Using molecules to capture solar energy Timothy Schmidt.

38

Transcript of Using molecules to capture solar energy Timothy Schmidt.

Page 1: Using molecules to capture solar energy Timothy Schmidt.
Page 2: Using molecules to capture solar energy Timothy Schmidt.

Using molecules to capture solar Using molecules to capture solar energyenergy

Timothy SchmidtTimothy Schmidt

Page 3: Using molecules to capture solar energy Timothy Schmidt.

The solar spectrum

1000 W/m2

Page 4: Using molecules to capture solar energy Timothy Schmidt.

Light is made of photons

hc

E Energy of photon

Planck constantSpeed of light

Wavelength

Page 5: Using molecules to capture solar energy Timothy Schmidt.

The solar spectrum

Low energy photons

High energy photons

Page 6: Using molecules to capture solar energy Timothy Schmidt.

Electrons absorb photons, get energy

E

electrons

unoccupiedenergy levels

diamond

Page 7: Using molecules to capture solar energy Timothy Schmidt.

Electrons absorb photons, get energy

E

electrons

unoccupiedenergy levels

silicon

Page 8: Using molecules to capture solar energy Timothy Schmidt.

The solar spectrum

1000 W/m2

Page 9: Using molecules to capture solar energy Timothy Schmidt.

single threshold solar cells

~32% max

electrons

unoccupiedenergy levels

V

Page 10: Using molecules to capture solar energy Timothy Schmidt.

Shockley-Queisser limit

0.5 1.0 1.5 2.0 2.5

5%

15%

25%

35%

SiGaAs

CdS

a-Si:H

CdTe

Band gap /eV

effici

ency

Ge

6000K sun limit

SQ limit

Page 11: Using molecules to capture solar energy Timothy Schmidt.

the 3 generations of solar cell

Single threshold(Shockley-Queisser limit)

ThermodynamicLimit

Page 12: Using molecules to capture solar energy Timothy Schmidt.

routes to circumventing Shockley-Queisser limit

• using the low energy photons– upconversion– intermediate band cells

• using all the photon’s energy– downconversion– multiple exciton generation– singlet Fission– hot carrier cells

Page 13: Using molecules to capture solar energy Timothy Schmidt.

Electrons have “spin”

Ground state S0 Excited state S1

Page 14: Using molecules to capture solar energy Timothy Schmidt.

Electrons have “spin”

Ground state S0 Excited state S1 Excited state T1

Page 15: Using molecules to capture solar energy Timothy Schmidt.

Molecular photophysics!

absorption

fluorescence(fast, allowed)

Page 16: Using molecules to capture solar energy Timothy Schmidt.

Molecular photophysics!

absorption

Phosphorescence(slow, forbidden)

Intersystem crossing

Page 17: Using molecules to capture solar energy Timothy Schmidt.

what is wrong with this picture?

Page 18: Using molecules to capture solar energy Timothy Schmidt.

T1

triplet-triplet annihilation (TTA)

S1

emitter

S0

emitter

sensitizer

S0

S1

T1

sensitizer

S0

S1

T1T1

S0

TTA

S1

ISCISC

Page 19: Using molecules to capture solar energy Timothy Schmidt.
Page 20: Using molecules to capture solar energy Timothy Schmidt.

Up-conversion

cell

Up-conversion unit

Limiting efficiency of an Upconversion cell is about 50%

Page 21: Using molecules to capture solar energy Timothy Schmidt.

select a sensitizer

tetrakisquinoxalinoporphyrin palladium (II)

Page 22: Using molecules to capture solar energy Timothy Schmidt.

ultrafast photoluminescenceThe compound only fluoresces while in S1 (only 10ps!)

Measured fluorescence lifetime = 5psCalculated fluorescence lifetime = 20nsFluorescence yield = 0.025%Triplet yield may be 99.975%!

Page 23: Using molecules to capture solar energy Timothy Schmidt.

select an emitter

100% fluorescence yieldused by others for TTA upconversion

Page 24: Using molecules to capture solar energy Timothy Schmidt.
Page 25: Using molecules to capture solar energy Timothy Schmidt.
Page 26: Using molecules to capture solar energy Timothy Schmidt.

TTA emission kinetics

Page 27: Using molecules to capture solar energy Timothy Schmidt.

prompt fluorescence vs upconversion

laserlaser

upconversion fluorescence

Page 28: Using molecules to capture solar energy Timothy Schmidt.

TTA yieldsmixture ref pure rubrene ref

33%

25%

Page 29: Using molecules to capture solar energy Timothy Schmidt.

Nothing wrong with this picture!

Page 30: Using molecules to capture solar energy Timothy Schmidt.

or this…

Page 31: Using molecules to capture solar energy Timothy Schmidt.

ummmm?

Page 32: Using molecules to capture solar energy Timothy Schmidt.
Page 33: Using molecules to capture solar energy Timothy Schmidt.

Dennis Cheng

Dr Nicholas J. Ekins-Daukes(NED)

Now at Imperial Collegeour man in London

Dr Raphael “femtofingers” Clady

Murad Tayebjee

Page 34: Using molecules to capture solar energy Timothy Schmidt.

$$ acknowledgements $$

University of SydneyUniversity of NSW

ARC LIEFARC DPGCEP

Page 35: Using molecules to capture solar energy Timothy Schmidt.
Page 36: Using molecules to capture solar energy Timothy Schmidt.

Application to a-Si

realistic a-Si cell100nm, 200nm or 300nm

1mm up-conversion unit

Page 37: Using molecules to capture solar energy Timothy Schmidt.

Application to a-Si

Spectra transmittedthrough cell

Modelled porphyrin absorption spectra

Page 38: Using molecules to capture solar energy Timothy Schmidt.

Application to a-Si

667 Porphyrin

Jsc Voc FF Eff

100nm 88.8 0.838 55.3% 4.1%

200nm 120 0.874 57.6% 6.1%

300nm 136 0.889 58.2% 7.1%

Bare a-Si

Jsc Voc FF Eff

100nm 84.2 0.832 54.8% 3.8%

200nm 114 0.869 57.4% 5.7%

300nm 131 0.884 58.1% 6.8%

780 Porphyrin

Jsc Voc FF Eff

100nm 89.4 0.839 55.4% 4.2%

200nm 122 0.876 57.7% 6.2%

300nm 139 0.891 58.3% 7.4%

Monster porphyrin

Jsc Voc FF Eff

100nm 105 0.859 56.8% 5.1%

200nm 141 0.893 58.4% 7.6%

300nm 160 0.906 58.8% 8.8%

+34%