Using electrospray ionization mass spectrometry as an ion ......The world leader in serving science...

of 29 /29
The world leader in serving science Terri Christison, Carl Fisher and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Using electrospray ionization mass spectrometry as an ion chromatography confirmation tool for the determination of alkylamines and alkanolamines in scrubbing solutions

Embed Size (px)

Transcript of Using electrospray ionization mass spectrometry as an ion ......The world leader in serving science...

  • The world leader in serving science

    Terri Christison, Carl Fisher and Jeff Rohrer

    Thermo Fisher Scientific, Sunnyvale, CA, USA

    Using electrospray ionization mass spectrometry as an ion chromatography confirmation tool for the determination of alkylamines and alkanolamines in scrubbing solutions

  • 2

    • Significant energy source, 21.6% of the total energy consumed in 2015

    • Used as fuels, to generate electricity, and as raw material stock1

    • Hydraulic fracturing has opened previously inaccessible shale deposits

    • Changed producer rankings

    • Changed the mix of gas entering the refineries

    • Many of these wells contain sour gas (> 5.7 mg/m3 of H2S)

    • Amine-rich scrubber solutions neutralize the sour gas into sweet gas2,3

    Natural Gas Industry Background

    1) https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf

    2) https://hub.globalccsinstitute.com/publications/final-report-project-pioneer/amine-scrubbing-process

    3) http://naturalgas.org/naturalgas/processing-ng/

    https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdfhttp://naturalgas.org/naturalgas/processing-ng/

  • 3

    Amine Scrubbing (Neutralizing) Process

    Samples:

    • 20-30% MEA, DEA or MDEA,

    with organic acids, oxidized

    sulfur species, inorganic

    cations and anions

    • Diluted 1000-fold with

    analytical focus on

    ammonium, sodium and

    alkanolamine concentrations

    http://www.enggcyclopedia.com/2011/05/amine-treating-unit/

    https://en.wikipedia.org/wiki/Sulfur#Modern_times

    https://en.wikipedia.org/wiki/Claus_process#/media/File:AlbertaSulfurAtVancouverBC.jpg

    H2S(g) + 2R-NH-OH => 2H2O + S2- + 2R-NH=> SO3

    2- => SO42-

    CO2(g) + 2R-NH-OH => 2H2O + H2CO3 HCO3- CO3

    2- => R-CO2- Na+

    2H2S(g) + 3O2 => 2SO2 + 2H2O

    SO2 + 2H2S(g) => 3S0 + 2H2O

  • 4

    Project Challenges

    • Large sensitivity requirements

    • From ppb to percent concentration

    • High salt content in alkanolamine solutions used to neutralize sour gas

    • Disparate concentrations in scrubbing amine sample

    • Optimize MS for low-mass cations and amines

  • 5

    IC-MS

    • Increases analytical confidence

    • Provides sensitive detection and mass confirmation in addition to retention time often without the

    need for sample pre-treatment

    Single Quadrupole MS

    •Higher sensitivity and more accurate quantitation than conductivity detection

    •Chromatographic peak mass confirmation

    • Eliminate false negatives and false positives

    Why use IC-MS?

  • 6

    Flow Diagram for IC-MS

    Dionex EGC

    500 cartridge

    Dionex

    Degas

    Module

    Fresh 18 MΩ-cm

    Resistivity

    Deionized Water

    Dionex

    CR-TC

    600 trap

    Pump

    CD

    IC Diverter

    Valve in

    Position A

    Autosampler

    Thermo Scientific™ ISQ™ EC Mass

    Spectrometer

    Injection

    Valve

    SRD-10

    Thermo Scientific™ Chromeleon™ Chromatography Data System (CDS)

    AXP

    Pump

    Waste

    Jumper

    P

    CL

    LS

    W4

    12

    3

    5

    6

    P

    C

    L

    LS

    W

    Thermo Scientific™

    Dionex™ CERS™ 500e

    Suppressor

    Thermo Scientific™

    Dionex™ Suppressor

    Regenerant Detector

    Thermo Scientific™ Dionex™

    IonPac™ Columns

  • 7

    Dionex Integrion High-Pressure Ion Chromatography System

    Automated monitoring of performance for all

    consumables

    Detachable tablet with IC controls in local

    language

    Simplified plumbing layout and easy-to-

    install Thermo Scientific™ Dionex™ IC PEEK

    Viper™ Fittings

    Versatile system with flexible detector

    options can be tailored to meet future needs

    Faster analysis without compromising data

    quality using high-pressure IC

    Better method reproducibility using

    Automated Eluent Generation

  • 8

    Methanesulfonic Acid Eluent Generation for Cation Analysis

    [-] Pt anode

    (H2O 2H+ + ½O2 + 2e

    -)

    Anion-exchange connectorMSA

    Generation Chamber

    Vent

    Pump

    H2O

    Pt [+] cathode

    (2H2O + 2e- 2OH- + H2)

    [MSA]Current

    Flow rate

    MSA + O2 MSA

    O2

    MSA-ElectrolyteReservoir

    MSA

    DegasUnit

    CR-CTCCation Trap

    • Easy set-up and no need to prepare manual eluents

    • Elimination of acid and base handling

    • Longer-lasting pumps because they encounter only deionized water

  • 9

    Suppressed Conductivity Results in Increased Signal/Noise Sensitivity

    Li+

    Time

    µS

    Without Suppression

    Time

    µS

    With Suppression

    Methanesulfonic acid eluent

    (MSA) Sample Li+, Na+, Ca2+

    Ion-Exchange

    Separation Column

    Cation Electrolytically

    Regenerating

    Suppressor

    in H2O

    Li-MSA, Na-MSA, Ca-(MSA)2

    in MSA

    Injection Valve

    Counter ions

    LiOH, NaOH, Ca(OH)2

    Na+ Ca2+

    Li+

    Na+ Ca2+

  • 10

    Thermo Scientific ISQ EC Single Quadrupole MS

    Provides enhanced low mass performance

    For ion and liquid

    chromatographers

    Mass range

    10–1250 m/z

    Controlled by Chromeleon

    CDS and optional Chromeleon

    XPS

    Built for

    routine

    analysis

    HESI II

    for enhanced ionization +

    AutoSpray

  • 11

    Instrument Specification Comparison with Predecessor

    * SIM mode

    Specification ISQ EC MSQ Plus

    Mass Range (m/z) 10–1250 17–2000

    Source Type ESI ESI / APCI

    Supported Modes Full scan / SIM Full scan / SIM

    ESI Max Flow Rate 2 mL/min 2 mL/min

    Scan Rate, max (Da/s) 20,000 12,000

    SIM Sensitivity (ESI+)10 pg reserpine

    400:1 RMS

    50 pg erythromycin

    1,000:1

    Polarity Switching Yes, 25 ms Yes, 240 ms

    Mass Resolution Unit (≤ 1.0 Da) Unit (≤ 1.0 Da)

    Mass Accuracy /

    Stability

    ≤ ± 0.1 Da

    ≤ 0.1 Da over 24 h

    ≤ ± 0.3 Da

    ≤ 0.1 Da over 24 h

    Digital Dynamic Range 107 104

    Roughing Pump External oil-based rotary External oil-based rotary

    Power 100-240 VAC 50/60Hz 240 VAC 50/60 Hz

    Reserpine MDL* (pg) 0.3 1.0

    Erythromycin MDL* (pg) 0.08 0.25

    3x better

    3x better

  • 12

    Electrospray Mechanism

    Ion containing

    droplets

    Capillary

    +5 kV

    With droplet’s

    evaporation progress,

    field increases and ions

    move towards surface

    Once the Rayleigh

    limit is reached a

    coulombic

    explosion

    happens and

    releases ions

  • 13

    HESI-II: Electrospray Ion Source as a Current-limited Electrolytic Cell

    Power SupplyElectrophoretic

    charge separationSource inlet

    (counter electrode)

    ESI Capillary

    (working electrode)

    Vacuum

    Liquid-Gas Interface

  • 14

    ISQ EC Mass Spectrometer Ion Flight Path

    Mass Analyzer

    Ion

    Source

    Detector

  • 15

    Easy Mode for novice user, advanced

    tools for MS experts

    Autotune can be part of a sequence –automated calibration

    Autospray™technology translates physical

    properties into optimal method

    parameters

    Real-time scanning for online signal optimization

    ISQ EC MS Control Embedded into Chromeleon CDS

  • 16

    Using the Chromeleon Instrument Method Wizard to Create IC-MS Methods

    Scan and Acquisition Rate in Easy Mode

  • 17

    Translated into Component/Advanced Mode

  • 18

    Method Development: Scrubbing Amines

    ColumnThermo Scientific™ Dionex™ IonPac™ CS19-4µm, 2 x 250 mm,

    600 µEq/column (20-35 min)

    Separation2.5 µL of sample; gradient separation: 4 mM to 60 mM from 0.1 to 27.5

    min, 0.25 mL/min using electrolytically generated MSA

    First DetectionSuppressed conductivity, Dionex CERS 500e Suppressor,

    external water mode

    Second Detection ESI MS with HESI-II probe, +3000V, full scan 18-250 m/z, SIM

    Probe and MS Temperatures Vaporizer 250 C; Ion Transfer 250 C

    Probe Nitrogen flow Sheath 50 psi, Aux 4 psi, Sweep 0.2 psi

    Desolvation solvent none

    • Need selectivity for alkanolamines

    • Need high capacity to resolve µg/L concentrations from percent

    concentration

  • 19

    SIM Table for Scrubbing Amines Method

    Formula Isotopic (Accurate) Mass Ion m/z+1 CID (V)

    Ammonium as NH4 NH3 17.027 18 10

    Ammonium as NH4*H2O NH4*H2O 35.038 36 5

    Calcium as Ca*2H2O Ca*2H2O 75.985 76 10

    Dibutylamine C8H19N 129.152 130 10

    Diethanolamine (DEA) C4H11NO2 105.079 106 20

    Diethylamine C4H11N 73.089 74 15

    Dimethylamine C2H7N 45.058 46 10

    2-Dimethylaminoethanol C4H11NO 89.084 90 20

    Ethanolamine (EA) C2H7NO 61.053 62 15

    Ethylamine C2H7N 45.058 46 10

    Hydrazine N2H4 32.037 33 10

    Magnesium Mg 23.985 24 10

    Magnesium as 2Mg*H2O 2Mg*H2O+ 65.981 66 10

    Methylamine CH5N 31.042 32 10

    Methylaminoethanol C3H9NO 75.068 76 10

    Methyldiethanolamine (MDEA) C5H13O2N 119.095 120 10

    Potassium K 38.964 39 10

    Sodium as Na Na 22.990 23 10

    Sodium as Na*2H2O+ Na*2H2O

    + 59.011 59 10

    Triethanolamine (TEA) C6H15NO3 149.105 150 25

  • 20

    Optimizing Experiments to Evaluate the Stability of the Hydrate Ions

    Sodium Ammonium DEA

    Na+ Na-2H2O+ Total NH4

    + NH4-H2O+ Total

    m/z 23 59 18 36 106

    Mean

    (cts-min)1.62E+3 1.26E+6 1.26E+6 92 3.98E+4 3.99E+4 1.23E+7

    %RSD 1.5 2.6 2.6 4.9 1.9 1.9 1.8

    Hydrated forms provide more response than bare ions

  • 21

    100 ppm Sodium and Ammonium in Methyldiethanolamine

    Columns: Thermo Scientific™ Dionex™ IonPac™ CG19-4µm, 2 50 mm

    Dionex IonPac CS19-4µm, 2 250 mm

    MSA Gradient: 4 mM Methanesulfonic acid (MSA )(0–0.1 min), 4–60 mM

    (0.1–27.5 min), 4 mM (27.6–35 min)

    Eluent Source: Thermo Scientific™ Dionex™ EGC 500 MSA Eluent Generator

    Cartridge, Thermo Scientific™ Dionex™ CR-CTC 600

    Continuously Regenerated Cation Trap Column, Dionex high-

    pressure degasser

    Flow Rate: 0.25 mL/min

    Injection Vol.: 2.5 µL

    Column Temp.: 30 C

    Detector 1: Suppressed conductivity, Thermo Scientific™ Dionex™

    CERS 500e Cation Electrolytically Regenerated Suppressor,

    48 mA, 30 ºC,

    external water mode, 0.5 mL/min by Dionex AXP-MS pump

    Detector 2: ISQ EC MS, +ESI, +3000 V source, HESI II

    Scan mode: Full scan: 18-200 m/z, SIM

    Sampling Rate: 15 s chromatography width, 10 points/peak

    Make-up solvent: none

    Source Temp.: Vaporizer 250 ºC , Ion Transfer 250 ºC

    N2 Gas flow (psi): Sheath 50, Aux 4, Sweep 0.2

    Standard: 1000-fold diluted methyldiethanolamine with added sodium

    and ammonium

    Peaks: CID (V) RT(min) Conc. (mg/L)

    1. Sodium *2H2O 10 5.94 100

    2. Ammonium *H2O 5 6.35 100

    3. Diethanolamine 10 7.00 1000

    4. Ethanolamine 10 6.51 ~ 2

    5. Triethanolamine 10 7.53 ~ 2

    Minutes

    32

    1180

    -20

    µS

    4 100 2 6

    4 5

    CD

    8

    58.5-59.5

    2.5e6 (Ct-

    min)

    SIM

    Relative

    Abund.

    (Cts)

    4.9 6.9

    5.0e6

    min

    1

    5.8e5

    (Ct-min)

    5.9 6.9min

    2.5e5

    35.5-36.5

    2

    2.0e7

    (Ct-min)

    105.5-106.5

    5.6 9.5min

    2.5e7 3

    61.5-62.5

    5.9 6.9

    1.2e6

    2.3e5

    (Ct-min)

    min

    4

    5.6 9.5min

    149.5-150.5

    6.0e5

    2.6e5

    (Ct-min)

    5

  • 22

    Summary of Calibration and MDL Results

    IonCalibration Range

    (mg/L)Type

    Coefficient of

    Determination (r2)

    MDL+

    (µg/L)

    Na*2H2O 0.040–20 Quadratic fit, 2nd order 0.9995 8++

    NH4*H2O 0.0025–25Quadratic fit, 2nd order,

    weighted 1/x0.9919 22++

    EA 200–2000

    Quadratic fit, 2nd order

    0.9994 ND

    DEA 200–3333 0.9971 ND

    Potassium 0.005–50 0.9991 4+++

    MDEA 200–3333 0.9984 ND

    2Mg*H2O 0.025–25 0.9989 15++

    Ca*2H2O 0.050–50 0.9962 64++++

    + MDL= 3x S/N, n = 7

    ND: not determined

    MDL Standard,

    Dionex Combined Six Cation II standards: ++ 10,000-fold dilution +++ 50,000-fold dilution ++++ 5,000-fold dilution

    Calibration linearity and ppb MDLs

  • 23

    Amines and Cations in 1000-fold Dilution of Different Scrubbing Amine Samples

    Columns: Dionex IonPac CG19-4µm, 2 50 mm

    Dionex IonPac CS19-4µm, 2 250 mm

    MSA Gradient: 4 mM MSA (0–0.1 min), 4–60 mM (0.1–27.5 min),

    4 mM (27.6–35 min)

    Eluent Source: Dionex EGC 500 MSA Eluent Generator Cartridge, Dionex

    CR-CTC 600 Trap Column, Dionex high pressure degasser

    Flow Rate: 0.25 mL/min

    Injection Vol.: 2.5 µL

    Column Temp.: 30 C

    Detector 1: Suppressed conductivity, Dionex

    CERS 500e suppressor, 48 mA, 30 ºC,

    external water mode, 0.5 mL/min by Dionex AXP-MS pump

    Detector 2: ISQ EC MS, +ESI, +3000 V source, HESI II

    Scan mode: Full scan: 18-200 m/z, SIM

    Sampling Rate: 15 s chromatography width, 10 points/peak

    Make-up solvent: none

    Source Temp.: Vaporizer 250 ºC , Ion Transfer 250 ºC

    N2 Gas flow (psi):Sheath 50, Aux 4, Sweep 0.2

    CID (V): Ammonium: 5; EA: 15, DEA: 20, TEA: 25, all others: 10

    Peaks: A B C (mg/L)

    1. Sodium *2H2O

  • 24

    Summary of Recovery Experiments

    Sodium hydrate

    Na*2H2O

    Ammonium hydrate

    NH4*H2OAlkanolamine

    SampleFound

    (mg/L)

    Added

    (mg/L)

    Recovery

    (%)

    Found

    (mg/L)

    Added

    (mg/L)

    Recovery

    (%)

    Found

    (mg/L)

    Added

    (mg/L)

    Recovery

    (%)

    EA -- 0.42 99.1 0.25 0.21 101.3 2100 762 89.4

    DEA 0.27 0.96 102.0 0.095 1.3 104.0 220 1570 101.3

    MDEA 0.003 0.63 103.5 0.39 0.93 101.9 310 971 99.4

    Good method accuracy (89 - 104% recovery)

  • 25

    • Determined inorganic amines, alkylamines, and alkanolamines in scrubbing

    amines by IC-MS

    • ppb concentrations of ammonium and sodium (as hydrates) and concentrated

    alkanolamines in same sample

    • Advantages of IC-MS

    • Higher sensitivity and accuracy than CD

    • Chromatographic peak confirmation

    • Eliminates false positives, false negatives

    Conclusions

  • 26

    Resources

    AN72609 TN72611

    AppsLab.com

    https://assets.thermofisher.com/TFS-Assets/CMD/Application-Notes/an-72609-ic-ms-alkanolamine-scrubbing-solutions-an72609-en.pdfhttps://assets.thermofisher.com/TFS-Assets/CMD/Technical-Notes/tn-72611-ic-ms-system-configuring-optimizing-tn72611-en.pdfhttps://appslab.thermofisher.com/

  • 27

    Online ISQ EC MS Resources

    How to videos

    Brochure

    Blog

    Application Methods

    Specifications Sheet

  • 28

    The Thermo Scientific Dionex Ion Chromatography Product Line

    RFIC

    HPIC

    Thermo Scientific™

    Dionex™ Aquion™

    IC System

    Thermo Scientific™

    Dionex™ Integrion™

    HPIC™ System

    Thermo Scientific™

    Dionex™ ICS-4000

    Capillary HPIC™ System

    Thermo Scientific™ Dionex™

    ICS-6000 Hybrid HPIC™ System

    www.thermofisher.com/ic

  • 29

    Thank You!