Using CAPSIS to assess the genetic impacts of...

27
Using CAPSIS to assess the genetic impacts of sylviculture R&D project funded by RMT AFORCE & CG Vaucluse 2017-2018 INRA (Avignon, Montpellier, Orléans) ONF (RD&I, 84) CNPF-IDF PNR Luberon & CG84 SF-CDC François Lefèvre, INRA URFM, Avignon [email protected]

Transcript of Using CAPSIS to assess the genetic impacts of...

  • Using CAPSIS to assess the genetic impacts of sylviculture

    R&D project funded by RMT AFORCE & CG Vaucluse2017-2018

    INRA (Avignon, Montpellier, Orléans)ONF (RD&I, 84)

    CNPF-IDFPNR Luberon & CG84

    SF-CDC

    François Lefèvre, INRA URFM, [email protected]

  • IPCC 2013

    Climate change : not just a change of state but a state of change

    multiple uncertainties : global scenarios & local impacts extreme events complexe interactions impact of adaptive measures

    forestry horizon

  • Anticipate risks and opportunities, consider uncertainties for each decision, identify short-term and long-term benefits and risks anticipate and manage possible trade-offs between short- vs long-term

    Short-term : more constraint, less uncertainty => adaptation

    Long-term : less constraint, moreuncertainty => preserve options

    IPCC 2013

    forestry horizon

  • Rationale of this project

    1) Genetic diversity is a lever for adaptation in the context of change and uncertainties

  • Native range Mean annual Tmean Tmean& use range precipitation coldest month hottest month

    California (5 pops) 420 – 700 10 – 11 16 – 18

    N-Z (Southland) 960 – 1000 3 – 5 13 – 15 N-Z (Kaingaroa) 1300 – 1500 7 – 9 11 – 19 Chile (Valdivia) 2350 7.7 17

    South Afr. (Cap) 900 – 1100 10 – 13 20 – 24

    Aust. (Bathurst) 650 – 950 0.4 – 0.6 24 – 28Aust. (Tumut) 800 – 1300 0.5 – 0.8 25 – 30

    China (Aba,Sichuan) 490 – 590 -3.4 – -0.7 25 - 28

    Pinus radiata : extended climatic use range after breeding and selection

    Yan et al (2006) For Ecol Manag

  • Introduction of Cedrus atlantica in France

    French provenances perform better in the provenance tests

    Height

    Diameter

  • Skrøppa et al 2010 Tree Genet Genomes

    Date

    Date

    % budset

    % budset

    Rapid genetic changes in phenology in 1 generation after transplantation

    Introduction of Picea abies in Norway

  • … but everything is not possible, species' niches still have limits and there

    are empty niches, there are also constraints that limit adaptation :

    1. genetic constraints

    2. developmental constraints

    3. lack of genetic diversity

    4. demographic stochasticity

    5. random genetic drift

    6. low mortality

    7. asymetric gene flow (e.g. niche limit)

    Futuyma 2010 Evolution ; Kuparinen et al 2010 For Ecol Manag

  • Rationale of this project

    1) Genetic diversity is a lever for adaptation in the context of change and uncertainties

    2) Forests generally harbor a large genetic diversity that contribute to their evolvability, i.e. genetic flexibility

  • Trees have more genetic diversity than other organisms

    Some trees have much less genetic diversity than others(Pinus pinea, Pinus resinosa…)

    Current genetic diversity is determined by : - phylogeny - ancient processes - current processes

    annual trees plants

    nb species 196 226mean nb pop. 9.2 18.1mean nb loci 18.1 16.2

    total diversity (HeT) 0.177 > 0.154within pop diversity (Hs) 0.148 > 0.101differentiation (FST) 0.084 < 0.355

    Hamrick et al 1992New Forests

  • 19 traits 59 tree species

    Phenology traits, 27 European conifers

    16 sp. 11 sp. range fragmented continuous

    mean He 0.171 0.209

    mean FST 0.082 0.044

    mean QST 0.192 0.463

    Alberto et al 2013 Global Change Biol

    A large genetic diversity within stands, even for functional traits

  • Rationale of this project

    1) Genetic diversity is a lever for adaptation in the context of change and uncertainties

    2) Forests generally harbor a large genetic diversity that contribute to their evolvability, i.e. genetic flexibility

    3) Evolvability is variable, locally driven by neutral processes and selection on which practices may have a significant impact

  • Pichot et al, 2006

    Impact of density on mating success in Pinus sylvestris

  • Sagnard, 2001

    Impact of spatial arrangement on SGS of the regeneration

  • Lefèvre et al, 2004 ; Karam, 2014

    Combination of genetic processes during introductiontheir combination may contribute to the performance

  • forestry practice induced changes impacted selection and genetic drift parameters

    local density environment(competition)

    mating system(s, Nep)

    allocation to reproduction

    spatial structure

    phenotypic selection

    environment(biotic / abiotic)

    selective thinning

    systematicthinning

    pruning

    mechanical or chemical treatments

    Ne (A², F)

    P², A²,

    i

    var. reproductive success (V)

    A process-based approach to assess the impact of practices on FGR drivers

    Lefèvre et al 2014 Ann For Sci

    Evolution-oriented forest management

  • Rationale of this project

    1) Genetic diversity is a lever for adaptation in the context of change and uncertainties

    2) Forests generally harbor a large genetic diversity that contribute to their evolvability, i.e. genetic flexibility

    3) Evolvability is variable, locally driven by neutral processes and selection on which practices may have a significant impact

    4) Simulations are required to test innovative forest management practices, e.g. combining natural regeneration and plantation systems

  • forestry horizonGenetic impacts of management

    practices on the dynamics of adaptation (100 or 200 years) ?

    Plantation after clear-cut (static /dynamic)

    Genetic enrichment plantation

    Environmental engineering

    Systematic thinnings (intensity, regime)

    Selective thinnings (criteria, intensity)

    Prunning

    Evolution-oriented forest management

  • Objectives of the project

    Develop a simulation tool to compare management options in different contexts, and implement in 2 case studies

    Integrate genetic diversity and processes in simulation tools currently used by the R&D to assess the genetic impacts of sylviculture on the current population and the next generations of trees

    User friendly interface to parameterize simulations and analyse output indicators of genetic impacts

    Simple demo-genetic model to assess genetic impacts, not functional, sanitary or economic impacts

  • Initial genetic diversity & structure

    (quantiNemo, Metagene)

    Demo-genetic processes

    (CAPSIS)

    Indicators of genetic impacts

    (CAPSIS or R?)

    4) qu’est-ce qu’un modèle démo-génétique

  • Management options and contexts

    1) Forest dynamics with regeneration and disturbance regime

    2) Practices related to the introduction of new genetic material Impacts of the design of introduction of new genetic material on the

    local and the introduced gene pools Impacts of the design of introduction on the neighboring plot Rational management of genetic mixtures

    3) Practices related to stand management Impacts of adaptation-oriented sylviculture practices in even-aged

    and non even-aged stands Valorize environmental heterogeneity to foster genetic adaptation Reserve of long lasting old trees New practices of evolution-oriented forest management

  • 1) Demo-genetic parameters and processes Genetic architecture of growth and survival performance with

    trade-off vigour x resistance to disturbance Inbreeding depression Individual and temporal variation of reproduction Pollen and seed flow

    2) Indicators of genetic impact (at least 2 generations) Demography (survival, growth, reproduction), mean and variance Sensitivity to disturbance, mean and variance Genetic diversity (various parameters), on QTL and global Evolvability (various parameters) Inbreeding, mean and variance Spatial genetic structure ...

    Demo-genetic parameters and indicators

  • Evolution-oriented forest management

    Lefèvre et al 2014 Ann For Sci

    Innovative practices

  • Evolution-oriented forest management

    Lefèvre et al 2014 Ann For Sci

    Innovative practices

  • Some references

    Savolainen O, Kärkkäinen K (1992) Effect of forest management on gene pools. New Forests 6:329–345.

    Lefèvre F (2004) Human impacts on forest genetic resources in the temperate zone: an updated review. Forest Ecology and Management, 197:257-271.

    Dreyfus et al (2005) Couplage de modèles de flux de gènes et de modèles de dynamique forestière. Les Actes du BRG, 5:231-250.

    Oddou-Muratorio et al (2005) Comment les pratiques forestières influent-elles sur la diversité génétique des arbres forestiers ? RdVT ONF, hs n°1:3-6,

    Pichot et al (2006) Déterminants et conséquences de la qualité génétique des graines et semis lors de la phase initiale de régénération naturelle des peuplements forestiers. Les Actes du BRG, 6:277-297.

    Valadon A (2009). Effets des interventions sylvicoles sur la diversité génétique des arbres forestiers, analyse bibliographique. Les Dossiers Forestiers de l’ONF, N° 21, 157p

    Lefèvre et al (2014) Considering evolutionary processes in adaptive forestry. Annals of Forest Science, 71:723-739

    Lefèvre et al (2015) Les processus biologiques de réponse des arbres et forêts au changement climatique : adaptation et plasticité phénotypique. Innovations Agronomiques, 47:63-79.

    Diapo 1Diapo 2Diapo 3Diapo 4Diapo 5Diapo 6Diapo 7Diapo 8Diapo 9Diapo 10Diapo 11Diapo 12Diapo 13Diapo 14Diapo 15Diapo 16Diapo 17Diapo 18Diapo 19Diapo 20Diapo 21Diapo 22Diapo 23Diapo 24Diapo 25Diapo 26Diapo 27