•  Quasars  are  really  far  away  (z  >=1  )  (z  =  1  is  half  the  age  of  the  Universe)    •  Use  quasars  because…    D(z  =  1  quasar)  =  6.7  x  109  pc  D(stars  at  GalacSc  centre)  =  8  x  103  pc    è  quasi-­‐iner1al  reference  frame  

Page 56: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

Structure delay (ps)  

Stas  Shabala  -­‐  REFAG14  

Page 57: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.01

0.02

0.03

none 1 2 3 4ICRF2 real 0

0.001

0.002

pol f

orm

al e

rror /

mas

(UT1

-UTC

) for

mal

erro

r / m

s

structure index

xpolypol(UT1-UTC)

EOP formal error (structure only)  

Stas  Shabala  -­‐  REFAG14  

Page 58: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0

0.02

0.04

0.06

0.08

0.1

0.12

none 1 2 3 4ICRF2 real 0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

pol f

orm

al e

rror /

mas

(UT1

-UTC

) for

mal

erro

r / m

s

structure index

xpolypol(UT1-UTC)

EOP formal error (with trop.)  

Stas  Shabala  -­‐  REFAG14  

Page 59: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

no structure

Median position offset  median of 15 x 30 realizations

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 60: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 61: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2

no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 62: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3

no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 63: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 64: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2no structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 65: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2real structureno structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 66: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.001

0.01

0.1

1

10

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWzYsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2real structureno structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted

Page 67: Using quasar physics to improve the VLBI reference frame · −300 −200 −100 0 100 200 300 −300 −200 −100 0 100 200 300 −10 −8 −6 −4 −2 0 2 4 6 8 10 N-E plane

0.1

0.2

0.3

0.5

1.0

2.0

6000 7000 8000 9000 10000

med

ian

posi

tion

offs

et /

cm

average distance to other stations / km

OnWz YsNyZc BdWf FtTs Hb Kk Tc Hh

SI=1SI=2SI=3SI=4

ICRF2real structureno structure

Median position offset  

Stas  Shabala  -­‐  REFAG14  Shabala+14, J. Geod. submitted