Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the...

18
Afr J Ecol. 2018;56:759–776. wileyonlinelibrary.com/journal/aje | 759 © 2018 John Wiley & Sons Ltd Received: 14 May 2018 | Revised: 10 October 2018 | Accepted: 10 October 2018 DOI: 10.1111/aje.12574 SPECIAL SECTION: CAMERA TRAPPING IN AFRICA Using camera trap data to characterise terrestrial larger‐bodied mammal communities in different management sectors of the Dja Faunal Reserve, Cameroon Tom Bruce 1 | Rajan Amin 2 | Tim Wacher 2 | Oliver Fankem 1 | Constant Ndjassi 1 | Madeleine Ngo Bata 1 | Andrew Fowler 1 | Hilaire Ndinga 3 | David Olson 1 1 Zoological Society of London – Cameroon, Yaoundé, Cameroon 2 Global Conservation Programmes, Zoological Society of London, London, UK 3 Ministry of Forests and Wildlife, MINFOF, Dja Faunal Reserve, Yaoundé, Cameroon Correspondence Tom Bruce, Zoological Society of London – Cameroon, Yaoundé, Cameroon. Email: [email protected] Funding information US Fish and Wildlife Service (USFWS); African Elephant Conservation and IUCN SOS; Fondation Segré Pangolin Conservation Initiative Abstract Camera trap surveys can be useful in characterising terrestrial larger‐bodied mammal communities in Central Africa forests. Two 40‐trap, minimum of 100 days, survey grids conducted in the Dja Faunal Reserve of southern Cameroon showed differ‐ ences in the mammal communities of two sites 32 km apart. Mammal richness, diver‐ sity, guild structure, body‐size patterns and relative abundance of taxa were measured by trapping rates and occupancy of the two mammal communities. One of the survey sites was (a) less rich in terrestrial mammal species; (b) missing disturbance‐sensitive felids and white‐bellied duiker (Cephalophus leucogaster , subsp, leucogaster, Gray, 1873); (c) greater in abundance of some disturbance‐tolerant species; and (d) lower in abundance of larger‐bodied species. Several indicators suggest a higher hunting pres‐ sure at this site, and this may be a contributing factor to these differences. Résumé Les études avec pièges photographiques peuvent être utiles pour caractériser des communautés de grands mammifères terrestres dans les forêts d’Afrique centrale. Deux grilles de recherches de 40 pièges, sur un minimum de 100 jours, réalisées dans la Réserve de Faune du Dja, dans le sud du Cameroun, ont montré des différences dans des communautés de deux sites séparés l’un de l’autre de 32 km. La richesse en mammifères, la diversité, la structure des guildes, le schéma des tailles corporelles et l’abondance relative des taxons ont été mesuré d’après le taux de piégeage et l’occupation des deux communautés animales. Une des sites étudiés était (a) moins riche en espèces de mammifères terrestres; (b) dépourvu de tout félin sensible aux perturbations et de céphalophe à ventre blanc Cephalophus leucogaster , subsp. leu- cogaster , Gray, 1873; (c) plus peuplé de certaines espèces plus tolérantes vis‐à‐vis des perturbations; et (d) moins peuplé d’espèces de plus grande taille. Plusieurs indica‐ teurs suggèrent une plus forte pression de la chasse sur ce site et cela pourrait être un facteur contribuant à cette différence. KEYWORDS camera trap, Cameroon, Dja Faunal Reserve, mammal, occupancy

Transcript of Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the...

Page 1: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

Afr J Ecol 201856759ndash776 wileyonlinelibrarycomjournalaje emsp|emsp759copy 2018 John Wiley amp Sons Ltd

Received14May2018emsp |emsp Revised10October2018emsp |emsp Accepted10October2018DOI101111aje12574

S P E C I A L S E C T I O N C A M E R A T R A P P I N G I N A F R I C A

Using camera trap data to characterise terrestrial larger‐bodied mammal communities in different management sectors of the Dja Faunal Reserve Cameroon

Tom Bruce1 emsp|emspRajan Amin2emsp|emspTim Wacher2emsp|emspOliver Fankem1emsp|emspConstant Ndjassi1emsp|emsp Madeleine Ngo Bata1emsp|emspAndrew Fowler1emsp|emspHilaire Ndinga3emsp|emspDavid Olson1

1ZoologicalSocietyofLondonndashCameroonYaoundeacuteCameroon2GlobalConservationProgrammesZoologicalSocietyofLondonLondonUK3MinistryofForestsandWildlifeMINFOFDjaFaunalReserveYaoundeacuteCameroon

CorrespondenceTomBruceZoologicalSocietyofLondonndashCameroonYaoundeacuteCameroonEmailtombrucemyjcueduau

Funding informationUSFishandWildlifeService(USFWS)AfricanElephantConservationandIUCNSOSFondationSegreacutePangolinConservationInitiative

AbstractCameratrapsurveyscanbeusefulincharacterisingterrestriallarger‐bodiedmammalcommunities inCentralAfrica forestsTwo40‐trapminimumof100days surveygrids conducted in theDja FaunalReserveof southernCameroon showeddiffer‐encesinthemammalcommunitiesoftwosites32kmapartMammalrichnessdiver‐sityguildstructurebody‐sizepatternsandrelativeabundanceoftaxaweremeasuredbytrappingratesandoccupancyofthetwomammalcommunitiesOneofthesurveysiteswas(a)lessrichinterrestrialmammalspecies(b)missingdisturbance‐sensitivefelids and white‐bellied duiker (Cephalophus leucogaster subsp leucogaster Gray1873)(c)greaterinabundanceofsomedisturbance‐tolerantspeciesand(d)lowerinabundanceoflarger‐bodiedspeciesSeveralindicatorssuggestahigherhuntingpres‐sureatthissiteandthismaybeacontributingfactortothesedifferences

ReacutesumeacuteLeseacutetudesavecpiegravegesphotographiquespeuventecirctreutilespourcaracteacuteriserdescommunauteacutesdegrandsmammifegraveresterrestresdans les forecirctsdrsquoAfriquecentraleDeuxgrillesderecherchesde40piegravegessurunminimumde100joursreacutealiseacuteesdanslaReacuteservedeFauneduDjadanslesudduCamerounontmontreacutedesdiffeacuterencesdansdescommunauteacutesdedeuxsitesseacutepareacuteslrsquoundelrsquoautrede32kmLarichesseenmammifegraveresladiversiteacutelastructuredesguildeslescheacutemadestaillescorporellesetlrsquoabondance relative des taxons ont eacuteteacute mesureacute drsquoapregraves le taux de pieacutegeage etlrsquooccupationdesdeuxcommunauteacutesanimalesUnedessiteseacutetudieacuteseacutetait(a)moinsricheenespegravecesdemammifegraveresterrestres(b)deacutepourvudetoutfeacutelinsensibleauxperturbationsetdeceacutephalopheagraveventreblancCephalophus leucogastersubsp leu-cogasterGray1873(c)pluspeupleacutedecertainesespegravecesplustoleacuterantesvis‐agrave‐visdesperturbationset(d)moinspeupleacutedrsquoespegravecesdeplusgrandetaillePlusieursindica‐teurssuggegraverentuneplusfortepressiondelachassesurcesiteetcelapourraitecirctreunfacteurcontribuantagravecettediffeacuterence

K E Y W O R D S

cameratrapCameroonDjaFaunalReservemammaloccupancy

760emsp |emsp emspensp Bruce et al

1emsp |emspINTRODUC TION

WildlifeinCentralAfricanforestsisunderincreasingpressurefromhabitatlosshabitatfragmentationandintensivehuntingforbush‐meatandwildlifeparts(HansenStehmanampPotapov2010Mallonet al 2015Mambeya et al 2018 Potapov et al 2012 Poulsenet al 2017) Hunting is a daily occurrence in Central African vil‐lages(AbernethyCoadTaylorLeeampMaisels2013Ziegleretal2016) and is an important factor contributing to the distributionof mammal species within protected areas (Muchaal amp Ngandjui1999) and around settlements (Abrahams Peres amp Costa 2017)BushmeatmarketsurveyswithinCentralAfricahavedemonstratedthatmammalsrepresentgt90ofthecarcassessold(Faetal2006)Themotivesbehindhuntingrangefromtraditionalsubsistenceandcommercialhunting forbushmeat to targetingspecies for the ille‐galwildlifetradesuchasgreatapesforbodypartsforestelephant(Loxodonta cyclotisMatschie1900)forivoryandpangolinsfortheirscales(Craigieetal2010Stiles2011)

Reduction and extirpation of mammal populations in CentralAfrican forests have cascading ecological impacts on forest eco‐systemsInparticularthelossoftoppredators(MalhiAdu‐BreduAsareLewisampMayaux2013)keyseeddispersersincludinggreatapes and forest elephants (Blake Deem Mossimbo Maisels ampWalsh2009)andlandscapearchitectssuchaselephantsthatkeepclearingsopeninCentralAfricanforests(Maiselsetal2013)canhavelong‐termandfar‐reachingimpactsonforestcommunitiesandprocesses(Abernethyetal2013Lauranceetal2012)

Understanding the interplay of patterns of hunting (for exam‐ple distribution intensity target species frequency and huntingmethods)amajordriverofmammaliandefaunationand resultantimpactsonthecompositionstructureanddistributionofmedium‐to larger‐bodied terrestrialmammals in Central Africa forests caninform management actions (Abernethy et al 2013 Bennett etal 2007 Laurance et al 2006Nielsen 2006 SeddonGriffithsSooraeampArmstrong2014)

Forexample can regular effectivepatrollingby rangersmain‐tain robust wildlife communities within ldquodefendedrdquo zones whensurroundingareasareexperiencinghigherlevelsofhuntingThean‐swerwilldependinpartonthelong‐termreachofhuntingimpactsonmammalcommunitiesacrossforestlandscapesAslarger‐bodiedmammalsareusuallymorewide‐rangingoccuratlowdensitiesandhavelonggestationperiodsthismakesthemparticularlyvulnerabletoextinction(PurvisGittlemanCowlishawampMace2000TuckerOrdampRogers2014)whereasspecieswithsmallerhomerangesandhigherdensitiesonaveragemaybemoreresilientastheminimumareaneededtomaintainviablepopulationsissmallerThusarefinedunderstandingoftheprocessofdefaunationacrossforestedCentralAfrican landscapeswill help identifymanagement actions and thescales atwhich they aremost effective for slowing and reversingit (Bruce et al 2017 Campbell Kuehl Diarrassouba NrsquoGoran ampBoesch2011Redford1992)

Camera trap surveys arewell‐suitedas amethodology todoc‐umenttherichnessoffaunasandunderstanddielactivitypatterns

andhabitatpreferencesofmediumtolargeterrestrialmammalspe‐cies in dense forests (Ahumada et al 2011 Hedwig et al 2018Silveira Jacomo amp Diniz‐Filho 2003 Tobler Carrillo‐PercasteguiLeitePitmanMaresampPowell2008)Theyprovideacost‐effectiveefficient non‐invasive and replicable surveymethod (Ahumada etal2011RoveroampMarshall2009Tobleretal2008)Importantlythey removemuchof thehumanerror anduncertaintyassociatedwithothersurveytypessuchasdistancesamplingthroughlinetran‐sectsandinterviewswiththelocalpopulations(AhumadaHurtadoampLizcano2013Hedwigetal2018)thatareoftenbiasedtowardslarger‐bodied diurnal species and fail to detect rare and elusivenocturnalspecies(Srbek‐AraujoampChiarello2005)Theuseofstan‐dardisedcameratrappingmethodsandclassifyingspeciesintofunc‐tionalgroupssuchasbytrophiccategorylifehistorysocialstructureandbodysizeallowsmammalcommunities indifferentsitestobecomparedregardlessofdifferencesinspeciescomposition

Herewe investigate ifcamera trapsurveyscandiscerndiffer‐ences in community metrics of terrestrial larger‐bodied mammalassemblagesatdifferentsiteswithinthesameCentralAfricanpro‐tectedareaWeexaminemetricsof richness guildbody‐sizeandrelativeabundanceasmeasuredbytrappingratesandoccupancyofthetwomammalcommunitiessurveyedusingagridofcameratrapsateachsite

2emsp |emspMATERIAL S AND METHODS

Camera trap surveys were conducted at two sites approximately32km apart (at their closest proximity) within the Dja FaunalReserve(DFR)insouthernCameroonContiguousnaturalforesten‐compassesbothsitesandinterveningandsurroundinghabitat

21emsp|emspStudy area

TheDFRthelargestprotectedareainCameroon isapproximately5260km2 (3deg08prime589PrimeN 13deg00prime001PrimeE Figure 1) The Dja Riversurrounds 80 of the reserve acting as a partial buffer to humanencroachment and animal movement (Muchaal amp Ngandjui 1999)Thetopographywithinthereserveismadeupofround‐toppedhillsbetween600and800maslwithvalleysoneithersideofacentralridgelinethattraversesthereserveeasttowest(MINFOFampIUCN2015)Swampsareprevalent inthetributariesfeedingintotheDjaRiverThreemajorforesttypesoccurwithinthereserveterrafirmeforest(Sonkeacute1998)monodominantforest(Gilbertedendronsp)andseasonally inundated forests (DjuikouoDoucetNguembouLewisamp Sonkeacute 2010) There are four seasons a long rainy season fromAugusttoNovemberthelongdryseasonfromNovembertoMarchashortrainyseasonfromMarchtoMayandtheshortdryseasonis between June and July Average annual rainfall is c 1600mm(HijmansCameronParraJonesampJarvis2005)CommercialloggingwaslimitedandhasnowceasedOnlytraditionalhuntingisallowedwithin the Dja Faunal (Biosphere) Reserve and no fully protectedClassAspeciescanbetaken(RepublicofCameroon1994)However

emspensp emsp | emsp761Bruce et al

thehumanpopulationaroundthereserveisincreasingandindustriessuchasloggingrubberhydropowerandminingareproliferatingre‐sultinginincreaseddemandforbushmeatBothillegalnon‐traditionalsubsistenceandcommercialhuntingoccurwithinthereserve

22emsp|emspNorthern and southern sector sites

WesetupcameratrapgridsintheNorthern(management)Sector(centredon03deg13rsquo33rsquorsquoN12deg48rsquo18rsquorsquoE)betweenNovember2015andMay 2016 and the Southern (management) Sector (02deg59rsquo37rsquorsquoN13deg07rsquo43rsquorsquoE)oftheDFRbetweenMayandJune2017(Figure1)ThecameratrapgridwithintheNorthernSectorwasplacedusingthenorthernprotectedareaboundaryasanapproximatebaselineref‐erenceThecamerasweresetovera rangeofc31 toc159kmfromtheboundaryof the reservewithanaveragedistanceof95(SEplusmn39)kmfromtheboundaryCameraswereplacedonaverage123(SEplusmn38)kmfromthenearestsettlementswitharangeofbe‐tweenc6and188kmTheNorthernSectorof theDjapresentsagenerallyhigherandmoreuniformelevation(662ndash720masl)thanthe Southern Sector (563ndash689masl) Watercourses are sparserand swamp habitat less common within this management sectorCorrespondinglythenortherncameratrapstationswereonaver‐agemoredistantfromthenearestwatercourse(c261km)andonlytwonortherncameraswereplacedinswamphabitat

Thecameras in theSouthernSectorgridwereplacedonaver‐age123(SEplusmn38)kmoverarangeofc57ndash19kmfromthereserveboundary and were between c 77 and 22km from the nearesthuman settlementwith anaveragedistanceof155 (SEplusmn37) kmThetopographywithinthesoutherncameratrapgridismorecom‐plexwithagreaterelevationalvariationThegreaterprevalenceoflowlandareasresultedinmoreswamphabitat(fivecamerasplacedwithin 50m of swamp habitats) and cameras being on averageplacedclosertowatercourses(c06km)

23emsp|emspcamera trap surveys

Forty cameraswere placed at each localitywith a 2km spacingbetweeneachcamera(Ahumadaetal2011)(Figure1)Eachgridoperatedlongenoughtoachieveatleast1000cameratrapdaysofsamplingeffort(OrsquoBrienKinnairdampWibisono2003)WeusedGlobalPositioningSystemreceiverstolocatethegridpointsAsin‐gle camerawas positioned 30ndash45cm above ground level within200m of each point aimed at a game trail that provided suffi‐cient fieldofviewtocapture lateral full‐body imagesofsmall tomedium‐sizedmammals Siteswere selected based on the pres‐enceofagametrail(Aminetal2015)tomaximisetheprobabil‐ityofobtainingusefulphotographs(TEAM2008)andasuitabletreeallowing thecamera tobepositioned facingeithernorthor

F I G U R E 1 emspLocationoftheDjaFaunalReserveCameroon(a)andthelocationofcameratrapgridsintheNorthernandSouthernsectors(b)Managementsectorsareingrey[Colourfigurecanbeviewedatwileyonlinelibrarycom]

762emsp |emsp emspensp Bruce et al

south tominimise the impacts of sunrise and sunset on cameraperformance

We used three different camera models across the two grids(BushnellAggressorReconyxHC500 andCuddebackLong rangeIRE2)Detectionrangewasatleast25mwitheitheratwo‐seconddelay(Bushnell‐2015NorthernSectorsurvey)orone‐seconddelay(ReconyxCuddebackandBushnell‐2017SouthernSectorsurvey)ThreeconsecutiveimagesweretakenpertriggerLowglowinfraredflashlightingwasusedtominimisetheriskofstartlinganimalsThefulllistofsettingsforeachcameracanbefoundinAnnex1

24emsp|emspNatural mammal fauna

Thereserveisreportedtocontain109speciesofmammalofwhich35speciesareterrestrialandhaveabodyweightgt05kg(Kingdon2015) Currently the only baseline data for populations for thesespecieswithinthereservecomefromencounterratesfromrangerpatrolsanddistancesamplingthroughlinetransectsurveys(DupainBombomeampVanElsacker2003MINFOFampIUCN2015WilliamsonampUsongo1995)

25emsp|emspAssessment of differences in human activity

Toassesstherelativedifferencesinhumanactivityincludinghunt‐ing between theNorthern and Southern Sectorwhere the twosites were located we evaluated trends from multiple sourcesEvidence of human sign was recorded on 1‐kilometre line tran‐sectsduringafullfaunalinventoryoftheDFR(Bruceetal2018)TransectsareoftenusedtomonitorthetrendsofhumanimpactsinCentralAfricanforests(Kuumlhletal2008)Therewereatotalof86and76transectscoveringadistanceof916and807kmcom‐pleted intheNorthernSectorandSouthernSector respectivelyEncountersofhumansignbetweenJanuary2016andSeptember2017byMinistryofForestsandWildlife(MINFOF)rangerpatrolswhorecorddatausingSpatialMonitoringAndReportingToolde‐viceswerealsoused(ZSLampMINFOF2017a2017b)Abufferof2kmwassetaroundeachcameraandthesignwithinthisareawasconvertedintotheamountofhumansignperkm2Thisbufferwasusedtocounteractunequalsurveyeffortwithinthesectorspos‐siblyduetoecoguardsbeingrequiredtobepresentataresearchstation in theNorthernSectorat thebottomof thecamera trapgrid

Transects provide a more objective measure of hunting pres‐sureastheyuseastandardisedmethodologyandteamcompositioncompared to rangerpatrolsTransectsarenotbiasedby followingtrailsorotherpathsofleastresistancethataffectstheprobabilityofhumansignbeingdetected

26emsp|emspData analysis

WeusedExiv2software(Huggel2012)toextractEXIFinformationfromeachphotograph(imagenamedateandtime)SpeciesofanimalinthephotographswereidentifiedwhenpossibleThesedatawere

compiled in an Excel spreadsheet (Microsoft Office ProfessionalPlus2016Version1809)andanalysedwithsoftwaredevelopedbyat ZSL (CameraTrapAnalysis Package [CTAP]) (DaveyWacherampAmin2017)

Weonlyconsideredterrestrialmammalspeciesthathaveanesti‐matedaveragemassgreaterthan05kg(medium‐to‐largemammals)fortheanalysesbecausetheyarethemaintargetgroupforcameratrapsplacedatgroundlevelSmallermammalsinducesamplingerrorthroughareducedlikelihoodofdetectionbythecameratraprsquosther‐malsensorandaccurateidentificationofsmallmammalstospecieslevelisdifficultfromcameratrapsset‐upformedium‐to‐largemam‐mals(Tobleretal2008)

We calculated rarified species accumulation curves and esti‐matedthemedium‐to‐largeterrestrialmammalspeciesrichnessforeachsectorusingtheZSLCTAPtool

We calculated Simpsonrsquos diversity index and ShannonndashWeinerdiversity index foreach sector fromspeciesdaily trap ratesusingpackageveganinRstatisticalsoftware(Oksanen2015)Simpsonrsquosdiversityindexismostsensitivetochangesinmorecommonhighlyabundant species while ShannonndashWeiner diversity index is mostsensitivetochangesinrarelessabundantspecies(Magurran2005)

Wecalculatedthenumberofindependentphotographiceventsper100trapdaysasarelativeabundanceindex(RAI)foreachspeciesWedefinedanldquoeventrdquoasanysequenceforagivenspeciesoccurringafteranintervalofge60minfromthepreviousthree‐imagesequenceof that species to ensure that species events were independent(Aminetal2015Tobleretal2008)Theeventswereautomati‐cally screenedby theZSLCTAPsoftwareWecalculated the95confidenceintervalsusingthebootstrapmethod(EfronampTibshirani1994)andconsiderednon‐overlappingconfidenceintervalsasindic‐ativeofasignificantdifferenceinRAIbetweenmanagementsectorsWeassumethatthecameratrappingratescalculatedastheRAIre‐flectactualrelativeabundanceasinRoveroandMarshall(2009)

We used single‐season occupancy analysis (MacKenzie et al2006) where assumptions and data quality allowed to estimatethe proportion of area occupied by a species within each gridOccupancyestimateswerecorrectedbydetectionprobability (iethelikelihoodthataspecieswasdetectedwhenpresent)andthere‐foreprovideamore rigorous indexofabundance forbothwithinandbetweenspeciescomparisonsThishoweverislimitedtospe‐ciesgeneratingadequatedatasetswherecameraspacingisgreaterthanthespecieshomerangeandoccupancyisnotconfoundedbychanges in the home range (Efford ampDawson 2012) For all theoccupancyanalyseswegenerated1110‐daysamplingoccasionsThismeanttheNorthernSectordataweretruncatedtomatchthenumberofoccasionsavailableforanalysis intheSouthernSectorWetestedforsignificantdifferencesinspeciesoccupancybetweenthe Northern and Southern sectors using the ldquoWaldrdquo parametricstatisticaltestasitisknowntobeanindependentandrobustmea‐sureofdifference(Aminetal2015)withplt005consideredtobesignificant

We alsomodelled occupancy as a function of site covariatesdistance to the protected area boundary in kilometres (D) and

emspensp emsp | emsp763Bruce et al

management sector (M) using the ldquounmarkedrdquo (Fiske amp Chandler2011) software package in R We treated detection probabilityas a constant and evaluated all covariate combinations ψ ()p()ψ (D)p() ψ (M)p() ψ (DM)p() ψ (D+M) p() For covariate anal‐ysis tocompare themanagementsectorswealso implementedaRoylendashNicholsmodel(2003)whichtakesintoaccountthenumberofindividualsatasiteinfluencingdetectionprobabilityandthusoc‐cupancyTheselectionofRoylendashNicholsmodelaboveasingle‐sea‐sonmodelforaspecieswouldprovidefurthersupportthatspeciesabundance was significantly different between the managementsectorsWe rankedmodelsbyAkaikersquos informationcriteria (AIC)andmodels that had a delta AIC of lt2were considered to be acompetingmodel(BurnhamampAnderson2002)Thec‐hatandchi‐squared values to assessmodel dispersionwere generated usingtheMackenzie andBailey (2004) goodness‐of‐fit testwhichwasconducted using 1000 simulations for eachmodelModels witha c‐hatgt2were rejectedas theywere regardedasoverdispersed(Farrisetal2015)

3emsp |emspRESULTS

Weaccumulated3725operationalcameratrapdays(mean91dayscamera)intheNorthernSectorand3371operationalcameratrapdays(mean84dayscamera)intheSouthernSectorIntheNorthernSector grid ten cameras were lost or damaged by people or el‐ephants and somemalfunctioned The Southern Sector only hadeightcamerasfailduetothesameissuesaswellastoleoparddam‐age In total 16 cameraswere excluded fromoccupancy analysisduetobeingoperationalforlt80ofoccasions

31emsp|emspRelative assessment of human sign

Overallhumanpressureasmeasuredbyhumansignwithinthere‐servewasmoreabundant intheNorthernSectorcomparedtotheSouthern Sector Encounter rate of human sign on transects was154km in theNorthern Sector three times higher than 049kmintheSouthernSectorAsimilarpatternwasobserved inthedatagatheredbyMINFOF rangers TheNorthern Sector had a densityofhuntingsignof087km2 withintheareaofthegridincludingthe2km buffer compared to 008km2 in the Southern Sector Giventhatseveralsignsmeasuredarecloselyassociatedwithhuntingac‐tivitysuchassnaresandcartridgesweassumethathuntingactiv‐ityisonaveragehigherintheNorthernSectorthantheSouthernSector

32emsp|emspSpecies richness

A total of 26 medium‐to‐large terrestrial mammal species werephotographedintheNorthernSectorand31medium‐to‐largeter‐restrialmammalspeciesintheSouthernSector(Table1)Wealsore‐cordedfivearborealmammalspeciesthatwerenotthetargetofthissurvey (Table1)Fourmedium‐to‐large terrestrialmammalspecies

expected to occur in the surveyed habitats according to availableIUCN distribution maps and literature were not detected by thecameratrapsurveysineithersector(Table1)

The species accumulation curves for medium‐to‐large terres‐trialmammal species showmore species detected per unit effortin theSouthernSector (Figure2)Thediversity indicesweremar‐ginally lower in the Northern Sector (Simpsons=072 ShannonndashWeiner=179)comparedtotheSouthernSector(Simpsons=078ShannonndashWeiner=208)

33emsp|emspCommunity structure

CommunitystructureofmammalsdifferedbetweentheNorthernSectorandSouthernSectorsites(Figures3and4)withmorespe‐ciesbeingencounteredforthreeoutofthefourguilds(herbivoresinsectivoresandcarnivores)intheSouthernSectorThemostfre‐quentlyencounteredguild inbothsectorswasherbivore (14spe‐ciesintheSouthernSectorand13intheNorthernSector)followedbyomnivore(seveninbothsectors)carnivore(sixintheSouthernSector four in theNorthernSector) and insectivore (three in theSouthernSector two in theNorthernSector)Overallacross theguilds trapping rates for lowerbodymassspecieswerehigher inthe Northern Sector A marked difference was the higher trap‐pingratesofherbivoresandomnivoreswithbodymassgt10kg intheSouthernSector (Figure4) compared to theNorthernSector(Figure3)

34emsp|emspForest antelopes

Werecorded4495independentphotographiceventsoftenspe‐ciesof forest antelopesTheblueduiker (Philantomba monticolaThunberg 1789) was the most frequently encountered forestantelope species across both camera trap grids (RAI=527) fol‐lowed by Petersrsquo duiker (Cephalophus callipygus Peters 1876)(RAI=412) and Bay duiker (Cephalophus dorsalis Gray 1846)(RAI=747) The rest of the forest antelopeswere relatively in‐frequently encounteredwith a global trapping rate of less thanfiveThedisturbance‐sensitivewhite‐belliedduiker(Hart2013b)wasonlyencountered in theSouthernSector (RAI=395 [lower95 confidence limit (LCL)=214 upper 95 confidence limit(UCL)=611])TrappingratesweresignificantlyhigherforPeterrsquosduiker in the Southern Sector displaying a fivefold increase be‐tween sectors (Table 1) Peterrsquos duiker occupancy was also sig‐nificantlyhigherintheSouthernSectorcomparedtotheNorthernSector (p=002 Table 2) Therewere no significant differencesin trapping rates between the two sectors forBatersquos pygmy an‐telope (Neotragus batesi de Winton 1903) bay duiker bongo(Tragelaphus eurycerusOgilbyi1837)sitatunga (Tragelaphus spe-kiiSpeke1863)andblack‐frontedduiker(Cephalophus nigrifrons Gray1871)Occupancyvaluesforbayduikerblack‐frontedduikerandBatersquospygmyantelopedidnotdiffersignificantlybetweenthesectorsTherewereinsufficientdetectionsoftheotherspeciestomodeloccupancy

764emsp |emsp emspensp Bruce et al

TA B L E 1 emspMammalspeciespredictedtoberecordedintheNorthernandSouthern(management)sectorsofDjaFaunalReserveCameroon

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Afrosoricida Giantottershrew(Potamogale velox Du Chaillu1860)

LC Wetland Notdetected Notdetected

Carnivora Africangoldencat(Profelis aurataTemminck1827)a

VU Forest Notdetected 058(027ndash091)

Carnivora Leopard(Panthera pardusLinnaeus1758)a

NT Mixed Notdetected 083(032ndash145)

Carnivora Marshmongoose(Atilax paludinosusCuvier1829)a

LC Wetland 056(033ndash082)b 009(0ndash02)b

Carnivora Black‐leggedmongoose(Bdeogale nigripesPucheran1855)a

LC Forest 183(079ndash314) 371(263ndash484)

Carnivora Camerooncusimanse(Crossarchus platycephalusGoldman1984)a

LC Forest 183(124ndash247) 083(046ndash127)

Carnivora Long‐nosedmongoose(Herpestes nasodeWinton1901)a

LC Forest 102(053ndash160) 089(009ndash227)

Carnivora Africanpalmcivet(Nandinia binotataGray1830)a

LC Forest 113(071ndash16) 089(052ndash13)

Carnivora Servalinegenet(Genetta servalinaPucheran1855)a

LC Forest 325(239ndash416) 214(142ndash295)

Carnivora Large‐spottedgenet(Genetta maculata Gray1830)

LC Forest Notdetected Notdetected

Carnivora CentralAfricanoyan(Poiana richardsoniiThomson1842)c

LC Forest Notdetected 003(003ndash009)

Cetartiodactyla Batesspygmyantelope(Neotragus batesideWinton1903)a

LC Forest 04(011ndash078) 036(015ndash059)

Cetartiodactyla Forestbuffalo(Syncerus cafferSparrmansubspnanus1779)a

EN Forest 008(0ndash024) 006(0ndash019)

Cetartiodactyla Petersduiker(Cephalophus callipygusPeters1876)a

LC Forest 141(838ndash2071)b 7146 (4963ndash9641)b

Cetartiodactyla Bayduiker(Cephalophus dorsalisGray1846)a

LC Forest 668(44ndash935) 834(492ndash1228)

Cetartiodactyla White‐belliedduiker(Cephalophus leucogastersubsp leucogasterGray1873)

LC Forest Notdetected 395(214ndash611)

Cetartiodactyla Black‐frontedduiker(Cephalophus nigrifronsGray1871)a

LC Forest 086(003ndash246) 05(006ndash114)

Cetartiodactyla Yellow‐backedduiker(Cephalophus silvicultorAfzelius1815)a

LC Forest 37(225ndash554) 555(354ndash794)

Cetartiodactyla Blueduiker(Philantomba monticolaThunberg1789)a

LC Forest 6164(4602ndash788) 4298(315ndash5561)

Cetartiodactyla Bongo(Tragelaphus eurycerusOgilbyi1837)a

NT Forest 005(0ndash014) 006(0ndash015)

Cetartiodactyla Sitatunga(Tragelaphus spekiiSpeke1863)a

LC Wetland 024(005ndash048) 009(0ndash024)

Cetartiodactyla Redriverhog(Potamochoerus porcusLinnaeus1758)a

LC Woodland 161(102ndash228)b 7(336ndash1304)b

Cetartiodactyla Giantforesthog(Hylochoerus mein-ertzhageniThomas1904)

LC Forest Notdetected Notdetected

Cetartiodactyla Waterchevrotain(Hyemoschus aquaticusOgilby1841)a

LC Forest 03(0ndash075)b 46(192ndash799)b

(Continues)

emspensp emsp | emsp765Bruce et al

35emsp|emspCarnivore

ThecarnivorecommunitydifferedinRAIandstructurebetweenthetwosectorsFelidswerenotdetectedatallintheNorthernSectorbutboth leopard (Panthera pardusLinneaus1758)andgoldencat(Profelis aurata Temminck1827)werepresentintheSouthernSector

(Table1)AmongtheHerpestidaeblack‐leggedmongoose(Bdeogale nigripes Pucheran1855) showeda significantlyhigheroccupancy(p =gt001)intheSouthernSectorbuttrappingrateslackedsignifi‐cantdifference (RAI=371 [LCL=263UCL=484])comparedtothe Northern Sector (RAI=183 [LCL=079 UCL=314])Marshmongoose(Atilax paludinosusCuvier1829)hadsignificantlyhigher

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Hyracoidea Westerntreehyrax(Dendrohyrax dorsalis Fraser1855)

LC Forest Notdetected Detected

Pholidota White‐belliedpangolin(Phataginus tricuspisRafinesque1821)a

VU Forest 062(029ndash1) 08(044ndash121)

Pholidota Giantpangolin(Smutsia giganteaIlliger1815)a

VU Forest 027(008ndash052) 068(038ndash101)

Primates Agilemangabey(Cercocebus agilisMilne‐Edwards1886)a

LC Forest 035(013ndash059) 448(265ndash682)

Primates Moustachedguenon(Cercopithecus cephusLinnaeus1758)c

LC Forest Detected Notdetected

Primates Greaterspot‐nosedguenon(Cercopithecus nictitansLinnaeus1766)c

LC Forest Detected Detected

Primates Blackcolobus(Colobus satanasWaterhouse1838)c

VU Forest Notdetected Detected

Primates Galagospc ‐ Detected Notdetected

Primates Mandrill(Mandrillus sphinxLinnaeus1758)a

VU Forest 005(0ndash013) 006(0ndash019)

Primates Westernlowlandgorilla(Gorilla gorillaSavagesubspgorilla1847)a

CR Forest 016(003ndash031) 044(02ndash073)

Primates Centralchimpanzee(Pan troglodytesBlumenbachsubsptroglodytes1799)a

EN Forest 161(077ndash29)b 457(314ndash617)b

Proboscidea Forestelephant(Loxodonta cyclotisMatschie1900)a

VU Mixed 086(046ndash135) 19(086ndash329)

Rodentia Africanbrush‐tailedporcupine(Atherurus africanusGray1842)a

LC Forest 1753(1142ndash2446) 762(464ndash1145)

Rodentia Eminspouchedrat(Cricetomys eminiWroughton1910)a

LC Forest 32(2358ndash4141)b 756(341ndash1465)b

Rodentia Greatercanerat(Thryonomys swinderi-anus Temminck1827)

LC Wetland Notdetected Notdetected

Rodentia LadyBurtonsropesquirrel(Funisciurus isabellaGray1862)c

LC Forest Detected Detected

Rodentia Fire‐footedropesquirrel(Funisciurus pyrropusCuvier1833)c

LC Forest Detected Detected

Rodentia Africangiantsquirrel(Protoxerus stangeriWaterhouse1842)c

LC Forest Detected Detected

Tubulidentata Aardvark(Orycteropus aferPallas1766)a LC Mixed Notdetected 009(005ndash019)

NotesForeachsectorandspeciesthatwasdetectedwepresentthemeanand95confidencelimits(inbrackets)ofthenumberofindependentphotographiceventspertrapdaytimes100Trappingrateswereonlycalculatedformedium‐to‐largeterrestrialmammalsduetoinconsistentdetectionprobabilitieswithotherspeciesIUCNstatuscriticallyendangered(CR)endangered(EN)vulnerable(VU)nearthreatened(NT)leastconcern(LC)aIndicatesaspeciesthatwasincludedintherarefactionanalysisaccordingtothedefinitiongiveinthedataanalysissectionofthemethodsbIndicatesthattheRAIconfidenceintervalsdonotoverlapandcanbeconsideredsignificantlydifferentcSignifiesanarborealspecies

TA B L E 1 emsp (Continued)

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 2: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

760emsp |emsp emspensp Bruce et al

1emsp |emspINTRODUC TION

WildlifeinCentralAfricanforestsisunderincreasingpressurefromhabitatlosshabitatfragmentationandintensivehuntingforbush‐meatandwildlifeparts(HansenStehmanampPotapov2010Mallonet al 2015Mambeya et al 2018 Potapov et al 2012 Poulsenet al 2017) Hunting is a daily occurrence in Central African vil‐lages(AbernethyCoadTaylorLeeampMaisels2013Ziegleretal2016) and is an important factor contributing to the distributionof mammal species within protected areas (Muchaal amp Ngandjui1999) and around settlements (Abrahams Peres amp Costa 2017)BushmeatmarketsurveyswithinCentralAfricahavedemonstratedthatmammalsrepresentgt90ofthecarcassessold(Faetal2006)Themotivesbehindhuntingrangefromtraditionalsubsistenceandcommercialhunting forbushmeat to targetingspecies for the ille‐galwildlifetradesuchasgreatapesforbodypartsforestelephant(Loxodonta cyclotisMatschie1900)forivoryandpangolinsfortheirscales(Craigieetal2010Stiles2011)

Reduction and extirpation of mammal populations in CentralAfrican forests have cascading ecological impacts on forest eco‐systemsInparticularthelossoftoppredators(MalhiAdu‐BreduAsareLewisampMayaux2013)keyseeddispersersincludinggreatapes and forest elephants (Blake Deem Mossimbo Maisels ampWalsh2009)andlandscapearchitectssuchaselephantsthatkeepclearingsopeninCentralAfricanforests(Maiselsetal2013)canhavelong‐termandfar‐reachingimpactsonforestcommunitiesandprocesses(Abernethyetal2013Lauranceetal2012)

Understanding the interplay of patterns of hunting (for exam‐ple distribution intensity target species frequency and huntingmethods)amajordriverofmammaliandefaunationand resultantimpactsonthecompositionstructureanddistributionofmedium‐to larger‐bodied terrestrialmammals in Central Africa forests caninform management actions (Abernethy et al 2013 Bennett etal 2007 Laurance et al 2006Nielsen 2006 SeddonGriffithsSooraeampArmstrong2014)

Forexample can regular effectivepatrollingby rangersmain‐tain robust wildlife communities within ldquodefendedrdquo zones whensurroundingareasareexperiencinghigherlevelsofhuntingThean‐swerwilldependinpartonthelong‐termreachofhuntingimpactsonmammalcommunitiesacrossforestlandscapesAslarger‐bodiedmammalsareusuallymorewide‐rangingoccuratlowdensitiesandhavelonggestationperiodsthismakesthemparticularlyvulnerabletoextinction(PurvisGittlemanCowlishawampMace2000TuckerOrdampRogers2014)whereasspecieswithsmallerhomerangesandhigherdensitiesonaveragemaybemoreresilientastheminimumareaneededtomaintainviablepopulationsissmallerThusarefinedunderstandingoftheprocessofdefaunationacrossforestedCentralAfrican landscapeswill help identifymanagement actions and thescales atwhich they aremost effective for slowing and reversingit (Bruce et al 2017 Campbell Kuehl Diarrassouba NrsquoGoran ampBoesch2011Redford1992)

Camera trap surveys arewell‐suitedas amethodology todoc‐umenttherichnessoffaunasandunderstanddielactivitypatterns

andhabitatpreferencesofmediumtolargeterrestrialmammalspe‐cies in dense forests (Ahumada et al 2011 Hedwig et al 2018Silveira Jacomo amp Diniz‐Filho 2003 Tobler Carrillo‐PercasteguiLeitePitmanMaresampPowell2008)Theyprovideacost‐effectiveefficient non‐invasive and replicable surveymethod (Ahumada etal2011RoveroampMarshall2009Tobleretal2008)Importantlythey removemuchof thehumanerror anduncertaintyassociatedwithothersurveytypessuchasdistancesamplingthroughlinetran‐sectsandinterviewswiththelocalpopulations(AhumadaHurtadoampLizcano2013Hedwigetal2018)thatareoftenbiasedtowardslarger‐bodied diurnal species and fail to detect rare and elusivenocturnalspecies(Srbek‐AraujoampChiarello2005)Theuseofstan‐dardisedcameratrappingmethodsandclassifyingspeciesintofunc‐tionalgroupssuchasbytrophiccategorylifehistorysocialstructureandbodysizeallowsmammalcommunities indifferentsitestobecomparedregardlessofdifferencesinspeciescomposition

Herewe investigate ifcamera trapsurveyscandiscerndiffer‐ences in community metrics of terrestrial larger‐bodied mammalassemblagesatdifferentsiteswithinthesameCentralAfricanpro‐tectedareaWeexaminemetricsof richness guildbody‐sizeandrelativeabundanceasmeasuredbytrappingratesandoccupancyofthetwomammalcommunitiessurveyedusingagridofcameratrapsateachsite

2emsp |emspMATERIAL S AND METHODS

Camera trap surveys were conducted at two sites approximately32km apart (at their closest proximity) within the Dja FaunalReserve(DFR)insouthernCameroonContiguousnaturalforesten‐compassesbothsitesandinterveningandsurroundinghabitat

21emsp|emspStudy area

TheDFRthelargestprotectedareainCameroon isapproximately5260km2 (3deg08prime589PrimeN 13deg00prime001PrimeE Figure 1) The Dja Riversurrounds 80 of the reserve acting as a partial buffer to humanencroachment and animal movement (Muchaal amp Ngandjui 1999)Thetopographywithinthereserveismadeupofround‐toppedhillsbetween600and800maslwithvalleysoneithersideofacentralridgelinethattraversesthereserveeasttowest(MINFOFampIUCN2015)Swampsareprevalent inthetributariesfeedingintotheDjaRiverThreemajorforesttypesoccurwithinthereserveterrafirmeforest(Sonkeacute1998)monodominantforest(Gilbertedendronsp)andseasonally inundated forests (DjuikouoDoucetNguembouLewisamp Sonkeacute 2010) There are four seasons a long rainy season fromAugusttoNovemberthelongdryseasonfromNovembertoMarchashortrainyseasonfromMarchtoMayandtheshortdryseasonis between June and July Average annual rainfall is c 1600mm(HijmansCameronParraJonesampJarvis2005)CommercialloggingwaslimitedandhasnowceasedOnlytraditionalhuntingisallowedwithin the Dja Faunal (Biosphere) Reserve and no fully protectedClassAspeciescanbetaken(RepublicofCameroon1994)However

emspensp emsp | emsp761Bruce et al

thehumanpopulationaroundthereserveisincreasingandindustriessuchasloggingrubberhydropowerandminingareproliferatingre‐sultinginincreaseddemandforbushmeatBothillegalnon‐traditionalsubsistenceandcommercialhuntingoccurwithinthereserve

22emsp|emspNorthern and southern sector sites

WesetupcameratrapgridsintheNorthern(management)Sector(centredon03deg13rsquo33rsquorsquoN12deg48rsquo18rsquorsquoE)betweenNovember2015andMay 2016 and the Southern (management) Sector (02deg59rsquo37rsquorsquoN13deg07rsquo43rsquorsquoE)oftheDFRbetweenMayandJune2017(Figure1)ThecameratrapgridwithintheNorthernSectorwasplacedusingthenorthernprotectedareaboundaryasanapproximatebaselineref‐erenceThecamerasweresetovera rangeofc31 toc159kmfromtheboundaryof the reservewithanaveragedistanceof95(SEplusmn39)kmfromtheboundaryCameraswereplacedonaverage123(SEplusmn38)kmfromthenearestsettlementswitharangeofbe‐tweenc6and188kmTheNorthernSectorof theDjapresentsagenerallyhigherandmoreuniformelevation(662ndash720masl)thanthe Southern Sector (563ndash689masl) Watercourses are sparserand swamp habitat less common within this management sectorCorrespondinglythenortherncameratrapstationswereonaver‐agemoredistantfromthenearestwatercourse(c261km)andonlytwonortherncameraswereplacedinswamphabitat

Thecameras in theSouthernSectorgridwereplacedonaver‐age123(SEplusmn38)kmoverarangeofc57ndash19kmfromthereserveboundary and were between c 77 and 22km from the nearesthuman settlementwith anaveragedistanceof155 (SEplusmn37) kmThetopographywithinthesoutherncameratrapgridismorecom‐plexwithagreaterelevationalvariationThegreaterprevalenceoflowlandareasresultedinmoreswamphabitat(fivecamerasplacedwithin 50m of swamp habitats) and cameras being on averageplacedclosertowatercourses(c06km)

23emsp|emspcamera trap surveys

Forty cameraswere placed at each localitywith a 2km spacingbetweeneachcamera(Ahumadaetal2011)(Figure1)Eachgridoperatedlongenoughtoachieveatleast1000cameratrapdaysofsamplingeffort(OrsquoBrienKinnairdampWibisono2003)WeusedGlobalPositioningSystemreceiverstolocatethegridpointsAsin‐gle camerawas positioned 30ndash45cm above ground level within200m of each point aimed at a game trail that provided suffi‐cient fieldofviewtocapture lateral full‐body imagesofsmall tomedium‐sizedmammals Siteswere selected based on the pres‐enceofagametrail(Aminetal2015)tomaximisetheprobabil‐ityofobtainingusefulphotographs(TEAM2008)andasuitabletreeallowing thecamera tobepositioned facingeithernorthor

F I G U R E 1 emspLocationoftheDjaFaunalReserveCameroon(a)andthelocationofcameratrapgridsintheNorthernandSouthernsectors(b)Managementsectorsareingrey[Colourfigurecanbeviewedatwileyonlinelibrarycom]

762emsp |emsp emspensp Bruce et al

south tominimise the impacts of sunrise and sunset on cameraperformance

We used three different camera models across the two grids(BushnellAggressorReconyxHC500 andCuddebackLong rangeIRE2)Detectionrangewasatleast25mwitheitheratwo‐seconddelay(Bushnell‐2015NorthernSectorsurvey)orone‐seconddelay(ReconyxCuddebackandBushnell‐2017SouthernSectorsurvey)ThreeconsecutiveimagesweretakenpertriggerLowglowinfraredflashlightingwasusedtominimisetheriskofstartlinganimalsThefulllistofsettingsforeachcameracanbefoundinAnnex1

24emsp|emspNatural mammal fauna

Thereserveisreportedtocontain109speciesofmammalofwhich35speciesareterrestrialandhaveabodyweightgt05kg(Kingdon2015) Currently the only baseline data for populations for thesespecieswithinthereservecomefromencounterratesfromrangerpatrolsanddistancesamplingthroughlinetransectsurveys(DupainBombomeampVanElsacker2003MINFOFampIUCN2015WilliamsonampUsongo1995)

25emsp|emspAssessment of differences in human activity

Toassesstherelativedifferencesinhumanactivityincludinghunt‐ing between theNorthern and Southern Sectorwhere the twosites were located we evaluated trends from multiple sourcesEvidence of human sign was recorded on 1‐kilometre line tran‐sectsduringafullfaunalinventoryoftheDFR(Bruceetal2018)TransectsareoftenusedtomonitorthetrendsofhumanimpactsinCentralAfricanforests(Kuumlhletal2008)Therewereatotalof86and76transectscoveringadistanceof916and807kmcom‐pleted intheNorthernSectorandSouthernSector respectivelyEncountersofhumansignbetweenJanuary2016andSeptember2017byMinistryofForestsandWildlife(MINFOF)rangerpatrolswhorecorddatausingSpatialMonitoringAndReportingToolde‐viceswerealsoused(ZSLampMINFOF2017a2017b)Abufferof2kmwassetaroundeachcameraandthesignwithinthisareawasconvertedintotheamountofhumansignperkm2Thisbufferwasusedtocounteractunequalsurveyeffortwithinthesectorspos‐siblyduetoecoguardsbeingrequiredtobepresentataresearchstation in theNorthernSectorat thebottomof thecamera trapgrid

Transects provide a more objective measure of hunting pres‐sureastheyuseastandardisedmethodologyandteamcompositioncompared to rangerpatrolsTransectsarenotbiasedby followingtrailsorotherpathsofleastresistancethataffectstheprobabilityofhumansignbeingdetected

26emsp|emspData analysis

WeusedExiv2software(Huggel2012)toextractEXIFinformationfromeachphotograph(imagenamedateandtime)SpeciesofanimalinthephotographswereidentifiedwhenpossibleThesedatawere

compiled in an Excel spreadsheet (Microsoft Office ProfessionalPlus2016Version1809)andanalysedwithsoftwaredevelopedbyat ZSL (CameraTrapAnalysis Package [CTAP]) (DaveyWacherampAmin2017)

Weonlyconsideredterrestrialmammalspeciesthathaveanesti‐matedaveragemassgreaterthan05kg(medium‐to‐largemammals)fortheanalysesbecausetheyarethemaintargetgroupforcameratrapsplacedatgroundlevelSmallermammalsinducesamplingerrorthroughareducedlikelihoodofdetectionbythecameratraprsquosther‐malsensorandaccurateidentificationofsmallmammalstospecieslevelisdifficultfromcameratrapsset‐upformedium‐to‐largemam‐mals(Tobleretal2008)

We calculated rarified species accumulation curves and esti‐matedthemedium‐to‐largeterrestrialmammalspeciesrichnessforeachsectorusingtheZSLCTAPtool

We calculated Simpsonrsquos diversity index and ShannonndashWeinerdiversity index foreach sector fromspeciesdaily trap ratesusingpackageveganinRstatisticalsoftware(Oksanen2015)Simpsonrsquosdiversityindexismostsensitivetochangesinmorecommonhighlyabundant species while ShannonndashWeiner diversity index is mostsensitivetochangesinrarelessabundantspecies(Magurran2005)

Wecalculatedthenumberofindependentphotographiceventsper100trapdaysasarelativeabundanceindex(RAI)foreachspeciesWedefinedanldquoeventrdquoasanysequenceforagivenspeciesoccurringafteranintervalofge60minfromthepreviousthree‐imagesequenceof that species to ensure that species events were independent(Aminetal2015Tobleretal2008)Theeventswereautomati‐cally screenedby theZSLCTAPsoftwareWecalculated the95confidenceintervalsusingthebootstrapmethod(EfronampTibshirani1994)andconsiderednon‐overlappingconfidenceintervalsasindic‐ativeofasignificantdifferenceinRAIbetweenmanagementsectorsWeassumethatthecameratrappingratescalculatedastheRAIre‐flectactualrelativeabundanceasinRoveroandMarshall(2009)

We used single‐season occupancy analysis (MacKenzie et al2006) where assumptions and data quality allowed to estimatethe proportion of area occupied by a species within each gridOccupancyestimateswerecorrectedbydetectionprobability (iethelikelihoodthataspecieswasdetectedwhenpresent)andthere‐foreprovideamore rigorous indexofabundance forbothwithinandbetweenspeciescomparisonsThishoweverislimitedtospe‐ciesgeneratingadequatedatasetswherecameraspacingisgreaterthanthespecieshomerangeandoccupancyisnotconfoundedbychanges in the home range (Efford ampDawson 2012) For all theoccupancyanalyseswegenerated1110‐daysamplingoccasionsThismeanttheNorthernSectordataweretruncatedtomatchthenumberofoccasionsavailableforanalysis intheSouthernSectorWetestedforsignificantdifferencesinspeciesoccupancybetweenthe Northern and Southern sectors using the ldquoWaldrdquo parametricstatisticaltestasitisknowntobeanindependentandrobustmea‐sureofdifference(Aminetal2015)withplt005consideredtobesignificant

We alsomodelled occupancy as a function of site covariatesdistance to the protected area boundary in kilometres (D) and

emspensp emsp | emsp763Bruce et al

management sector (M) using the ldquounmarkedrdquo (Fiske amp Chandler2011) software package in R We treated detection probabilityas a constant and evaluated all covariate combinations ψ ()p()ψ (D)p() ψ (M)p() ψ (DM)p() ψ (D+M) p() For covariate anal‐ysis tocompare themanagementsectorswealso implementedaRoylendashNicholsmodel(2003)whichtakesintoaccountthenumberofindividualsatasiteinfluencingdetectionprobabilityandthusoc‐cupancyTheselectionofRoylendashNicholsmodelaboveasingle‐sea‐sonmodelforaspecieswouldprovidefurthersupportthatspeciesabundance was significantly different between the managementsectorsWe rankedmodelsbyAkaikersquos informationcriteria (AIC)andmodels that had a delta AIC of lt2were considered to be acompetingmodel(BurnhamampAnderson2002)Thec‐hatandchi‐squared values to assessmodel dispersionwere generated usingtheMackenzie andBailey (2004) goodness‐of‐fit testwhichwasconducted using 1000 simulations for eachmodelModels witha c‐hatgt2were rejectedas theywere regardedasoverdispersed(Farrisetal2015)

3emsp |emspRESULTS

Weaccumulated3725operationalcameratrapdays(mean91dayscamera)intheNorthernSectorand3371operationalcameratrapdays(mean84dayscamera)intheSouthernSectorIntheNorthernSector grid ten cameras were lost or damaged by people or el‐ephants and somemalfunctioned The Southern Sector only hadeightcamerasfailduetothesameissuesaswellastoleoparddam‐age In total 16 cameraswere excluded fromoccupancy analysisduetobeingoperationalforlt80ofoccasions

31emsp|emspRelative assessment of human sign

Overallhumanpressureasmeasuredbyhumansignwithinthere‐servewasmoreabundant intheNorthernSectorcomparedtotheSouthern Sector Encounter rate of human sign on transects was154km in theNorthern Sector three times higher than 049kmintheSouthernSectorAsimilarpatternwasobserved inthedatagatheredbyMINFOF rangers TheNorthern Sector had a densityofhuntingsignof087km2 withintheareaofthegridincludingthe2km buffer compared to 008km2 in the Southern Sector Giventhatseveralsignsmeasuredarecloselyassociatedwithhuntingac‐tivitysuchassnaresandcartridgesweassumethathuntingactiv‐ityisonaveragehigherintheNorthernSectorthantheSouthernSector

32emsp|emspSpecies richness

A total of 26 medium‐to‐large terrestrial mammal species werephotographedintheNorthernSectorand31medium‐to‐largeter‐restrialmammalspeciesintheSouthernSector(Table1)Wealsore‐cordedfivearborealmammalspeciesthatwerenotthetargetofthissurvey (Table1)Fourmedium‐to‐large terrestrialmammalspecies

expected to occur in the surveyed habitats according to availableIUCN distribution maps and literature were not detected by thecameratrapsurveysineithersector(Table1)

The species accumulation curves for medium‐to‐large terres‐trialmammal species showmore species detected per unit effortin theSouthernSector (Figure2)Thediversity indicesweremar‐ginally lower in the Northern Sector (Simpsons=072 ShannonndashWeiner=179)comparedtotheSouthernSector(Simpsons=078ShannonndashWeiner=208)

33emsp|emspCommunity structure

CommunitystructureofmammalsdifferedbetweentheNorthernSectorandSouthernSectorsites(Figures3and4)withmorespe‐ciesbeingencounteredforthreeoutofthefourguilds(herbivoresinsectivoresandcarnivores)intheSouthernSectorThemostfre‐quentlyencounteredguild inbothsectorswasherbivore (14spe‐ciesintheSouthernSectorand13intheNorthernSector)followedbyomnivore(seveninbothsectors)carnivore(sixintheSouthernSector four in theNorthernSector) and insectivore (three in theSouthernSector two in theNorthernSector)Overallacross theguilds trapping rates for lowerbodymassspecieswerehigher inthe Northern Sector A marked difference was the higher trap‐pingratesofherbivoresandomnivoreswithbodymassgt10kg intheSouthernSector (Figure4) compared to theNorthernSector(Figure3)

34emsp|emspForest antelopes

Werecorded4495independentphotographiceventsoftenspe‐ciesof forest antelopesTheblueduiker (Philantomba monticolaThunberg 1789) was the most frequently encountered forestantelope species across both camera trap grids (RAI=527) fol‐lowed by Petersrsquo duiker (Cephalophus callipygus Peters 1876)(RAI=412) and Bay duiker (Cephalophus dorsalis Gray 1846)(RAI=747) The rest of the forest antelopeswere relatively in‐frequently encounteredwith a global trapping rate of less thanfiveThedisturbance‐sensitivewhite‐belliedduiker(Hart2013b)wasonlyencountered in theSouthernSector (RAI=395 [lower95 confidence limit (LCL)=214 upper 95 confidence limit(UCL)=611])TrappingratesweresignificantlyhigherforPeterrsquosduiker in the Southern Sector displaying a fivefold increase be‐tween sectors (Table 1) Peterrsquos duiker occupancy was also sig‐nificantlyhigherintheSouthernSectorcomparedtotheNorthernSector (p=002 Table 2) Therewere no significant differencesin trapping rates between the two sectors forBatersquos pygmy an‐telope (Neotragus batesi de Winton 1903) bay duiker bongo(Tragelaphus eurycerusOgilbyi1837)sitatunga (Tragelaphus spe-kiiSpeke1863)andblack‐frontedduiker(Cephalophus nigrifrons Gray1871)Occupancyvaluesforbayduikerblack‐frontedduikerandBatersquospygmyantelopedidnotdiffersignificantlybetweenthesectorsTherewereinsufficientdetectionsoftheotherspeciestomodeloccupancy

764emsp |emsp emspensp Bruce et al

TA B L E 1 emspMammalspeciespredictedtoberecordedintheNorthernandSouthern(management)sectorsofDjaFaunalReserveCameroon

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Afrosoricida Giantottershrew(Potamogale velox Du Chaillu1860)

LC Wetland Notdetected Notdetected

Carnivora Africangoldencat(Profelis aurataTemminck1827)a

VU Forest Notdetected 058(027ndash091)

Carnivora Leopard(Panthera pardusLinnaeus1758)a

NT Mixed Notdetected 083(032ndash145)

Carnivora Marshmongoose(Atilax paludinosusCuvier1829)a

LC Wetland 056(033ndash082)b 009(0ndash02)b

Carnivora Black‐leggedmongoose(Bdeogale nigripesPucheran1855)a

LC Forest 183(079ndash314) 371(263ndash484)

Carnivora Camerooncusimanse(Crossarchus platycephalusGoldman1984)a

LC Forest 183(124ndash247) 083(046ndash127)

Carnivora Long‐nosedmongoose(Herpestes nasodeWinton1901)a

LC Forest 102(053ndash160) 089(009ndash227)

Carnivora Africanpalmcivet(Nandinia binotataGray1830)a

LC Forest 113(071ndash16) 089(052ndash13)

Carnivora Servalinegenet(Genetta servalinaPucheran1855)a

LC Forest 325(239ndash416) 214(142ndash295)

Carnivora Large‐spottedgenet(Genetta maculata Gray1830)

LC Forest Notdetected Notdetected

Carnivora CentralAfricanoyan(Poiana richardsoniiThomson1842)c

LC Forest Notdetected 003(003ndash009)

Cetartiodactyla Batesspygmyantelope(Neotragus batesideWinton1903)a

LC Forest 04(011ndash078) 036(015ndash059)

Cetartiodactyla Forestbuffalo(Syncerus cafferSparrmansubspnanus1779)a

EN Forest 008(0ndash024) 006(0ndash019)

Cetartiodactyla Petersduiker(Cephalophus callipygusPeters1876)a

LC Forest 141(838ndash2071)b 7146 (4963ndash9641)b

Cetartiodactyla Bayduiker(Cephalophus dorsalisGray1846)a

LC Forest 668(44ndash935) 834(492ndash1228)

Cetartiodactyla White‐belliedduiker(Cephalophus leucogastersubsp leucogasterGray1873)

LC Forest Notdetected 395(214ndash611)

Cetartiodactyla Black‐frontedduiker(Cephalophus nigrifronsGray1871)a

LC Forest 086(003ndash246) 05(006ndash114)

Cetartiodactyla Yellow‐backedduiker(Cephalophus silvicultorAfzelius1815)a

LC Forest 37(225ndash554) 555(354ndash794)

Cetartiodactyla Blueduiker(Philantomba monticolaThunberg1789)a

LC Forest 6164(4602ndash788) 4298(315ndash5561)

Cetartiodactyla Bongo(Tragelaphus eurycerusOgilbyi1837)a

NT Forest 005(0ndash014) 006(0ndash015)

Cetartiodactyla Sitatunga(Tragelaphus spekiiSpeke1863)a

LC Wetland 024(005ndash048) 009(0ndash024)

Cetartiodactyla Redriverhog(Potamochoerus porcusLinnaeus1758)a

LC Woodland 161(102ndash228)b 7(336ndash1304)b

Cetartiodactyla Giantforesthog(Hylochoerus mein-ertzhageniThomas1904)

LC Forest Notdetected Notdetected

Cetartiodactyla Waterchevrotain(Hyemoschus aquaticusOgilby1841)a

LC Forest 03(0ndash075)b 46(192ndash799)b

(Continues)

emspensp emsp | emsp765Bruce et al

35emsp|emspCarnivore

ThecarnivorecommunitydifferedinRAIandstructurebetweenthetwosectorsFelidswerenotdetectedatallintheNorthernSectorbutboth leopard (Panthera pardusLinneaus1758)andgoldencat(Profelis aurata Temminck1827)werepresentintheSouthernSector

(Table1)AmongtheHerpestidaeblack‐leggedmongoose(Bdeogale nigripes Pucheran1855) showeda significantlyhigheroccupancy(p =gt001)intheSouthernSectorbuttrappingrateslackedsignifi‐cantdifference (RAI=371 [LCL=263UCL=484])comparedtothe Northern Sector (RAI=183 [LCL=079 UCL=314])Marshmongoose(Atilax paludinosusCuvier1829)hadsignificantlyhigher

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Hyracoidea Westerntreehyrax(Dendrohyrax dorsalis Fraser1855)

LC Forest Notdetected Detected

Pholidota White‐belliedpangolin(Phataginus tricuspisRafinesque1821)a

VU Forest 062(029ndash1) 08(044ndash121)

Pholidota Giantpangolin(Smutsia giganteaIlliger1815)a

VU Forest 027(008ndash052) 068(038ndash101)

Primates Agilemangabey(Cercocebus agilisMilne‐Edwards1886)a

LC Forest 035(013ndash059) 448(265ndash682)

Primates Moustachedguenon(Cercopithecus cephusLinnaeus1758)c

LC Forest Detected Notdetected

Primates Greaterspot‐nosedguenon(Cercopithecus nictitansLinnaeus1766)c

LC Forest Detected Detected

Primates Blackcolobus(Colobus satanasWaterhouse1838)c

VU Forest Notdetected Detected

Primates Galagospc ‐ Detected Notdetected

Primates Mandrill(Mandrillus sphinxLinnaeus1758)a

VU Forest 005(0ndash013) 006(0ndash019)

Primates Westernlowlandgorilla(Gorilla gorillaSavagesubspgorilla1847)a

CR Forest 016(003ndash031) 044(02ndash073)

Primates Centralchimpanzee(Pan troglodytesBlumenbachsubsptroglodytes1799)a

EN Forest 161(077ndash29)b 457(314ndash617)b

Proboscidea Forestelephant(Loxodonta cyclotisMatschie1900)a

VU Mixed 086(046ndash135) 19(086ndash329)

Rodentia Africanbrush‐tailedporcupine(Atherurus africanusGray1842)a

LC Forest 1753(1142ndash2446) 762(464ndash1145)

Rodentia Eminspouchedrat(Cricetomys eminiWroughton1910)a

LC Forest 32(2358ndash4141)b 756(341ndash1465)b

Rodentia Greatercanerat(Thryonomys swinderi-anus Temminck1827)

LC Wetland Notdetected Notdetected

Rodentia LadyBurtonsropesquirrel(Funisciurus isabellaGray1862)c

LC Forest Detected Detected

Rodentia Fire‐footedropesquirrel(Funisciurus pyrropusCuvier1833)c

LC Forest Detected Detected

Rodentia Africangiantsquirrel(Protoxerus stangeriWaterhouse1842)c

LC Forest Detected Detected

Tubulidentata Aardvark(Orycteropus aferPallas1766)a LC Mixed Notdetected 009(005ndash019)

NotesForeachsectorandspeciesthatwasdetectedwepresentthemeanand95confidencelimits(inbrackets)ofthenumberofindependentphotographiceventspertrapdaytimes100Trappingrateswereonlycalculatedformedium‐to‐largeterrestrialmammalsduetoinconsistentdetectionprobabilitieswithotherspeciesIUCNstatuscriticallyendangered(CR)endangered(EN)vulnerable(VU)nearthreatened(NT)leastconcern(LC)aIndicatesaspeciesthatwasincludedintherarefactionanalysisaccordingtothedefinitiongiveinthedataanalysissectionofthemethodsbIndicatesthattheRAIconfidenceintervalsdonotoverlapandcanbeconsideredsignificantlydifferentcSignifiesanarborealspecies

TA B L E 1 emsp (Continued)

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 3: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp761Bruce et al

thehumanpopulationaroundthereserveisincreasingandindustriessuchasloggingrubberhydropowerandminingareproliferatingre‐sultinginincreaseddemandforbushmeatBothillegalnon‐traditionalsubsistenceandcommercialhuntingoccurwithinthereserve

22emsp|emspNorthern and southern sector sites

WesetupcameratrapgridsintheNorthern(management)Sector(centredon03deg13rsquo33rsquorsquoN12deg48rsquo18rsquorsquoE)betweenNovember2015andMay 2016 and the Southern (management) Sector (02deg59rsquo37rsquorsquoN13deg07rsquo43rsquorsquoE)oftheDFRbetweenMayandJune2017(Figure1)ThecameratrapgridwithintheNorthernSectorwasplacedusingthenorthernprotectedareaboundaryasanapproximatebaselineref‐erenceThecamerasweresetovera rangeofc31 toc159kmfromtheboundaryof the reservewithanaveragedistanceof95(SEplusmn39)kmfromtheboundaryCameraswereplacedonaverage123(SEplusmn38)kmfromthenearestsettlementswitharangeofbe‐tweenc6and188kmTheNorthernSectorof theDjapresentsagenerallyhigherandmoreuniformelevation(662ndash720masl)thanthe Southern Sector (563ndash689masl) Watercourses are sparserand swamp habitat less common within this management sectorCorrespondinglythenortherncameratrapstationswereonaver‐agemoredistantfromthenearestwatercourse(c261km)andonlytwonortherncameraswereplacedinswamphabitat

Thecameras in theSouthernSectorgridwereplacedonaver‐age123(SEplusmn38)kmoverarangeofc57ndash19kmfromthereserveboundary and were between c 77 and 22km from the nearesthuman settlementwith anaveragedistanceof155 (SEplusmn37) kmThetopographywithinthesoutherncameratrapgridismorecom‐plexwithagreaterelevationalvariationThegreaterprevalenceoflowlandareasresultedinmoreswamphabitat(fivecamerasplacedwithin 50m of swamp habitats) and cameras being on averageplacedclosertowatercourses(c06km)

23emsp|emspcamera trap surveys

Forty cameraswere placed at each localitywith a 2km spacingbetweeneachcamera(Ahumadaetal2011)(Figure1)Eachgridoperatedlongenoughtoachieveatleast1000cameratrapdaysofsamplingeffort(OrsquoBrienKinnairdampWibisono2003)WeusedGlobalPositioningSystemreceiverstolocatethegridpointsAsin‐gle camerawas positioned 30ndash45cm above ground level within200m of each point aimed at a game trail that provided suffi‐cient fieldofviewtocapture lateral full‐body imagesofsmall tomedium‐sizedmammals Siteswere selected based on the pres‐enceofagametrail(Aminetal2015)tomaximisetheprobabil‐ityofobtainingusefulphotographs(TEAM2008)andasuitabletreeallowing thecamera tobepositioned facingeithernorthor

F I G U R E 1 emspLocationoftheDjaFaunalReserveCameroon(a)andthelocationofcameratrapgridsintheNorthernandSouthernsectors(b)Managementsectorsareingrey[Colourfigurecanbeviewedatwileyonlinelibrarycom]

762emsp |emsp emspensp Bruce et al

south tominimise the impacts of sunrise and sunset on cameraperformance

We used three different camera models across the two grids(BushnellAggressorReconyxHC500 andCuddebackLong rangeIRE2)Detectionrangewasatleast25mwitheitheratwo‐seconddelay(Bushnell‐2015NorthernSectorsurvey)orone‐seconddelay(ReconyxCuddebackandBushnell‐2017SouthernSectorsurvey)ThreeconsecutiveimagesweretakenpertriggerLowglowinfraredflashlightingwasusedtominimisetheriskofstartlinganimalsThefulllistofsettingsforeachcameracanbefoundinAnnex1

24emsp|emspNatural mammal fauna

Thereserveisreportedtocontain109speciesofmammalofwhich35speciesareterrestrialandhaveabodyweightgt05kg(Kingdon2015) Currently the only baseline data for populations for thesespecieswithinthereservecomefromencounterratesfromrangerpatrolsanddistancesamplingthroughlinetransectsurveys(DupainBombomeampVanElsacker2003MINFOFampIUCN2015WilliamsonampUsongo1995)

25emsp|emspAssessment of differences in human activity

Toassesstherelativedifferencesinhumanactivityincludinghunt‐ing between theNorthern and Southern Sectorwhere the twosites were located we evaluated trends from multiple sourcesEvidence of human sign was recorded on 1‐kilometre line tran‐sectsduringafullfaunalinventoryoftheDFR(Bruceetal2018)TransectsareoftenusedtomonitorthetrendsofhumanimpactsinCentralAfricanforests(Kuumlhletal2008)Therewereatotalof86and76transectscoveringadistanceof916and807kmcom‐pleted intheNorthernSectorandSouthernSector respectivelyEncountersofhumansignbetweenJanuary2016andSeptember2017byMinistryofForestsandWildlife(MINFOF)rangerpatrolswhorecorddatausingSpatialMonitoringAndReportingToolde‐viceswerealsoused(ZSLampMINFOF2017a2017b)Abufferof2kmwassetaroundeachcameraandthesignwithinthisareawasconvertedintotheamountofhumansignperkm2Thisbufferwasusedtocounteractunequalsurveyeffortwithinthesectorspos‐siblyduetoecoguardsbeingrequiredtobepresentataresearchstation in theNorthernSectorat thebottomof thecamera trapgrid

Transects provide a more objective measure of hunting pres‐sureastheyuseastandardisedmethodologyandteamcompositioncompared to rangerpatrolsTransectsarenotbiasedby followingtrailsorotherpathsofleastresistancethataffectstheprobabilityofhumansignbeingdetected

26emsp|emspData analysis

WeusedExiv2software(Huggel2012)toextractEXIFinformationfromeachphotograph(imagenamedateandtime)SpeciesofanimalinthephotographswereidentifiedwhenpossibleThesedatawere

compiled in an Excel spreadsheet (Microsoft Office ProfessionalPlus2016Version1809)andanalysedwithsoftwaredevelopedbyat ZSL (CameraTrapAnalysis Package [CTAP]) (DaveyWacherampAmin2017)

Weonlyconsideredterrestrialmammalspeciesthathaveanesti‐matedaveragemassgreaterthan05kg(medium‐to‐largemammals)fortheanalysesbecausetheyarethemaintargetgroupforcameratrapsplacedatgroundlevelSmallermammalsinducesamplingerrorthroughareducedlikelihoodofdetectionbythecameratraprsquosther‐malsensorandaccurateidentificationofsmallmammalstospecieslevelisdifficultfromcameratrapsset‐upformedium‐to‐largemam‐mals(Tobleretal2008)

We calculated rarified species accumulation curves and esti‐matedthemedium‐to‐largeterrestrialmammalspeciesrichnessforeachsectorusingtheZSLCTAPtool

We calculated Simpsonrsquos diversity index and ShannonndashWeinerdiversity index foreach sector fromspeciesdaily trap ratesusingpackageveganinRstatisticalsoftware(Oksanen2015)Simpsonrsquosdiversityindexismostsensitivetochangesinmorecommonhighlyabundant species while ShannonndashWeiner diversity index is mostsensitivetochangesinrarelessabundantspecies(Magurran2005)

Wecalculatedthenumberofindependentphotographiceventsper100trapdaysasarelativeabundanceindex(RAI)foreachspeciesWedefinedanldquoeventrdquoasanysequenceforagivenspeciesoccurringafteranintervalofge60minfromthepreviousthree‐imagesequenceof that species to ensure that species events were independent(Aminetal2015Tobleretal2008)Theeventswereautomati‐cally screenedby theZSLCTAPsoftwareWecalculated the95confidenceintervalsusingthebootstrapmethod(EfronampTibshirani1994)andconsiderednon‐overlappingconfidenceintervalsasindic‐ativeofasignificantdifferenceinRAIbetweenmanagementsectorsWeassumethatthecameratrappingratescalculatedastheRAIre‐flectactualrelativeabundanceasinRoveroandMarshall(2009)

We used single‐season occupancy analysis (MacKenzie et al2006) where assumptions and data quality allowed to estimatethe proportion of area occupied by a species within each gridOccupancyestimateswerecorrectedbydetectionprobability (iethelikelihoodthataspecieswasdetectedwhenpresent)andthere‐foreprovideamore rigorous indexofabundance forbothwithinandbetweenspeciescomparisonsThishoweverislimitedtospe‐ciesgeneratingadequatedatasetswherecameraspacingisgreaterthanthespecieshomerangeandoccupancyisnotconfoundedbychanges in the home range (Efford ampDawson 2012) For all theoccupancyanalyseswegenerated1110‐daysamplingoccasionsThismeanttheNorthernSectordataweretruncatedtomatchthenumberofoccasionsavailableforanalysis intheSouthernSectorWetestedforsignificantdifferencesinspeciesoccupancybetweenthe Northern and Southern sectors using the ldquoWaldrdquo parametricstatisticaltestasitisknowntobeanindependentandrobustmea‐sureofdifference(Aminetal2015)withplt005consideredtobesignificant

We alsomodelled occupancy as a function of site covariatesdistance to the protected area boundary in kilometres (D) and

emspensp emsp | emsp763Bruce et al

management sector (M) using the ldquounmarkedrdquo (Fiske amp Chandler2011) software package in R We treated detection probabilityas a constant and evaluated all covariate combinations ψ ()p()ψ (D)p() ψ (M)p() ψ (DM)p() ψ (D+M) p() For covariate anal‐ysis tocompare themanagementsectorswealso implementedaRoylendashNicholsmodel(2003)whichtakesintoaccountthenumberofindividualsatasiteinfluencingdetectionprobabilityandthusoc‐cupancyTheselectionofRoylendashNicholsmodelaboveasingle‐sea‐sonmodelforaspecieswouldprovidefurthersupportthatspeciesabundance was significantly different between the managementsectorsWe rankedmodelsbyAkaikersquos informationcriteria (AIC)andmodels that had a delta AIC of lt2were considered to be acompetingmodel(BurnhamampAnderson2002)Thec‐hatandchi‐squared values to assessmodel dispersionwere generated usingtheMackenzie andBailey (2004) goodness‐of‐fit testwhichwasconducted using 1000 simulations for eachmodelModels witha c‐hatgt2were rejectedas theywere regardedasoverdispersed(Farrisetal2015)

3emsp |emspRESULTS

Weaccumulated3725operationalcameratrapdays(mean91dayscamera)intheNorthernSectorand3371operationalcameratrapdays(mean84dayscamera)intheSouthernSectorIntheNorthernSector grid ten cameras were lost or damaged by people or el‐ephants and somemalfunctioned The Southern Sector only hadeightcamerasfailduetothesameissuesaswellastoleoparddam‐age In total 16 cameraswere excluded fromoccupancy analysisduetobeingoperationalforlt80ofoccasions

31emsp|emspRelative assessment of human sign

Overallhumanpressureasmeasuredbyhumansignwithinthere‐servewasmoreabundant intheNorthernSectorcomparedtotheSouthern Sector Encounter rate of human sign on transects was154km in theNorthern Sector three times higher than 049kmintheSouthernSectorAsimilarpatternwasobserved inthedatagatheredbyMINFOF rangers TheNorthern Sector had a densityofhuntingsignof087km2 withintheareaofthegridincludingthe2km buffer compared to 008km2 in the Southern Sector Giventhatseveralsignsmeasuredarecloselyassociatedwithhuntingac‐tivitysuchassnaresandcartridgesweassumethathuntingactiv‐ityisonaveragehigherintheNorthernSectorthantheSouthernSector

32emsp|emspSpecies richness

A total of 26 medium‐to‐large terrestrial mammal species werephotographedintheNorthernSectorand31medium‐to‐largeter‐restrialmammalspeciesintheSouthernSector(Table1)Wealsore‐cordedfivearborealmammalspeciesthatwerenotthetargetofthissurvey (Table1)Fourmedium‐to‐large terrestrialmammalspecies

expected to occur in the surveyed habitats according to availableIUCN distribution maps and literature were not detected by thecameratrapsurveysineithersector(Table1)

The species accumulation curves for medium‐to‐large terres‐trialmammal species showmore species detected per unit effortin theSouthernSector (Figure2)Thediversity indicesweremar‐ginally lower in the Northern Sector (Simpsons=072 ShannonndashWeiner=179)comparedtotheSouthernSector(Simpsons=078ShannonndashWeiner=208)

33emsp|emspCommunity structure

CommunitystructureofmammalsdifferedbetweentheNorthernSectorandSouthernSectorsites(Figures3and4)withmorespe‐ciesbeingencounteredforthreeoutofthefourguilds(herbivoresinsectivoresandcarnivores)intheSouthernSectorThemostfre‐quentlyencounteredguild inbothsectorswasherbivore (14spe‐ciesintheSouthernSectorand13intheNorthernSector)followedbyomnivore(seveninbothsectors)carnivore(sixintheSouthernSector four in theNorthernSector) and insectivore (three in theSouthernSector two in theNorthernSector)Overallacross theguilds trapping rates for lowerbodymassspecieswerehigher inthe Northern Sector A marked difference was the higher trap‐pingratesofherbivoresandomnivoreswithbodymassgt10kg intheSouthernSector (Figure4) compared to theNorthernSector(Figure3)

34emsp|emspForest antelopes

Werecorded4495independentphotographiceventsoftenspe‐ciesof forest antelopesTheblueduiker (Philantomba monticolaThunberg 1789) was the most frequently encountered forestantelope species across both camera trap grids (RAI=527) fol‐lowed by Petersrsquo duiker (Cephalophus callipygus Peters 1876)(RAI=412) and Bay duiker (Cephalophus dorsalis Gray 1846)(RAI=747) The rest of the forest antelopeswere relatively in‐frequently encounteredwith a global trapping rate of less thanfiveThedisturbance‐sensitivewhite‐belliedduiker(Hart2013b)wasonlyencountered in theSouthernSector (RAI=395 [lower95 confidence limit (LCL)=214 upper 95 confidence limit(UCL)=611])TrappingratesweresignificantlyhigherforPeterrsquosduiker in the Southern Sector displaying a fivefold increase be‐tween sectors (Table 1) Peterrsquos duiker occupancy was also sig‐nificantlyhigherintheSouthernSectorcomparedtotheNorthernSector (p=002 Table 2) Therewere no significant differencesin trapping rates between the two sectors forBatersquos pygmy an‐telope (Neotragus batesi de Winton 1903) bay duiker bongo(Tragelaphus eurycerusOgilbyi1837)sitatunga (Tragelaphus spe-kiiSpeke1863)andblack‐frontedduiker(Cephalophus nigrifrons Gray1871)Occupancyvaluesforbayduikerblack‐frontedduikerandBatersquospygmyantelopedidnotdiffersignificantlybetweenthesectorsTherewereinsufficientdetectionsoftheotherspeciestomodeloccupancy

764emsp |emsp emspensp Bruce et al

TA B L E 1 emspMammalspeciespredictedtoberecordedintheNorthernandSouthern(management)sectorsofDjaFaunalReserveCameroon

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Afrosoricida Giantottershrew(Potamogale velox Du Chaillu1860)

LC Wetland Notdetected Notdetected

Carnivora Africangoldencat(Profelis aurataTemminck1827)a

VU Forest Notdetected 058(027ndash091)

Carnivora Leopard(Panthera pardusLinnaeus1758)a

NT Mixed Notdetected 083(032ndash145)

Carnivora Marshmongoose(Atilax paludinosusCuvier1829)a

LC Wetland 056(033ndash082)b 009(0ndash02)b

Carnivora Black‐leggedmongoose(Bdeogale nigripesPucheran1855)a

LC Forest 183(079ndash314) 371(263ndash484)

Carnivora Camerooncusimanse(Crossarchus platycephalusGoldman1984)a

LC Forest 183(124ndash247) 083(046ndash127)

Carnivora Long‐nosedmongoose(Herpestes nasodeWinton1901)a

LC Forest 102(053ndash160) 089(009ndash227)

Carnivora Africanpalmcivet(Nandinia binotataGray1830)a

LC Forest 113(071ndash16) 089(052ndash13)

Carnivora Servalinegenet(Genetta servalinaPucheran1855)a

LC Forest 325(239ndash416) 214(142ndash295)

Carnivora Large‐spottedgenet(Genetta maculata Gray1830)

LC Forest Notdetected Notdetected

Carnivora CentralAfricanoyan(Poiana richardsoniiThomson1842)c

LC Forest Notdetected 003(003ndash009)

Cetartiodactyla Batesspygmyantelope(Neotragus batesideWinton1903)a

LC Forest 04(011ndash078) 036(015ndash059)

Cetartiodactyla Forestbuffalo(Syncerus cafferSparrmansubspnanus1779)a

EN Forest 008(0ndash024) 006(0ndash019)

Cetartiodactyla Petersduiker(Cephalophus callipygusPeters1876)a

LC Forest 141(838ndash2071)b 7146 (4963ndash9641)b

Cetartiodactyla Bayduiker(Cephalophus dorsalisGray1846)a

LC Forest 668(44ndash935) 834(492ndash1228)

Cetartiodactyla White‐belliedduiker(Cephalophus leucogastersubsp leucogasterGray1873)

LC Forest Notdetected 395(214ndash611)

Cetartiodactyla Black‐frontedduiker(Cephalophus nigrifronsGray1871)a

LC Forest 086(003ndash246) 05(006ndash114)

Cetartiodactyla Yellow‐backedduiker(Cephalophus silvicultorAfzelius1815)a

LC Forest 37(225ndash554) 555(354ndash794)

Cetartiodactyla Blueduiker(Philantomba monticolaThunberg1789)a

LC Forest 6164(4602ndash788) 4298(315ndash5561)

Cetartiodactyla Bongo(Tragelaphus eurycerusOgilbyi1837)a

NT Forest 005(0ndash014) 006(0ndash015)

Cetartiodactyla Sitatunga(Tragelaphus spekiiSpeke1863)a

LC Wetland 024(005ndash048) 009(0ndash024)

Cetartiodactyla Redriverhog(Potamochoerus porcusLinnaeus1758)a

LC Woodland 161(102ndash228)b 7(336ndash1304)b

Cetartiodactyla Giantforesthog(Hylochoerus mein-ertzhageniThomas1904)

LC Forest Notdetected Notdetected

Cetartiodactyla Waterchevrotain(Hyemoschus aquaticusOgilby1841)a

LC Forest 03(0ndash075)b 46(192ndash799)b

(Continues)

emspensp emsp | emsp765Bruce et al

35emsp|emspCarnivore

ThecarnivorecommunitydifferedinRAIandstructurebetweenthetwosectorsFelidswerenotdetectedatallintheNorthernSectorbutboth leopard (Panthera pardusLinneaus1758)andgoldencat(Profelis aurata Temminck1827)werepresentintheSouthernSector

(Table1)AmongtheHerpestidaeblack‐leggedmongoose(Bdeogale nigripes Pucheran1855) showeda significantlyhigheroccupancy(p =gt001)intheSouthernSectorbuttrappingrateslackedsignifi‐cantdifference (RAI=371 [LCL=263UCL=484])comparedtothe Northern Sector (RAI=183 [LCL=079 UCL=314])Marshmongoose(Atilax paludinosusCuvier1829)hadsignificantlyhigher

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Hyracoidea Westerntreehyrax(Dendrohyrax dorsalis Fraser1855)

LC Forest Notdetected Detected

Pholidota White‐belliedpangolin(Phataginus tricuspisRafinesque1821)a

VU Forest 062(029ndash1) 08(044ndash121)

Pholidota Giantpangolin(Smutsia giganteaIlliger1815)a

VU Forest 027(008ndash052) 068(038ndash101)

Primates Agilemangabey(Cercocebus agilisMilne‐Edwards1886)a

LC Forest 035(013ndash059) 448(265ndash682)

Primates Moustachedguenon(Cercopithecus cephusLinnaeus1758)c

LC Forest Detected Notdetected

Primates Greaterspot‐nosedguenon(Cercopithecus nictitansLinnaeus1766)c

LC Forest Detected Detected

Primates Blackcolobus(Colobus satanasWaterhouse1838)c

VU Forest Notdetected Detected

Primates Galagospc ‐ Detected Notdetected

Primates Mandrill(Mandrillus sphinxLinnaeus1758)a

VU Forest 005(0ndash013) 006(0ndash019)

Primates Westernlowlandgorilla(Gorilla gorillaSavagesubspgorilla1847)a

CR Forest 016(003ndash031) 044(02ndash073)

Primates Centralchimpanzee(Pan troglodytesBlumenbachsubsptroglodytes1799)a

EN Forest 161(077ndash29)b 457(314ndash617)b

Proboscidea Forestelephant(Loxodonta cyclotisMatschie1900)a

VU Mixed 086(046ndash135) 19(086ndash329)

Rodentia Africanbrush‐tailedporcupine(Atherurus africanusGray1842)a

LC Forest 1753(1142ndash2446) 762(464ndash1145)

Rodentia Eminspouchedrat(Cricetomys eminiWroughton1910)a

LC Forest 32(2358ndash4141)b 756(341ndash1465)b

Rodentia Greatercanerat(Thryonomys swinderi-anus Temminck1827)

LC Wetland Notdetected Notdetected

Rodentia LadyBurtonsropesquirrel(Funisciurus isabellaGray1862)c

LC Forest Detected Detected

Rodentia Fire‐footedropesquirrel(Funisciurus pyrropusCuvier1833)c

LC Forest Detected Detected

Rodentia Africangiantsquirrel(Protoxerus stangeriWaterhouse1842)c

LC Forest Detected Detected

Tubulidentata Aardvark(Orycteropus aferPallas1766)a LC Mixed Notdetected 009(005ndash019)

NotesForeachsectorandspeciesthatwasdetectedwepresentthemeanand95confidencelimits(inbrackets)ofthenumberofindependentphotographiceventspertrapdaytimes100Trappingrateswereonlycalculatedformedium‐to‐largeterrestrialmammalsduetoinconsistentdetectionprobabilitieswithotherspeciesIUCNstatuscriticallyendangered(CR)endangered(EN)vulnerable(VU)nearthreatened(NT)leastconcern(LC)aIndicatesaspeciesthatwasincludedintherarefactionanalysisaccordingtothedefinitiongiveinthedataanalysissectionofthemethodsbIndicatesthattheRAIconfidenceintervalsdonotoverlapandcanbeconsideredsignificantlydifferentcSignifiesanarborealspecies

TA B L E 1 emsp (Continued)

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 4: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

762emsp |emsp emspensp Bruce et al

south tominimise the impacts of sunrise and sunset on cameraperformance

We used three different camera models across the two grids(BushnellAggressorReconyxHC500 andCuddebackLong rangeIRE2)Detectionrangewasatleast25mwitheitheratwo‐seconddelay(Bushnell‐2015NorthernSectorsurvey)orone‐seconddelay(ReconyxCuddebackandBushnell‐2017SouthernSectorsurvey)ThreeconsecutiveimagesweretakenpertriggerLowglowinfraredflashlightingwasusedtominimisetheriskofstartlinganimalsThefulllistofsettingsforeachcameracanbefoundinAnnex1

24emsp|emspNatural mammal fauna

Thereserveisreportedtocontain109speciesofmammalofwhich35speciesareterrestrialandhaveabodyweightgt05kg(Kingdon2015) Currently the only baseline data for populations for thesespecieswithinthereservecomefromencounterratesfromrangerpatrolsanddistancesamplingthroughlinetransectsurveys(DupainBombomeampVanElsacker2003MINFOFampIUCN2015WilliamsonampUsongo1995)

25emsp|emspAssessment of differences in human activity

Toassesstherelativedifferencesinhumanactivityincludinghunt‐ing between theNorthern and Southern Sectorwhere the twosites were located we evaluated trends from multiple sourcesEvidence of human sign was recorded on 1‐kilometre line tran‐sectsduringafullfaunalinventoryoftheDFR(Bruceetal2018)TransectsareoftenusedtomonitorthetrendsofhumanimpactsinCentralAfricanforests(Kuumlhletal2008)Therewereatotalof86and76transectscoveringadistanceof916and807kmcom‐pleted intheNorthernSectorandSouthernSector respectivelyEncountersofhumansignbetweenJanuary2016andSeptember2017byMinistryofForestsandWildlife(MINFOF)rangerpatrolswhorecorddatausingSpatialMonitoringAndReportingToolde‐viceswerealsoused(ZSLampMINFOF2017a2017b)Abufferof2kmwassetaroundeachcameraandthesignwithinthisareawasconvertedintotheamountofhumansignperkm2Thisbufferwasusedtocounteractunequalsurveyeffortwithinthesectorspos‐siblyduetoecoguardsbeingrequiredtobepresentataresearchstation in theNorthernSectorat thebottomof thecamera trapgrid

Transects provide a more objective measure of hunting pres‐sureastheyuseastandardisedmethodologyandteamcompositioncompared to rangerpatrolsTransectsarenotbiasedby followingtrailsorotherpathsofleastresistancethataffectstheprobabilityofhumansignbeingdetected

26emsp|emspData analysis

WeusedExiv2software(Huggel2012)toextractEXIFinformationfromeachphotograph(imagenamedateandtime)SpeciesofanimalinthephotographswereidentifiedwhenpossibleThesedatawere

compiled in an Excel spreadsheet (Microsoft Office ProfessionalPlus2016Version1809)andanalysedwithsoftwaredevelopedbyat ZSL (CameraTrapAnalysis Package [CTAP]) (DaveyWacherampAmin2017)

Weonlyconsideredterrestrialmammalspeciesthathaveanesti‐matedaveragemassgreaterthan05kg(medium‐to‐largemammals)fortheanalysesbecausetheyarethemaintargetgroupforcameratrapsplacedatgroundlevelSmallermammalsinducesamplingerrorthroughareducedlikelihoodofdetectionbythecameratraprsquosther‐malsensorandaccurateidentificationofsmallmammalstospecieslevelisdifficultfromcameratrapsset‐upformedium‐to‐largemam‐mals(Tobleretal2008)

We calculated rarified species accumulation curves and esti‐matedthemedium‐to‐largeterrestrialmammalspeciesrichnessforeachsectorusingtheZSLCTAPtool

We calculated Simpsonrsquos diversity index and ShannonndashWeinerdiversity index foreach sector fromspeciesdaily trap ratesusingpackageveganinRstatisticalsoftware(Oksanen2015)Simpsonrsquosdiversityindexismostsensitivetochangesinmorecommonhighlyabundant species while ShannonndashWeiner diversity index is mostsensitivetochangesinrarelessabundantspecies(Magurran2005)

Wecalculatedthenumberofindependentphotographiceventsper100trapdaysasarelativeabundanceindex(RAI)foreachspeciesWedefinedanldquoeventrdquoasanysequenceforagivenspeciesoccurringafteranintervalofge60minfromthepreviousthree‐imagesequenceof that species to ensure that species events were independent(Aminetal2015Tobleretal2008)Theeventswereautomati‐cally screenedby theZSLCTAPsoftwareWecalculated the95confidenceintervalsusingthebootstrapmethod(EfronampTibshirani1994)andconsiderednon‐overlappingconfidenceintervalsasindic‐ativeofasignificantdifferenceinRAIbetweenmanagementsectorsWeassumethatthecameratrappingratescalculatedastheRAIre‐flectactualrelativeabundanceasinRoveroandMarshall(2009)

We used single‐season occupancy analysis (MacKenzie et al2006) where assumptions and data quality allowed to estimatethe proportion of area occupied by a species within each gridOccupancyestimateswerecorrectedbydetectionprobability (iethelikelihoodthataspecieswasdetectedwhenpresent)andthere‐foreprovideamore rigorous indexofabundance forbothwithinandbetweenspeciescomparisonsThishoweverislimitedtospe‐ciesgeneratingadequatedatasetswherecameraspacingisgreaterthanthespecieshomerangeandoccupancyisnotconfoundedbychanges in the home range (Efford ampDawson 2012) For all theoccupancyanalyseswegenerated1110‐daysamplingoccasionsThismeanttheNorthernSectordataweretruncatedtomatchthenumberofoccasionsavailableforanalysis intheSouthernSectorWetestedforsignificantdifferencesinspeciesoccupancybetweenthe Northern and Southern sectors using the ldquoWaldrdquo parametricstatisticaltestasitisknowntobeanindependentandrobustmea‐sureofdifference(Aminetal2015)withplt005consideredtobesignificant

We alsomodelled occupancy as a function of site covariatesdistance to the protected area boundary in kilometres (D) and

emspensp emsp | emsp763Bruce et al

management sector (M) using the ldquounmarkedrdquo (Fiske amp Chandler2011) software package in R We treated detection probabilityas a constant and evaluated all covariate combinations ψ ()p()ψ (D)p() ψ (M)p() ψ (DM)p() ψ (D+M) p() For covariate anal‐ysis tocompare themanagementsectorswealso implementedaRoylendashNicholsmodel(2003)whichtakesintoaccountthenumberofindividualsatasiteinfluencingdetectionprobabilityandthusoc‐cupancyTheselectionofRoylendashNicholsmodelaboveasingle‐sea‐sonmodelforaspecieswouldprovidefurthersupportthatspeciesabundance was significantly different between the managementsectorsWe rankedmodelsbyAkaikersquos informationcriteria (AIC)andmodels that had a delta AIC of lt2were considered to be acompetingmodel(BurnhamampAnderson2002)Thec‐hatandchi‐squared values to assessmodel dispersionwere generated usingtheMackenzie andBailey (2004) goodness‐of‐fit testwhichwasconducted using 1000 simulations for eachmodelModels witha c‐hatgt2were rejectedas theywere regardedasoverdispersed(Farrisetal2015)

3emsp |emspRESULTS

Weaccumulated3725operationalcameratrapdays(mean91dayscamera)intheNorthernSectorand3371operationalcameratrapdays(mean84dayscamera)intheSouthernSectorIntheNorthernSector grid ten cameras were lost or damaged by people or el‐ephants and somemalfunctioned The Southern Sector only hadeightcamerasfailduetothesameissuesaswellastoleoparddam‐age In total 16 cameraswere excluded fromoccupancy analysisduetobeingoperationalforlt80ofoccasions

31emsp|emspRelative assessment of human sign

Overallhumanpressureasmeasuredbyhumansignwithinthere‐servewasmoreabundant intheNorthernSectorcomparedtotheSouthern Sector Encounter rate of human sign on transects was154km in theNorthern Sector three times higher than 049kmintheSouthernSectorAsimilarpatternwasobserved inthedatagatheredbyMINFOF rangers TheNorthern Sector had a densityofhuntingsignof087km2 withintheareaofthegridincludingthe2km buffer compared to 008km2 in the Southern Sector Giventhatseveralsignsmeasuredarecloselyassociatedwithhuntingac‐tivitysuchassnaresandcartridgesweassumethathuntingactiv‐ityisonaveragehigherintheNorthernSectorthantheSouthernSector

32emsp|emspSpecies richness

A total of 26 medium‐to‐large terrestrial mammal species werephotographedintheNorthernSectorand31medium‐to‐largeter‐restrialmammalspeciesintheSouthernSector(Table1)Wealsore‐cordedfivearborealmammalspeciesthatwerenotthetargetofthissurvey (Table1)Fourmedium‐to‐large terrestrialmammalspecies

expected to occur in the surveyed habitats according to availableIUCN distribution maps and literature were not detected by thecameratrapsurveysineithersector(Table1)

The species accumulation curves for medium‐to‐large terres‐trialmammal species showmore species detected per unit effortin theSouthernSector (Figure2)Thediversity indicesweremar‐ginally lower in the Northern Sector (Simpsons=072 ShannonndashWeiner=179)comparedtotheSouthernSector(Simpsons=078ShannonndashWeiner=208)

33emsp|emspCommunity structure

CommunitystructureofmammalsdifferedbetweentheNorthernSectorandSouthernSectorsites(Figures3and4)withmorespe‐ciesbeingencounteredforthreeoutofthefourguilds(herbivoresinsectivoresandcarnivores)intheSouthernSectorThemostfre‐quentlyencounteredguild inbothsectorswasherbivore (14spe‐ciesintheSouthernSectorand13intheNorthernSector)followedbyomnivore(seveninbothsectors)carnivore(sixintheSouthernSector four in theNorthernSector) and insectivore (three in theSouthernSector two in theNorthernSector)Overallacross theguilds trapping rates for lowerbodymassspecieswerehigher inthe Northern Sector A marked difference was the higher trap‐pingratesofherbivoresandomnivoreswithbodymassgt10kg intheSouthernSector (Figure4) compared to theNorthernSector(Figure3)

34emsp|emspForest antelopes

Werecorded4495independentphotographiceventsoftenspe‐ciesof forest antelopesTheblueduiker (Philantomba monticolaThunberg 1789) was the most frequently encountered forestantelope species across both camera trap grids (RAI=527) fol‐lowed by Petersrsquo duiker (Cephalophus callipygus Peters 1876)(RAI=412) and Bay duiker (Cephalophus dorsalis Gray 1846)(RAI=747) The rest of the forest antelopeswere relatively in‐frequently encounteredwith a global trapping rate of less thanfiveThedisturbance‐sensitivewhite‐belliedduiker(Hart2013b)wasonlyencountered in theSouthernSector (RAI=395 [lower95 confidence limit (LCL)=214 upper 95 confidence limit(UCL)=611])TrappingratesweresignificantlyhigherforPeterrsquosduiker in the Southern Sector displaying a fivefold increase be‐tween sectors (Table 1) Peterrsquos duiker occupancy was also sig‐nificantlyhigherintheSouthernSectorcomparedtotheNorthernSector (p=002 Table 2) Therewere no significant differencesin trapping rates between the two sectors forBatersquos pygmy an‐telope (Neotragus batesi de Winton 1903) bay duiker bongo(Tragelaphus eurycerusOgilbyi1837)sitatunga (Tragelaphus spe-kiiSpeke1863)andblack‐frontedduiker(Cephalophus nigrifrons Gray1871)Occupancyvaluesforbayduikerblack‐frontedduikerandBatersquospygmyantelopedidnotdiffersignificantlybetweenthesectorsTherewereinsufficientdetectionsoftheotherspeciestomodeloccupancy

764emsp |emsp emspensp Bruce et al

TA B L E 1 emspMammalspeciespredictedtoberecordedintheNorthernandSouthern(management)sectorsofDjaFaunalReserveCameroon

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Afrosoricida Giantottershrew(Potamogale velox Du Chaillu1860)

LC Wetland Notdetected Notdetected

Carnivora Africangoldencat(Profelis aurataTemminck1827)a

VU Forest Notdetected 058(027ndash091)

Carnivora Leopard(Panthera pardusLinnaeus1758)a

NT Mixed Notdetected 083(032ndash145)

Carnivora Marshmongoose(Atilax paludinosusCuvier1829)a

LC Wetland 056(033ndash082)b 009(0ndash02)b

Carnivora Black‐leggedmongoose(Bdeogale nigripesPucheran1855)a

LC Forest 183(079ndash314) 371(263ndash484)

Carnivora Camerooncusimanse(Crossarchus platycephalusGoldman1984)a

LC Forest 183(124ndash247) 083(046ndash127)

Carnivora Long‐nosedmongoose(Herpestes nasodeWinton1901)a

LC Forest 102(053ndash160) 089(009ndash227)

Carnivora Africanpalmcivet(Nandinia binotataGray1830)a

LC Forest 113(071ndash16) 089(052ndash13)

Carnivora Servalinegenet(Genetta servalinaPucheran1855)a

LC Forest 325(239ndash416) 214(142ndash295)

Carnivora Large‐spottedgenet(Genetta maculata Gray1830)

LC Forest Notdetected Notdetected

Carnivora CentralAfricanoyan(Poiana richardsoniiThomson1842)c

LC Forest Notdetected 003(003ndash009)

Cetartiodactyla Batesspygmyantelope(Neotragus batesideWinton1903)a

LC Forest 04(011ndash078) 036(015ndash059)

Cetartiodactyla Forestbuffalo(Syncerus cafferSparrmansubspnanus1779)a

EN Forest 008(0ndash024) 006(0ndash019)

Cetartiodactyla Petersduiker(Cephalophus callipygusPeters1876)a

LC Forest 141(838ndash2071)b 7146 (4963ndash9641)b

Cetartiodactyla Bayduiker(Cephalophus dorsalisGray1846)a

LC Forest 668(44ndash935) 834(492ndash1228)

Cetartiodactyla White‐belliedduiker(Cephalophus leucogastersubsp leucogasterGray1873)

LC Forest Notdetected 395(214ndash611)

Cetartiodactyla Black‐frontedduiker(Cephalophus nigrifronsGray1871)a

LC Forest 086(003ndash246) 05(006ndash114)

Cetartiodactyla Yellow‐backedduiker(Cephalophus silvicultorAfzelius1815)a

LC Forest 37(225ndash554) 555(354ndash794)

Cetartiodactyla Blueduiker(Philantomba monticolaThunberg1789)a

LC Forest 6164(4602ndash788) 4298(315ndash5561)

Cetartiodactyla Bongo(Tragelaphus eurycerusOgilbyi1837)a

NT Forest 005(0ndash014) 006(0ndash015)

Cetartiodactyla Sitatunga(Tragelaphus spekiiSpeke1863)a

LC Wetland 024(005ndash048) 009(0ndash024)

Cetartiodactyla Redriverhog(Potamochoerus porcusLinnaeus1758)a

LC Woodland 161(102ndash228)b 7(336ndash1304)b

Cetartiodactyla Giantforesthog(Hylochoerus mein-ertzhageniThomas1904)

LC Forest Notdetected Notdetected

Cetartiodactyla Waterchevrotain(Hyemoschus aquaticusOgilby1841)a

LC Forest 03(0ndash075)b 46(192ndash799)b

(Continues)

emspensp emsp | emsp765Bruce et al

35emsp|emspCarnivore

ThecarnivorecommunitydifferedinRAIandstructurebetweenthetwosectorsFelidswerenotdetectedatallintheNorthernSectorbutboth leopard (Panthera pardusLinneaus1758)andgoldencat(Profelis aurata Temminck1827)werepresentintheSouthernSector

(Table1)AmongtheHerpestidaeblack‐leggedmongoose(Bdeogale nigripes Pucheran1855) showeda significantlyhigheroccupancy(p =gt001)intheSouthernSectorbuttrappingrateslackedsignifi‐cantdifference (RAI=371 [LCL=263UCL=484])comparedtothe Northern Sector (RAI=183 [LCL=079 UCL=314])Marshmongoose(Atilax paludinosusCuvier1829)hadsignificantlyhigher

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Hyracoidea Westerntreehyrax(Dendrohyrax dorsalis Fraser1855)

LC Forest Notdetected Detected

Pholidota White‐belliedpangolin(Phataginus tricuspisRafinesque1821)a

VU Forest 062(029ndash1) 08(044ndash121)

Pholidota Giantpangolin(Smutsia giganteaIlliger1815)a

VU Forest 027(008ndash052) 068(038ndash101)

Primates Agilemangabey(Cercocebus agilisMilne‐Edwards1886)a

LC Forest 035(013ndash059) 448(265ndash682)

Primates Moustachedguenon(Cercopithecus cephusLinnaeus1758)c

LC Forest Detected Notdetected

Primates Greaterspot‐nosedguenon(Cercopithecus nictitansLinnaeus1766)c

LC Forest Detected Detected

Primates Blackcolobus(Colobus satanasWaterhouse1838)c

VU Forest Notdetected Detected

Primates Galagospc ‐ Detected Notdetected

Primates Mandrill(Mandrillus sphinxLinnaeus1758)a

VU Forest 005(0ndash013) 006(0ndash019)

Primates Westernlowlandgorilla(Gorilla gorillaSavagesubspgorilla1847)a

CR Forest 016(003ndash031) 044(02ndash073)

Primates Centralchimpanzee(Pan troglodytesBlumenbachsubsptroglodytes1799)a

EN Forest 161(077ndash29)b 457(314ndash617)b

Proboscidea Forestelephant(Loxodonta cyclotisMatschie1900)a

VU Mixed 086(046ndash135) 19(086ndash329)

Rodentia Africanbrush‐tailedporcupine(Atherurus africanusGray1842)a

LC Forest 1753(1142ndash2446) 762(464ndash1145)

Rodentia Eminspouchedrat(Cricetomys eminiWroughton1910)a

LC Forest 32(2358ndash4141)b 756(341ndash1465)b

Rodentia Greatercanerat(Thryonomys swinderi-anus Temminck1827)

LC Wetland Notdetected Notdetected

Rodentia LadyBurtonsropesquirrel(Funisciurus isabellaGray1862)c

LC Forest Detected Detected

Rodentia Fire‐footedropesquirrel(Funisciurus pyrropusCuvier1833)c

LC Forest Detected Detected

Rodentia Africangiantsquirrel(Protoxerus stangeriWaterhouse1842)c

LC Forest Detected Detected

Tubulidentata Aardvark(Orycteropus aferPallas1766)a LC Mixed Notdetected 009(005ndash019)

NotesForeachsectorandspeciesthatwasdetectedwepresentthemeanand95confidencelimits(inbrackets)ofthenumberofindependentphotographiceventspertrapdaytimes100Trappingrateswereonlycalculatedformedium‐to‐largeterrestrialmammalsduetoinconsistentdetectionprobabilitieswithotherspeciesIUCNstatuscriticallyendangered(CR)endangered(EN)vulnerable(VU)nearthreatened(NT)leastconcern(LC)aIndicatesaspeciesthatwasincludedintherarefactionanalysisaccordingtothedefinitiongiveinthedataanalysissectionofthemethodsbIndicatesthattheRAIconfidenceintervalsdonotoverlapandcanbeconsideredsignificantlydifferentcSignifiesanarborealspecies

TA B L E 1 emsp (Continued)

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 5: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp763Bruce et al

management sector (M) using the ldquounmarkedrdquo (Fiske amp Chandler2011) software package in R We treated detection probabilityas a constant and evaluated all covariate combinations ψ ()p()ψ (D)p() ψ (M)p() ψ (DM)p() ψ (D+M) p() For covariate anal‐ysis tocompare themanagementsectorswealso implementedaRoylendashNicholsmodel(2003)whichtakesintoaccountthenumberofindividualsatasiteinfluencingdetectionprobabilityandthusoc‐cupancyTheselectionofRoylendashNicholsmodelaboveasingle‐sea‐sonmodelforaspecieswouldprovidefurthersupportthatspeciesabundance was significantly different between the managementsectorsWe rankedmodelsbyAkaikersquos informationcriteria (AIC)andmodels that had a delta AIC of lt2were considered to be acompetingmodel(BurnhamampAnderson2002)Thec‐hatandchi‐squared values to assessmodel dispersionwere generated usingtheMackenzie andBailey (2004) goodness‐of‐fit testwhichwasconducted using 1000 simulations for eachmodelModels witha c‐hatgt2were rejectedas theywere regardedasoverdispersed(Farrisetal2015)

3emsp |emspRESULTS

Weaccumulated3725operationalcameratrapdays(mean91dayscamera)intheNorthernSectorand3371operationalcameratrapdays(mean84dayscamera)intheSouthernSectorIntheNorthernSector grid ten cameras were lost or damaged by people or el‐ephants and somemalfunctioned The Southern Sector only hadeightcamerasfailduetothesameissuesaswellastoleoparddam‐age In total 16 cameraswere excluded fromoccupancy analysisduetobeingoperationalforlt80ofoccasions

31emsp|emspRelative assessment of human sign

Overallhumanpressureasmeasuredbyhumansignwithinthere‐servewasmoreabundant intheNorthernSectorcomparedtotheSouthern Sector Encounter rate of human sign on transects was154km in theNorthern Sector three times higher than 049kmintheSouthernSectorAsimilarpatternwasobserved inthedatagatheredbyMINFOF rangers TheNorthern Sector had a densityofhuntingsignof087km2 withintheareaofthegridincludingthe2km buffer compared to 008km2 in the Southern Sector Giventhatseveralsignsmeasuredarecloselyassociatedwithhuntingac‐tivitysuchassnaresandcartridgesweassumethathuntingactiv‐ityisonaveragehigherintheNorthernSectorthantheSouthernSector

32emsp|emspSpecies richness

A total of 26 medium‐to‐large terrestrial mammal species werephotographedintheNorthernSectorand31medium‐to‐largeter‐restrialmammalspeciesintheSouthernSector(Table1)Wealsore‐cordedfivearborealmammalspeciesthatwerenotthetargetofthissurvey (Table1)Fourmedium‐to‐large terrestrialmammalspecies

expected to occur in the surveyed habitats according to availableIUCN distribution maps and literature were not detected by thecameratrapsurveysineithersector(Table1)

The species accumulation curves for medium‐to‐large terres‐trialmammal species showmore species detected per unit effortin theSouthernSector (Figure2)Thediversity indicesweremar‐ginally lower in the Northern Sector (Simpsons=072 ShannonndashWeiner=179)comparedtotheSouthernSector(Simpsons=078ShannonndashWeiner=208)

33emsp|emspCommunity structure

CommunitystructureofmammalsdifferedbetweentheNorthernSectorandSouthernSectorsites(Figures3and4)withmorespe‐ciesbeingencounteredforthreeoutofthefourguilds(herbivoresinsectivoresandcarnivores)intheSouthernSectorThemostfre‐quentlyencounteredguild inbothsectorswasherbivore (14spe‐ciesintheSouthernSectorand13intheNorthernSector)followedbyomnivore(seveninbothsectors)carnivore(sixintheSouthernSector four in theNorthernSector) and insectivore (three in theSouthernSector two in theNorthernSector)Overallacross theguilds trapping rates for lowerbodymassspecieswerehigher inthe Northern Sector A marked difference was the higher trap‐pingratesofherbivoresandomnivoreswithbodymassgt10kg intheSouthernSector (Figure4) compared to theNorthernSector(Figure3)

34emsp|emspForest antelopes

Werecorded4495independentphotographiceventsoftenspe‐ciesof forest antelopesTheblueduiker (Philantomba monticolaThunberg 1789) was the most frequently encountered forestantelope species across both camera trap grids (RAI=527) fol‐lowed by Petersrsquo duiker (Cephalophus callipygus Peters 1876)(RAI=412) and Bay duiker (Cephalophus dorsalis Gray 1846)(RAI=747) The rest of the forest antelopeswere relatively in‐frequently encounteredwith a global trapping rate of less thanfiveThedisturbance‐sensitivewhite‐belliedduiker(Hart2013b)wasonlyencountered in theSouthernSector (RAI=395 [lower95 confidence limit (LCL)=214 upper 95 confidence limit(UCL)=611])TrappingratesweresignificantlyhigherforPeterrsquosduiker in the Southern Sector displaying a fivefold increase be‐tween sectors (Table 1) Peterrsquos duiker occupancy was also sig‐nificantlyhigherintheSouthernSectorcomparedtotheNorthernSector (p=002 Table 2) Therewere no significant differencesin trapping rates between the two sectors forBatersquos pygmy an‐telope (Neotragus batesi de Winton 1903) bay duiker bongo(Tragelaphus eurycerusOgilbyi1837)sitatunga (Tragelaphus spe-kiiSpeke1863)andblack‐frontedduiker(Cephalophus nigrifrons Gray1871)Occupancyvaluesforbayduikerblack‐frontedduikerandBatersquospygmyantelopedidnotdiffersignificantlybetweenthesectorsTherewereinsufficientdetectionsoftheotherspeciestomodeloccupancy

764emsp |emsp emspensp Bruce et al

TA B L E 1 emspMammalspeciespredictedtoberecordedintheNorthernandSouthern(management)sectorsofDjaFaunalReserveCameroon

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Afrosoricida Giantottershrew(Potamogale velox Du Chaillu1860)

LC Wetland Notdetected Notdetected

Carnivora Africangoldencat(Profelis aurataTemminck1827)a

VU Forest Notdetected 058(027ndash091)

Carnivora Leopard(Panthera pardusLinnaeus1758)a

NT Mixed Notdetected 083(032ndash145)

Carnivora Marshmongoose(Atilax paludinosusCuvier1829)a

LC Wetland 056(033ndash082)b 009(0ndash02)b

Carnivora Black‐leggedmongoose(Bdeogale nigripesPucheran1855)a

LC Forest 183(079ndash314) 371(263ndash484)

Carnivora Camerooncusimanse(Crossarchus platycephalusGoldman1984)a

LC Forest 183(124ndash247) 083(046ndash127)

Carnivora Long‐nosedmongoose(Herpestes nasodeWinton1901)a

LC Forest 102(053ndash160) 089(009ndash227)

Carnivora Africanpalmcivet(Nandinia binotataGray1830)a

LC Forest 113(071ndash16) 089(052ndash13)

Carnivora Servalinegenet(Genetta servalinaPucheran1855)a

LC Forest 325(239ndash416) 214(142ndash295)

Carnivora Large‐spottedgenet(Genetta maculata Gray1830)

LC Forest Notdetected Notdetected

Carnivora CentralAfricanoyan(Poiana richardsoniiThomson1842)c

LC Forest Notdetected 003(003ndash009)

Cetartiodactyla Batesspygmyantelope(Neotragus batesideWinton1903)a

LC Forest 04(011ndash078) 036(015ndash059)

Cetartiodactyla Forestbuffalo(Syncerus cafferSparrmansubspnanus1779)a

EN Forest 008(0ndash024) 006(0ndash019)

Cetartiodactyla Petersduiker(Cephalophus callipygusPeters1876)a

LC Forest 141(838ndash2071)b 7146 (4963ndash9641)b

Cetartiodactyla Bayduiker(Cephalophus dorsalisGray1846)a

LC Forest 668(44ndash935) 834(492ndash1228)

Cetartiodactyla White‐belliedduiker(Cephalophus leucogastersubsp leucogasterGray1873)

LC Forest Notdetected 395(214ndash611)

Cetartiodactyla Black‐frontedduiker(Cephalophus nigrifronsGray1871)a

LC Forest 086(003ndash246) 05(006ndash114)

Cetartiodactyla Yellow‐backedduiker(Cephalophus silvicultorAfzelius1815)a

LC Forest 37(225ndash554) 555(354ndash794)

Cetartiodactyla Blueduiker(Philantomba monticolaThunberg1789)a

LC Forest 6164(4602ndash788) 4298(315ndash5561)

Cetartiodactyla Bongo(Tragelaphus eurycerusOgilbyi1837)a

NT Forest 005(0ndash014) 006(0ndash015)

Cetartiodactyla Sitatunga(Tragelaphus spekiiSpeke1863)a

LC Wetland 024(005ndash048) 009(0ndash024)

Cetartiodactyla Redriverhog(Potamochoerus porcusLinnaeus1758)a

LC Woodland 161(102ndash228)b 7(336ndash1304)b

Cetartiodactyla Giantforesthog(Hylochoerus mein-ertzhageniThomas1904)

LC Forest Notdetected Notdetected

Cetartiodactyla Waterchevrotain(Hyemoschus aquaticusOgilby1841)a

LC Forest 03(0ndash075)b 46(192ndash799)b

(Continues)

emspensp emsp | emsp765Bruce et al

35emsp|emspCarnivore

ThecarnivorecommunitydifferedinRAIandstructurebetweenthetwosectorsFelidswerenotdetectedatallintheNorthernSectorbutboth leopard (Panthera pardusLinneaus1758)andgoldencat(Profelis aurata Temminck1827)werepresentintheSouthernSector

(Table1)AmongtheHerpestidaeblack‐leggedmongoose(Bdeogale nigripes Pucheran1855) showeda significantlyhigheroccupancy(p =gt001)intheSouthernSectorbuttrappingrateslackedsignifi‐cantdifference (RAI=371 [LCL=263UCL=484])comparedtothe Northern Sector (RAI=183 [LCL=079 UCL=314])Marshmongoose(Atilax paludinosusCuvier1829)hadsignificantlyhigher

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Hyracoidea Westerntreehyrax(Dendrohyrax dorsalis Fraser1855)

LC Forest Notdetected Detected

Pholidota White‐belliedpangolin(Phataginus tricuspisRafinesque1821)a

VU Forest 062(029ndash1) 08(044ndash121)

Pholidota Giantpangolin(Smutsia giganteaIlliger1815)a

VU Forest 027(008ndash052) 068(038ndash101)

Primates Agilemangabey(Cercocebus agilisMilne‐Edwards1886)a

LC Forest 035(013ndash059) 448(265ndash682)

Primates Moustachedguenon(Cercopithecus cephusLinnaeus1758)c

LC Forest Detected Notdetected

Primates Greaterspot‐nosedguenon(Cercopithecus nictitansLinnaeus1766)c

LC Forest Detected Detected

Primates Blackcolobus(Colobus satanasWaterhouse1838)c

VU Forest Notdetected Detected

Primates Galagospc ‐ Detected Notdetected

Primates Mandrill(Mandrillus sphinxLinnaeus1758)a

VU Forest 005(0ndash013) 006(0ndash019)

Primates Westernlowlandgorilla(Gorilla gorillaSavagesubspgorilla1847)a

CR Forest 016(003ndash031) 044(02ndash073)

Primates Centralchimpanzee(Pan troglodytesBlumenbachsubsptroglodytes1799)a

EN Forest 161(077ndash29)b 457(314ndash617)b

Proboscidea Forestelephant(Loxodonta cyclotisMatschie1900)a

VU Mixed 086(046ndash135) 19(086ndash329)

Rodentia Africanbrush‐tailedporcupine(Atherurus africanusGray1842)a

LC Forest 1753(1142ndash2446) 762(464ndash1145)

Rodentia Eminspouchedrat(Cricetomys eminiWroughton1910)a

LC Forest 32(2358ndash4141)b 756(341ndash1465)b

Rodentia Greatercanerat(Thryonomys swinderi-anus Temminck1827)

LC Wetland Notdetected Notdetected

Rodentia LadyBurtonsropesquirrel(Funisciurus isabellaGray1862)c

LC Forest Detected Detected

Rodentia Fire‐footedropesquirrel(Funisciurus pyrropusCuvier1833)c

LC Forest Detected Detected

Rodentia Africangiantsquirrel(Protoxerus stangeriWaterhouse1842)c

LC Forest Detected Detected

Tubulidentata Aardvark(Orycteropus aferPallas1766)a LC Mixed Notdetected 009(005ndash019)

NotesForeachsectorandspeciesthatwasdetectedwepresentthemeanand95confidencelimits(inbrackets)ofthenumberofindependentphotographiceventspertrapdaytimes100Trappingrateswereonlycalculatedformedium‐to‐largeterrestrialmammalsduetoinconsistentdetectionprobabilitieswithotherspeciesIUCNstatuscriticallyendangered(CR)endangered(EN)vulnerable(VU)nearthreatened(NT)leastconcern(LC)aIndicatesaspeciesthatwasincludedintherarefactionanalysisaccordingtothedefinitiongiveinthedataanalysissectionofthemethodsbIndicatesthattheRAIconfidenceintervalsdonotoverlapandcanbeconsideredsignificantlydifferentcSignifiesanarborealspecies

TA B L E 1 emsp (Continued)

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 6: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

764emsp |emsp emspensp Bruce et al

TA B L E 1 emspMammalspeciespredictedtoberecordedintheNorthernandSouthern(management)sectorsofDjaFaunalReserveCameroon

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Afrosoricida Giantottershrew(Potamogale velox Du Chaillu1860)

LC Wetland Notdetected Notdetected

Carnivora Africangoldencat(Profelis aurataTemminck1827)a

VU Forest Notdetected 058(027ndash091)

Carnivora Leopard(Panthera pardusLinnaeus1758)a

NT Mixed Notdetected 083(032ndash145)

Carnivora Marshmongoose(Atilax paludinosusCuvier1829)a

LC Wetland 056(033ndash082)b 009(0ndash02)b

Carnivora Black‐leggedmongoose(Bdeogale nigripesPucheran1855)a

LC Forest 183(079ndash314) 371(263ndash484)

Carnivora Camerooncusimanse(Crossarchus platycephalusGoldman1984)a

LC Forest 183(124ndash247) 083(046ndash127)

Carnivora Long‐nosedmongoose(Herpestes nasodeWinton1901)a

LC Forest 102(053ndash160) 089(009ndash227)

Carnivora Africanpalmcivet(Nandinia binotataGray1830)a

LC Forest 113(071ndash16) 089(052ndash13)

Carnivora Servalinegenet(Genetta servalinaPucheran1855)a

LC Forest 325(239ndash416) 214(142ndash295)

Carnivora Large‐spottedgenet(Genetta maculata Gray1830)

LC Forest Notdetected Notdetected

Carnivora CentralAfricanoyan(Poiana richardsoniiThomson1842)c

LC Forest Notdetected 003(003ndash009)

Cetartiodactyla Batesspygmyantelope(Neotragus batesideWinton1903)a

LC Forest 04(011ndash078) 036(015ndash059)

Cetartiodactyla Forestbuffalo(Syncerus cafferSparrmansubspnanus1779)a

EN Forest 008(0ndash024) 006(0ndash019)

Cetartiodactyla Petersduiker(Cephalophus callipygusPeters1876)a

LC Forest 141(838ndash2071)b 7146 (4963ndash9641)b

Cetartiodactyla Bayduiker(Cephalophus dorsalisGray1846)a

LC Forest 668(44ndash935) 834(492ndash1228)

Cetartiodactyla White‐belliedduiker(Cephalophus leucogastersubsp leucogasterGray1873)

LC Forest Notdetected 395(214ndash611)

Cetartiodactyla Black‐frontedduiker(Cephalophus nigrifronsGray1871)a

LC Forest 086(003ndash246) 05(006ndash114)

Cetartiodactyla Yellow‐backedduiker(Cephalophus silvicultorAfzelius1815)a

LC Forest 37(225ndash554) 555(354ndash794)

Cetartiodactyla Blueduiker(Philantomba monticolaThunberg1789)a

LC Forest 6164(4602ndash788) 4298(315ndash5561)

Cetartiodactyla Bongo(Tragelaphus eurycerusOgilbyi1837)a

NT Forest 005(0ndash014) 006(0ndash015)

Cetartiodactyla Sitatunga(Tragelaphus spekiiSpeke1863)a

LC Wetland 024(005ndash048) 009(0ndash024)

Cetartiodactyla Redriverhog(Potamochoerus porcusLinnaeus1758)a

LC Woodland 161(102ndash228)b 7(336ndash1304)b

Cetartiodactyla Giantforesthog(Hylochoerus mein-ertzhageniThomas1904)

LC Forest Notdetected Notdetected

Cetartiodactyla Waterchevrotain(Hyemoschus aquaticusOgilby1841)a

LC Forest 03(0ndash075)b 46(192ndash799)b

(Continues)

emspensp emsp | emsp765Bruce et al

35emsp|emspCarnivore

ThecarnivorecommunitydifferedinRAIandstructurebetweenthetwosectorsFelidswerenotdetectedatallintheNorthernSectorbutboth leopard (Panthera pardusLinneaus1758)andgoldencat(Profelis aurata Temminck1827)werepresentintheSouthernSector

(Table1)AmongtheHerpestidaeblack‐leggedmongoose(Bdeogale nigripes Pucheran1855) showeda significantlyhigheroccupancy(p =gt001)intheSouthernSectorbuttrappingrateslackedsignifi‐cantdifference (RAI=371 [LCL=263UCL=484])comparedtothe Northern Sector (RAI=183 [LCL=079 UCL=314])Marshmongoose(Atilax paludinosusCuvier1829)hadsignificantlyhigher

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Hyracoidea Westerntreehyrax(Dendrohyrax dorsalis Fraser1855)

LC Forest Notdetected Detected

Pholidota White‐belliedpangolin(Phataginus tricuspisRafinesque1821)a

VU Forest 062(029ndash1) 08(044ndash121)

Pholidota Giantpangolin(Smutsia giganteaIlliger1815)a

VU Forest 027(008ndash052) 068(038ndash101)

Primates Agilemangabey(Cercocebus agilisMilne‐Edwards1886)a

LC Forest 035(013ndash059) 448(265ndash682)

Primates Moustachedguenon(Cercopithecus cephusLinnaeus1758)c

LC Forest Detected Notdetected

Primates Greaterspot‐nosedguenon(Cercopithecus nictitansLinnaeus1766)c

LC Forest Detected Detected

Primates Blackcolobus(Colobus satanasWaterhouse1838)c

VU Forest Notdetected Detected

Primates Galagospc ‐ Detected Notdetected

Primates Mandrill(Mandrillus sphinxLinnaeus1758)a

VU Forest 005(0ndash013) 006(0ndash019)

Primates Westernlowlandgorilla(Gorilla gorillaSavagesubspgorilla1847)a

CR Forest 016(003ndash031) 044(02ndash073)

Primates Centralchimpanzee(Pan troglodytesBlumenbachsubsptroglodytes1799)a

EN Forest 161(077ndash29)b 457(314ndash617)b

Proboscidea Forestelephant(Loxodonta cyclotisMatschie1900)a

VU Mixed 086(046ndash135) 19(086ndash329)

Rodentia Africanbrush‐tailedporcupine(Atherurus africanusGray1842)a

LC Forest 1753(1142ndash2446) 762(464ndash1145)

Rodentia Eminspouchedrat(Cricetomys eminiWroughton1910)a

LC Forest 32(2358ndash4141)b 756(341ndash1465)b

Rodentia Greatercanerat(Thryonomys swinderi-anus Temminck1827)

LC Wetland Notdetected Notdetected

Rodentia LadyBurtonsropesquirrel(Funisciurus isabellaGray1862)c

LC Forest Detected Detected

Rodentia Fire‐footedropesquirrel(Funisciurus pyrropusCuvier1833)c

LC Forest Detected Detected

Rodentia Africangiantsquirrel(Protoxerus stangeriWaterhouse1842)c

LC Forest Detected Detected

Tubulidentata Aardvark(Orycteropus aferPallas1766)a LC Mixed Notdetected 009(005ndash019)

NotesForeachsectorandspeciesthatwasdetectedwepresentthemeanand95confidencelimits(inbrackets)ofthenumberofindependentphotographiceventspertrapdaytimes100Trappingrateswereonlycalculatedformedium‐to‐largeterrestrialmammalsduetoinconsistentdetectionprobabilitieswithotherspeciesIUCNstatuscriticallyendangered(CR)endangered(EN)vulnerable(VU)nearthreatened(NT)leastconcern(LC)aIndicatesaspeciesthatwasincludedintherarefactionanalysisaccordingtothedefinitiongiveinthedataanalysissectionofthemethodsbIndicatesthattheRAIconfidenceintervalsdonotoverlapandcanbeconsideredsignificantlydifferentcSignifiesanarborealspecies

TA B L E 1 emsp (Continued)

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 7: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp765Bruce et al

35emsp|emspCarnivore

ThecarnivorecommunitydifferedinRAIandstructurebetweenthetwosectorsFelidswerenotdetectedatallintheNorthernSectorbutboth leopard (Panthera pardusLinneaus1758)andgoldencat(Profelis aurata Temminck1827)werepresentintheSouthernSector

(Table1)AmongtheHerpestidaeblack‐leggedmongoose(Bdeogale nigripes Pucheran1855) showeda significantlyhigheroccupancy(p =gt001)intheSouthernSectorbuttrappingrateslackedsignifi‐cantdifference (RAI=371 [LCL=263UCL=484])comparedtothe Northern Sector (RAI=183 [LCL=079 UCL=314])Marshmongoose(Atilax paludinosusCuvier1829)hadsignificantlyhigher

Order Species IUCN Status HabitatNorthern sector RAI (LCLndashUCL)

Southern sector RAI (LCLndashUCL)

Hyracoidea Westerntreehyrax(Dendrohyrax dorsalis Fraser1855)

LC Forest Notdetected Detected

Pholidota White‐belliedpangolin(Phataginus tricuspisRafinesque1821)a

VU Forest 062(029ndash1) 08(044ndash121)

Pholidota Giantpangolin(Smutsia giganteaIlliger1815)a

VU Forest 027(008ndash052) 068(038ndash101)

Primates Agilemangabey(Cercocebus agilisMilne‐Edwards1886)a

LC Forest 035(013ndash059) 448(265ndash682)

Primates Moustachedguenon(Cercopithecus cephusLinnaeus1758)c

LC Forest Detected Notdetected

Primates Greaterspot‐nosedguenon(Cercopithecus nictitansLinnaeus1766)c

LC Forest Detected Detected

Primates Blackcolobus(Colobus satanasWaterhouse1838)c

VU Forest Notdetected Detected

Primates Galagospc ‐ Detected Notdetected

Primates Mandrill(Mandrillus sphinxLinnaeus1758)a

VU Forest 005(0ndash013) 006(0ndash019)

Primates Westernlowlandgorilla(Gorilla gorillaSavagesubspgorilla1847)a

CR Forest 016(003ndash031) 044(02ndash073)

Primates Centralchimpanzee(Pan troglodytesBlumenbachsubsptroglodytes1799)a

EN Forest 161(077ndash29)b 457(314ndash617)b

Proboscidea Forestelephant(Loxodonta cyclotisMatschie1900)a

VU Mixed 086(046ndash135) 19(086ndash329)

Rodentia Africanbrush‐tailedporcupine(Atherurus africanusGray1842)a

LC Forest 1753(1142ndash2446) 762(464ndash1145)

Rodentia Eminspouchedrat(Cricetomys eminiWroughton1910)a

LC Forest 32(2358ndash4141)b 756(341ndash1465)b

Rodentia Greatercanerat(Thryonomys swinderi-anus Temminck1827)

LC Wetland Notdetected Notdetected

Rodentia LadyBurtonsropesquirrel(Funisciurus isabellaGray1862)c

LC Forest Detected Detected

Rodentia Fire‐footedropesquirrel(Funisciurus pyrropusCuvier1833)c

LC Forest Detected Detected

Rodentia Africangiantsquirrel(Protoxerus stangeriWaterhouse1842)c

LC Forest Detected Detected

Tubulidentata Aardvark(Orycteropus aferPallas1766)a LC Mixed Notdetected 009(005ndash019)

NotesForeachsectorandspeciesthatwasdetectedwepresentthemeanand95confidencelimits(inbrackets)ofthenumberofindependentphotographiceventspertrapdaytimes100Trappingrateswereonlycalculatedformedium‐to‐largeterrestrialmammalsduetoinconsistentdetectionprobabilitieswithotherspeciesIUCNstatuscriticallyendangered(CR)endangered(EN)vulnerable(VU)nearthreatened(NT)leastconcern(LC)aIndicatesaspeciesthatwasincludedintherarefactionanalysisaccordingtothedefinitiongiveinthedataanalysissectionofthemethodsbIndicatesthattheRAIconfidenceintervalsdonotoverlapandcanbeconsideredsignificantlydifferentcSignifiesanarborealspecies

TA B L E 1 emsp (Continued)

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 8: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

766emsp |emsp emspensp Bruce et al

F I G U R E 2 emspRarefiedspeciesaccumulationcurvesformedium‐to‐largeterrestrialmammalsintheNorthernandSouthernsectorsofDjaFaunalReserveCameroon

F I G U R E 3 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheNorthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 9: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp767Bruce et al

trappingrateintheNorthernSector(Table1)butlackedsufficientdetectionstoreliablycalculateoccupancyAbundanceofCamerooncusimanse(Crossarchus platycephalusGoldman1984)didnotdiffersignificantlybetweenthetwosectors(NorthernSectorRAI=183[LCL=124 UCL=247 ψ=075] Southern Sector RAI=083[LCL=046UCL=127]ψ=056p=028)

36emsp|emspElephants great apes and giant pangolin (illegal wildlife trade targets)

Amongtheterrestrialmammalstargetedbytheillegalwildlifetradespecifically central chimpanzee (Pan troglodytes Blumenbachsubsp troglodytes 1799) western lowland gorilla (Gorilla gorillaSavagesubsp gorilla1847)forestelephantgiantpangolin(Smutsia gigantea Illiger 1815) and white‐bellied pangolin (Phataginus tri-cuspis Rafinesque 1821) only central chimpanzee displayed asignificant difference in RAI between the management sectors(Northern Sector RAI=161 [LCL=077 UCL=29] SouthernSector RAI=457 [LCL=314 UCL=617]) However there wasnosignificantdifferenceinmeanoccupancybetweenthetwosec‐tors (p=074) Giant pangolin displayed the greatest differencewithathreefoldincreaseinRAIfrom027[LCL=008UCL=052]in the Northern Sector to 068 [LCL=038 UCL=101] in theSouthernSectorbutthiswasnotsignificantduetotheoverlapping

confidencelimitsTheRAIsandwhereappropriateoccupancyofforestelephantwesternlowlandgorillaandwhite‐belliedpangolinwerenotsignificantlyhigher intheSouthernSectorcomparedtotheNorthernSector(Tables12and12)

37emsp|emspOther bushmeat‐targeted species

Eminrsquospouchedrat(Cricetomys eminiWroughton1910)wasmoreabundantasmeasuredbybothoccupancy(pge001)andtrapratesintheNorthernSectorcomparedtotheSouthernSector(Table1)Africanbrush‐tailedporcupine(Atherurus africanusGray1842)didnothavesignificantdifferencesinRAIbetweenthemanagementsectors but occupancywas significantly higher in theNorthernSector (pge004) In comparison the larger‐bodied red river hog(Potamochoerus porcus Linneaus1758)wasmore frequentlyen‐countered as measured by both species abundance metrics intheSouthernSector(RAI=7[LCL=336UCL=1304]ψ=091)compared to the Northern Sector (RAI=161 [LCL=102UCL=228]ψ=065(p=004)

38emsp|emspSpecies occupancy with covariates

Therewasatotalof15speciesthathadsufficientdetectionstomodeloccupancywithinteractingsitecovariates(distancetoparkboundary

F I G U R E 4 emspDistributionofmedium‐to‐largeterrestrialmammalspeciesintheSouthernSectoroftheDjaFaunalReserveCameroononthebasisofbodysizeandtrophiccategoryEachcirclerepresentsaspeciesinfunctionalspaceSizeofthecircleproportionaltothetrappingrateforthatspecies

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 10: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

768emsp |emsp emspensp Bruce et al

TAB

LE 2

emspNullmeanoccupancy(ψ)anddetection(p)probabilitieswithstandarderrorpresentedinbracketsfortheNorthernSectorandSouthernSector

Spec

ies

Nor

ther

n se

ctor

(ψ)

Nor

ther

n se

ctor

(p)

Sout

hern

sec

tor

(ψ)

Sout

hern

sec

tor

(p)

Mod

elBe

tamdash

Para

met

er

chos

enLo

wer

95

be

taU

pper

95

be

taC‐

hat v

alue

Chi‐s

quar

ep

valu

e

Certiodactyla

Batesrsquospygmy

antelope

022(01)

015(006)

[026]

ndashNull

ndashndash

ndashndash

ndash

Bayduiker

091(006)

04(003)

087(006)

04(003)

DRN

lam(DistanceSTD)

000

6356

808

043

3356

50

930

25

Black‐fronted

duiker

01(006)

036(01)

015(006)

025(008)

Null

ndashndash

ndashndash

ndash

Blueduiker

097(003)

082(002)

1(0)

1(0)

DRN

lam(DistanceSTD)

002

0135

490

3637

492

021

024

Petersrsquoduiker

083(007)

a056(003)

1(0)a

1(0)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus07435528

003

6592

430

004

03

Waterchevrotain

[007]

ndash04(008)

045(005)

ndashndash

ndashndash

ndashndash

White‐bellied

duiker

ndashndash

072(008)

031(003)

Null

ndashndash

ndashndash

ndash

Yellow‐backed

duiker

084(008)

027(003)

086(007)

039(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

010

8837

21

0251

104

069

021

Redriverhog

065(011)

a021(003)

091(006)

a033(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus12560347

minus01352547

027

044

Proboscidae

Forestelephant

067(015)

014(004)

063(013)

014(004)

Null

ndashndash

ndashndash

ndash

Primates

Central

chimpanzee

077(014)

015(004)

082(007)

035(003)

SRN

lam(sectorSouthern)

037

3686

91

4429

314

03

039

Westernlowland

goril

la[007]

ndash045(017)

01(004)

Null

ndashndash

ndashndash

ndash

Philodota

Giantpangolin

[02]

ndash061(016)

011(004)

Null

ndashndash

ndashndash

ndash

White‐bellied

pangolin

045(016)

012(005)

063(017)

011(003)

DSoccu

psi(DistanceSTDsec

torSouthern)

minus48425115

minus1910401

022

06

Rodentia

African

brush‐tailed

porcupine

098(003)

a057(003)

084(006)

a042(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus10008123

minus01586108

042

071

Eminrsquospouched

rat

1(0)a

1(0)

079(007)

a038(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus095574568

minus01390762

021

075

Carnivora

(Con

tinue

s)

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 11: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp769Bruce et al

and management sector Table 2) Forest elephant black‐frontedduikerand long‐nosedmongoose (Herpestes nasodeWinton1901)lackedamodel thathadanAICdifferenceofgt2 therefore theco‐variatemodelswerenotsignificantlydifferent to thenullmodel forthese species Elevenof 15 species had aRoylendashNicholsmodel se‐lectedasthelowestAICvaluesuggestingadifferenceinthenumberofindividualswassignificantlyinfluencingdetectionprobabilitiesandthereforeoccupancy

RoylendashNichols models accounted for occupancy being signifi‐cantlyhigherindifferingmanagementsectorswithnointeractionofdistancetotheprotectedareaboundaryforthreespeciesCamerooncusimanse had higher occupancy in the Northern Sector In con‐trast central chimpanzee and black‐legged mongoose had signifi‐cantlyloweroccupancywithintheNorthernSectorcomparedtotheSouthernSector(Figure5)

African brush‐tailed porcupine Eminrsquos pouched rat and servalinegenet(Genetta servalinaPucheran1855)hadasynergisticRoylendashNicholsmodelselectedasthemostsupportedTheprobabilityofsiteoccupancyslightlyincreasedwithdistancetotheboundaryandwasoverallhigherin theNorthernSector butdeclinedwithdistance to theboundary intheSouthernSector(Figure6)BothPetersrsquoduikerandredriverhogalsodisplayedthispatternofoccupancybuthadamuchgreaterincreaseinoccupancyintheNorthernSectorandhadhigheroccupancyoverallintheSouthernSector(Figure6)Incontrastyellow‐backedduiker(Cephalophus silvicultorAfezilus1815)wastheonlyspeciestodemonstrateanincreaseinoccupancywithdistancetotheboundaryintheSouthernSectorwhiledecliningintheNorthernSectorHoweversimilartootherlargerspeciesoccupancywashigherintheSouthernSector(Figure6)

With regard to the remainingduiker speciesmodelled aRoylendashNicholsmodelwithdistancetotheprotectedareaboundarywasiden‐tifiedasthemostappropriateTheprobabilityofasitebeingoccupiedbyblueduikerandbayduikerincreasedwithdistancetotheboundarywith no discernible difference betweenmanagement sectors in themodel(Figure7)

White‐belliedpangolinhadasingle‐seasonoccupancymodelse‐lectedsuggestingdifferences inabundancebetweenthemanage‐mentsectorsdidnotaffectdetectionprobabilitiesTheprobabilityofasitebeingoccupiedbywhite‐belliedpangolin increasedintheNorthernSectoranddeclinedintheSouthernSectorwithincreasingdistancetotheboundary(Figure8)

Seven speciesweredetectedonly inone sectoror lacked suffi‐cientdetectionsinonesectortoreliablymodeloccupancyacrossbothmanagement sectors Therefore only the effect of distance to theboundarycouldbemodelledThesewereAfricangoldencatwesternlowlandgorillawhite‐belliedduikergiantpangolinAfricanpalmcivet(Nandinia binotata Gray 1830) Batesrsquos pygmy antelope and waterchevrotain (Hymeoschus aquaticusOgilby 1841)African palm civetwastheonlyspeciestohavedistancetotheboundaryselectedastheoptimummodel to explain occupancy as occupancy increasedwithdistance from the boundary of the protected area (Table 2)All theremainingspecieshadthenullmodelselectedastheoptimummodelaccordingtoAICcriteria (Table2)Howeverdistancetothebound‐arywaswithinlt2AICforthesespeciessuggestingthatasignificantSp

ecie

sN

orth

ern

sect

or (ψ

)N

orth

ern

sect

or (p

)So

uthe

rn s

ecto

r (ψ

)So

uthe

rn s

ecto

r (p

)M

odel

Beta

mdashPa

ram

eter

ch

osen

Low

er 9

5

beta

Upp

er 9

5

beta

C‐ha

t val

ueCh

i‐squ

arep

va

lue

Africangolden

cat

ndashndash

041(013)

013(004)

Null

ndashndash

ndashndash

ndash

Africanpalm

civet

[047]

ndash073(017)

012(003)

DOccu

psi(DistanceSTD)

minus8177158

Inf

197

008

Black‐legged

mongoose

047(01)a

025(004)

082(008)

a031(003)

SRN

lam(sectorSouthern)

028

0266

31

4627

420

011

058

Cameroon

cusimanse

075(009)

027(004)

056(015)

012(004)

SRN

lam(sectorSouthern)

minus1808131

minus05098939

005

073

Long‐nosed

mongoose

055(012)

a02(004)

015(006)

a027(007)

Null

ndashndash

ndashndash

ndash

Servalinegenet

092(006)

035(003)

08(009)

02(003)

DSRN

lam(DistanceSTDse

ctorSouthern)

minus09202819

003

5821

570

50

26

Not

esNaiumlveoccupancyvaluesarepresentedinsquarebracketsforspecieswithadetectionprobabilitylt01TheoptimummodelchosenbyAkaikersquosinformationcriteriaforeachspeciesgeneratingsuf‐

ficientoccupancyvaluesinbothsectorswiththeBetaparameteranditisrespectivelowerandupper95confidencelimitsisshownandtheassociatedc‐hatandchi‐squaredp

val

ue

DdistancetoboundarySmanagementsectorRNRoylendashNicholsmodelOccuMckenziesingle‐seasonoccupancymodesynergisticinteraction

a IndicatesasignificantdifferenceinoccupancybetweensectorsasmeasuredbytheWaldteststatistic

TAB

LE 2

emsp(Continued)

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 12: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

770emsp |emsp emspensp Bruce et al

relationshipwithdistancetotheboundarycouldbeinfluencingoccu‐pancyIntheSouthernSectortheoccupancyincreasedwithdistanceto theboundary forwestern lowlandgorillaandgiantpangolinbutdecreasedforAfricangoldencatwhite‐belliedduikerandwaterchev‐rotainIntheNorthernSectoroccupancyincreasedwithdistancetotheboundaryforBatesrsquospygmyantelope

4emsp |emspDISCUSSION

Thecomparisonofthetwosurveysconfirmsthatstandardcameratrap surveys and derived metrics of presenceabsence trappingrates andoccupancy candiscern confidentdifferences in ground‐dwellingmammalcommunitiesinCentralAfricanforests

41emsp|emspCamera trap surveys for documenting species

Thecomparativeefficacyofcamera traps for surveyingmediumto large ground‐dwelling mammals in the DFR is indicated byobservationratesandverifiabilityofrecordsespeciallyofelusivesmallerandnocturnalspeciesForexamplethedirectencounterraterecordedbyrangersonpatrolthroughouttheentirereserveover a nine‐month period is much lower than the combinednumberofindependentphotographiceventsinbothmanagementsectors (ZSL amp MINFOF 2017b) even for relatively largeconspicuous species such as forest elephant (96 photographiceventscomparedto29directencounters)andcentralchimpanzee(204 independent photographic events compared to 23 directencounters)Methodologiessuchascameratrapping therefore

provideimportantbaselinedatathatwhenrepeatedthroughtimeusingastandardisedprotocolcanallowatleasttrendsinrelativeabundanceindicestobemonitored

42emsp|emspCamera trap surveys for comparing assemblages among sites

Despitebeingseparatedbyonlyc32kmthemammalcommunitiesbetween the twocamera trapgridsdisplayedmarkeddifferencesThiswasthecaseeventhoughbothgridshadlowShannonndashWeinerandSimpsonsdiversityindicesduetothedominanceofthreeorfourspeciesineachcameratrapgridSignificantdifferencesamongthesiteswere observed for the trapping rates of species of differentsizesbetweensectorsSmaller‐bodiedspecieswithintheherbivoreand omnivore guilds were more prevalent within the NorthernSector (Figure 2) Trapping rates and occupancy values for smallcarnivoresarealsolowerintheSouthernSectorThiscouldbeduetothedifficultyofidentifyingmorphologicallysimilarspeciessuchasmarshmongooseandlong‐nosedmongoose(Bahaa‐el‐dinetal2013 Ray 1997) in infrared imagery with single cameras Thereweremoreunidentifiablemongooseeventsthatwereclassifiedtoafamilylevel―66224intheSouthernSectorcomparedto29156intheNorthernSectorofallcombinedmongooseevents

43emsp|emspThe potential impact of seasonality on estimates derived from camera traps

Due to logistical and financial constraints the surveys could notberuninthesameseasonThishasthepotentialtoaffecttrapping

F I G U R E 5 emspChangeintheprobabilityofoccupancyforblack‐leggedmongoosecentralchimpanzeeandCamerooncusimansewithmanagementsectoraccordingtoaRoylendashNicholsmodel

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 13: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp771Bruce et al

rates and occupancy for specieswith larger home ranges becausewhenspeciesarewide‐rangingoccupancycanproveineffectiveformeasuring relative abundance Forest elephants (Blake 2002) andgreatapesareknowntodisplayseasonalshiftsintheirhabitatusageover great distances in response to increased fruit availability andprecipitation(HeadRobbinsMundryMakagaampBoesch2012)Thiscouldalsoinfluenceothergregariousspeciessuchasredriverhogthatarealsothoughttooccasionallydisplaysimilaraggregationsandmovementsinresponsetomastingevents(LeslieampHuffman2015)However as both red river hog and chimpanzee had significantlyhigherRAIandhigheroccupancywithvariabledetectionprobabilityaccording to the number of individuals incorporated this supports

thepossibilitythatthesespeciesarefavouringtheSouthernSectorIfmanagersareable toestablishwhetherwide‐rangingspeciesarepredictably moving to known areas within the reserve they canrespondinamannerthatprovidesenhancedprotectiontovulnerablewildlifepopulations in concentration areasAsmost species in thissurveylikelyhaveasmallerhomerangethantheinter‐trapdistanceand display fixed territories it can be regarded as appropriate tocompare occupancy values as the extent of overlap of territorieswithin the two surveys are unlikely to change in such away as toaffecttheresultsFuturestudieswouldbenefitfromtryingtomatchcameratrapsurveysseasonallytotryandclarifytheissueofseasonalshiftsinhabitatusagewithintheDFR

F I G U R E 6 emspChangeintheprobabilityofoccupancyforAfricanbrush‐tailedporcupineEminspouchedratredriverhogservalinegenetPetersrsquoduikerandyellow‐backedduikerwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 14: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

772emsp |emsp emspensp Bruce et al

F I G U R E 7 emspChangeintheprobabilityofoccupancyforblueduikerandbayduikerwithdistancetotheboundaryinkilometresacrossbothmanagementsectorsaccordingtoaRoylendashNicholsmodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

F I G U R E 8 emspChangeintheprobabilityofoccupancyforwhite‐belliedpangolinwithmanagementsectoranddistancetotheboundaryinkilometresaccordingtoaMackenzieoccupancymodelGreycirclesrepresenttheSouthernSectorandblackcirclestheNorthernSector

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 15: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp773Bruce et al

44emsp|emspCamera trap surveys for measuring the impacts of hunting on mammal communities

The spatial scale at which mammal communities are affected byandhowpopulationsrespondtoanthropogenicpressuressuchasbushmeat hunting is difficult to empiricallymeasure (Laurance etal2006)Thisisespeciallytrueformammalsresidingwithintropi‐cal forestswheregatheringconsistentandmeaningfulpopulation‐andcommunity‐levelmetrics ischallenging(Ahumadaetal2013)Population density of tropical mammals can vary greatly due toheterogeneity present within the environment For example for‐est elephants havedifferent distributions and aggregations inwetanddryseasonsinNouabaleacute‐Ndoki NationalParkwhichispartiallydependentonspatio‐temporalpatternsoffruitingtreesacrossthelandscape(Blake2002)

Whether the differences observed among the two sites sur‐veyedhereareattributabletodifferent levelsofhuntingpressureremains to be confirmed There are however indications thathuntingpressureanditsimpactsonmammalfaunasaregreaterintheNorthern Sector than in the Southern Sector The effects ofhuntingpressureonmammaliandeclinesinCentralAfricanforestsarewell documented The pattern in general is the largest‐bod‐ied species frugivores and thosewith high hunter or blackmar‐ketvalue(Abernethyetal2013Cardilloetal2005FaOliveroFarfaacutenMaacuterquezDuarteetal2014aFaOliveroFarfaacutenMaacuterquezVargasetal2014bPeresampPalacios2007)arethefirstspeciestoshownoticeabledeclineInthisstudythesignificantdeclineintherelativeabundance for frugivores suchasPetersʼduikerandspe‐cieswithhighhuntervalueliketheredriverhogunderincreasedhuntingpressure in theNorthernSector is reported inother sur‐veys(Abernethyetal2013)Thisisalsoreflectedinthedifferencesobserved in this study in biomass in the different guilds of eachmammalcommunityThemammalcommunitywithintheNorthernSector shows indications of a community that is disturbed and isexperiencingelevatedhuntingpressureThesearehigher(camera)trapping rates for smaller‐bodiedspecies suchasEminrsquospouchedrat and significantly fewer encounters of larger‐bodiedmammalsthataretargetsofthebushmeattradesuchasPetersʼduikerandredriverhog(FaRyanampBell2005JerozolimskiampPeres2003)Additionalindicatorsaretheabsenceinthesurveysoflargercarni‐voresintheNorthernSectorsuchasgoldencatandleopardwhicharesensitivetosnaring(Bahaa‐el‐dinetal2015)andsignificantlyreducedabundancemetricsfordisturbance‐sensitivespeciessuchasblack‐leggedmongooseandwaterchevrotain(Hart2013a)Theabsence of white‐bellied duiker in the Northern Sector also sug‐gestselevatedhumandisturbanceasthisspecieshasbeenreportedasverysensitivetoevenminorperturbationwithintheenvironment(Hart2013b)IncomparisontheSouthernSectorcontainedindica‐torfaunasuchasthewhite‐belliedduikerandhadhighertrappingratesforlarger‐bodiedspecies

WesuspectthedifferencesobservedaremostlikelyduetolowerhumandisturbanceintheSouthernSectorTheteamsdeployingand

recoveringthecamerasintheSouthernSectorcovered238kmandencountered few signs of humanperturbation (T Brucepers obs)whereashumansignwascommonlyencounteredbytheteamsintheNorthernSectorThisperceiveddifference is reflected in the2017and 2018 density of hunting signwithin each camera trap grid asdetected throughMINFOF ranger patrols (ZSL ampMINFOF 2017a2017b) and through the2018DistanceSampling inventory for theDFR (Bruce et al 2018) Higher numbers of hunting sign in theNorthernSectorwouldbeconsistentwithanelevatedhuntingpres‐sureinthatarea

45emsp|emspProtection of refugia from hunting

Though inferences made for wide‐ranging species such as forestelephantsandgreatapesusingcameratrapsaredifficultthefactthattrappingrateswerehigherinmorechallengingterrainwithassumedlower hunting pressure could be indicative of complex habitatprovidingsomelevelofprotectionfromhuntingElephantisknownto retreatwhen they aredisturbed to terrain that ismoredifficulttoaccessbyhumans (Hedges2012)Thuswithin largerprotectedareas certain zones may act as refugia for wildlife populations(Campbelletal2011)Thiscanbeduetoarangeof factorssuchas remoteanddifficult terrain forpoachers (Attum2007Hedges2012) or the regular presence of field researchers and rangers(Campbell et al 2011) The significanceof these refugia for largerprotected areas is that the populations of wildlife residing withinthem if adequately protected may provide source populations toallowrecolonisationofotherareasofthereserve(NaranjoampBodmer2007)Thereforeifadequateprotectioncanbeprovidedtorelativelysmallbutimportantareasoflargereservesthismayprovidetropicalforestswithabetterchanceofbeingecologicallyresilienttoongoingand increasing human perturbation Well‐designed camera trapsurveys may provide data on the status of wildlife populations atrelativelyfinespatialresolutionssoastoidentifyfunctionalrefugiawithgreaterconfidence

ACKNOWLEDG EMENTS

WeappreciatetheongoingsupportofCameroonrsquosMinistryofForestsandWildlife(MINFOF)andtheopportunitytocontributetobiodiver‐sityconservationthroughoutthecountryInparticularwewouldliketothanktheChefdrsquoAntenneSergeJacobMeyeforhisongoingsup‐portofconservationresearchwithintheprotectedareaWeappreci‐atethestalwarteffortsofMINFOFecoguardsandlocalporterswhoaccompaniedthesurveyteamsinthefieldWewouldalsoliketothanktheUnitedStatesFishandWildlifeService(USFWS)mdashAfricanElephantConservationandIUCNSOSmdashFondationSegreacutePangolinConservationInitiativeforsupportingthiswork

ORCID

Tom Bruce httporcidorg0000‐0001‐6958‐1657

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 16: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

774emsp |emsp emspensp Bruce et al

R E FE R E N C E S

AbernethyKACoad L TaylorG LeeMEampMaisels F (2013)Extent and ecological consequences of hunting in Central Africanrainforests in thetwenty‐firstcenturyPhilosophical Transactions of the Royal Society of London Biological Sciences368(1625)20120303httpsdoiorg101098rstb20120303

AbrahamsM I Peres C A amp Costa H C (2017)Measuring localdepletion of terrestrial game vertebrates by central‐place hunt‐ers in rural Amazonia PLoS ONE 12(10) e0186653 httpsdoiorg101371journalpone0186653

AhumadaJAHurtadoJampLizcanoD(2013)MonitoringthestatusandtrendsoftropicalforestterrestrialvertebratecommunitiesfromcameratrapdataAtool forconservationPLoS ONE8(9)e73707httpsdoiorg101371journalpone0073707

Ahumada J A Silva C E Gajapersad K Hallam C Hurtado JMartin E hellip Sheil D (2011) Community structure and diver‐sity of tropical forest mammals Data from a global camera trapnetwork Philosophical Transactions of the Royal Society of London Biological Sciences366(1578)2703ndash2711httpsdoiorg101098rstb20110115

AminRAndanjeSAOgwonkaBAliAHBowkettAEOmarMampWacherT(2015)ThenortherncoastalforestsofKenyaarenationally and globally important for the conservation of AdersrsquoduikerCephalophusadersiandotherantelopespeciesBiodiversity and Conservation 24(3) 641ndash658 httpsdoiorg101007s10531‐014‐0842‐z

Attum O (2007) Can landscape use be among the factors that po‐tentiallymake some ungulates speciesmore difficult to conserveJournal of Arid Environments69(3)410ndash419

Bahaa‐el‐dinLHenschelPAbaaRAbernethyKBohmTBoutNhellipLeeM (2013)NotesonthedistributionandstatusofsmallcarnivoresinGabonSmall Carnivore Conservation4819ndash29

Bahaa‐el‐dinLHenschelPButynskiTMMacdonaldDWMillsDSlotowRampHunterL (2015)TheAfricangoldencatCaracalaurataAfricasleast‐knownfelidMammal Review45(1)63ndash77

Bennett E L Blencowe E Brandon K Brown D Burn R WCowlishaw G hellip Robinson J G (2007) Hunting for consensusReconcilingbushmeatharvestconservationanddevelopmentpol‐icyinWestandCentralAfricaConservation Biology21(3)884ndash887httpsdoiorg101111j1523‐1739200600595x

BlakeSDeemSLMossimboEMaiselsFampWalshP(2009)Forestelephants Tree planters of the CongoBiotropica41(4) 459ndash468httpsdoiorg101111j1744‐7429200900512x

Blake S (2002) The ecology of forest elephant distribution and itsimplications for conservation Doctoral dissertation University ofEdinburgh

BruceTNdjassiCFowlerANdimbeMFankemOTabueRhellipOlsonD(2018)Faunal inventory of the Dja Faunal Reserve Cameroon Yaoundeacute Cameroon Ministry of Forests and Wildlife (MINFOF)Zoological Society of London ndash Cameroon Country ProgrammeAfricanWildlifeFoundation

BruceTWacherTNdingaHBidjokaVMeyongFNgoBataMampOlsonD(2017)camera trap survey for larger terrestrial wildlife in the Dja Biosphere Reserve CameroonYaoundeacuteCameroonZoologicalSocietyofLondon(ZSL)ampCameroonMinistryofForestsandWildlife(MINFOF)

BurnhamKPampAndersonDR(2002)Model selection and multimodel inferenceNewYorkNYSpringer

Campbell G Kuehl H Diarrassouba A NGoran P K amp BoeschC (2011) Long‐term research sites as refugia for threatened andover‐harvested species Biology Letters 7(5) 723ndash726 httpsdoiorg101098rsbl20110155

CardilloMMaceGMJonesKEBielbyJBininda‐EmondsORSechrestWhellipPurvisA(2005)Multiplecausesofhighextinction

riskinlargemammalspeciesScience309(5738)1239ndash1241httpsdoiorg101126science1116030

Craigie IDBaillieJEBalmfordACarboneCCollenBGreenREampHuttonJM (2010)Largemammalpopulationdeclines inAfricarsquosprotectedareasBiological Conservation143(9)2221ndash2228httpsdoiorg101016jbiocon201006007

DaveyKWacherTampAminR(2017)Analysis tool for camera-trap sur-vey data [Computer software]ZoologicalSocietyofLondonRetrievedfromhttpswwwzslorgzsl‐camera‐trap‐data‐management‐ and‐analysis‐package

Djuikouo M N K Doucet J L Nguembou C K Lewis S L ampSonkeacute B (2010) Diversity and aboveground biomass in threetropical forest types in the Dja Biosphere Reserve Cameroon African Journal of Ecology 48(4) 1053ndash1063 httpsdoiorg101111j1365‐2028201001212x

DupainJBombomeKampVanElsackerL(2003)LeschimpanzeacutesetlesgorillesdelareacuteservedefauneduDjaCanopeacutee2414ndash15

EffordMGampDawsonDK(2012)OccupancyincontinuoushabitatEcosphere3(4)1ndash15httpsdoiorg101890ES11‐003081

Efron B amp Tibshirani R J (1994) An introduction to the bootstrap WashingtonDCCRCPress

FaJEOliveroJFarfaacutenMAacuteMaacuterquezALDuarteJNackoneyJhellipMacdonaldDW(2014a)CorrelatesofbushmeatinmarketsanddepletionofwildlifeConservation Biology29(3)805ndash815

Fa J EOlivero J FarfaacutenMAacuteMaacuterquezA LVargas JMRealRampNasiR(2014b)IntegratingsustainablehuntinginbiodiversityprotectioninCentralAfricaHotspotsweakspotsandstrongspotsPLoS ONE9(11)e112367

FaJERyanSFampBellDJ (2005)Huntingvulnerabilityecolog‐ical characteristics and harvest rates of bushmeat species in afro‐tropicalforestsBiological Conservation121(2)167ndash176httpsdoiorg101016jbiocon200404016

Fa J E Seymour S Dupain J E F Amin R Albrechtsen L ampMacdonaldD (2006) Getting to gripswith themagnitude of ex‐ploitationBushmeat in theCross‐SanagariversregionNigeria and Cameroon Biological Conservation 129(4) 497ndash510 httpsdoiorg101016jbiocon200511031

Farris Z J Boone H M Karpanty S Murphy A Ratelolahy FAndrianjakariveloVampKellyMJ(2015)FeralcatsandthefitoatyFirstpopulationassessmentoftheblackforestcatinMadagascarrsquosrainforestsJournal of Mammalogy97(2)518ndash525

Fiske IampChandlerR (2011)UnmarkedAnRpackageforfittinghi‐erarchicalmodelsofwildlifeoccurrenceandabundanceJournal of Statistical Software43(10)1ndash23

HansenMCStehmanSVampPotapovPV(2010)QuantificationofglobalgrossforestcoverlossProceedings of the National Academy of Sciences107(19)8650ndash8655httpsdoiorg101073pnas0912668107

HartJ(2013a)WaterchevrotainHymemoschusaquaticusInJKingdonampMHoffmann (Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp88ndash92)LondonUKBloomsbury

Hart J (2013b) White‐bellied duiker Cephalophus leucogaster In JKingdonampMHoffmann(Eds)Mammals of Africa VI Hippopotamuses pigs deer giraffe and bovids(pp255ndash258)LondonUKBloomsbury

HeadJSRobbinsMMMundryRMakagaLampBoeschC(2012)Remotevideo‐cameratrapsmeasurehabitatuseandcompetitiveex‐clusionamongsympatricchimpanzeegorillaandelephantinLoangoNational ParkGabon Journal of Tropical Ecology28(06) 571ndash583httpsdoiorg101017S0266467412000612

HedgesS(2012)Monitoring elephant populations and assessing threats HimayatnagarTelanganaUniversitiesPress

HedwigDKienastIBonnetMCurranBKCourageABoeschChellipKingT(2018)Acameratrapassessmentoftheforestmam‐mal community within the transitional savannah‐forest mosaic oftheBateacutekeacutePlateauNationalParkGabonAfrican Journal of Ecology56(4)777ndash790httpsdoiorg101111aje12497

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 17: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

emspensp emsp | emsp775Bruce et al

HijmansRJCameronSEParraJLJonesPGampJarvisA(2005)Very high resolution interpolated climate surfaces for global landareasInternational Journal of Climatology25(15)1965ndash1978httpsdoiorg101002joc1276

HuggelA(2012)Exiv2softwaretool[Computersoftware]Retrievedfromhttpswwwexiv2orgindexhtml

Jerozolimski A amp Peres C A (2003) Bringing home the biggestbacon A cross‐site analysis of the structure of hunter‐kill profilesin Neotropical forests Biological Conservation 111(3) 415ndash425httpsdoiorg101016S0006‐3207(02)00310‐5

KingdonJ (2015)The Kingdon field guide to African mammalsLondonUKBloomsburyPublishing

KuumlhlHFMaiselsMAncrenazampEAWilliamson(Eds)(2008)Best practice guidelines for surveys and monitoring of great ape populations GlandSwitzerlandIUCN

LauranceWFCroesBMTchignoumbaLLahmSAAlonsoALeeMEhellipOndzeanoC(2006)ImpactsofroadsandhuntingoncentralAfrican rainforestmammalsConservation Biology20(4)1251ndash1261httpsdoiorg101111j1523‐1739200600420x

LauranceWFUsecheDCRendeiroJKalkaMBradshawCJSloan S P hellip Arroyo‐Rodriguez V (2012) Averting biodiversitycollapse in tropical forestprotectedareasNature489(7415)290httpsdoiorg101038nature11318

LeslieDMampHuffmanBA(2015)Potamochoerus porcus(ArtiodactylaSuidae)Mammalian Species4715ndash31

MacKenzieD IampBailey L L (2004)Assessing the fit of site‐occu‐pancy models Journal of Agricultural Biological and Environmental Statistics9300ndash318httpsdoiorg101198108571104X3361

MacKenzieDINicholsJDRoyleJAPollockKHBaileyLLampHinesJE (2006)Occupancy estimation and modellingBurlingtonMAAcademicPress

Magurran A E (2005) Species abundance distributions Patternor process Functional Ecology 19(1) 177ndash181 httpsdoiorg101111j0269‐8463200500930x

MaiselsFStrindbergSBlakeSWittemyerGHartJWilliamsonEAhellipWarrenY (2013)DevastatingdeclineofforestelephantsinCentralAfricaPLoS ONE8(3)e59469httpsdoiorg101371journalpone0059469

MalhiYAdu‐BreduSAsareRA LewisS LampMayauxP (2013)AfricanrainforestsPastpresentandfuturePhilosophical Transactions of the Royal Society of London Biological Sciences 368(1625)20120312

MallonDPHoffmannMGraingerMJHibertFVanVlietNampMcGowanP JK (2015)An IUCNsituationanalysisof terrestrialandfreshwaterfaunainWestandCentralAfricaOccasionalpaperoftheIUCNspeciessurvivalcommission(54)

MambeyaMMBakerFMombouaBRKoumbaPamboAFHegaMOkouyiOkouyiVJhellipAbernethyK(2018)TheemergenceofacommercialtradeinpangolinsfromGabonAfrican Journal of Ecology56(3)601ndash609httpsdoiorg101111aje12507

MINFOFampIUCN(2015)CaracteacuterisationdelapopulationdegrandsetmoyensmammifegraveresdanslaReservedeFauneduDjaPotentieletmenacesYaoundeacuteCameroun

Muchaal P K amp Ngandjui G (1999) Impact of village hunt‐ing on wildlife populations in the western Dja ReserveCameroon Conservation Biology 13(2) 385ndash396 httpsdoiorg101046j1523‐17391999013002385x

NaranjoEJampBodmerRE (2007) Sourcendashsink systemsandconser‐vationofhuntedungulatesintheLacandonForestMexico Biological Conservation 138(3ndash4) 412ndash420 httpsdoiorg101016jbiocon 200705010

NielsenMR(2006)ImportancecauseandeffectofbushmeathuntingintheUdzungwaMountainsTanzania ImplicationsforcommunitybasedwildlifemanagementBiological Conservation128(4)509ndash516httpsdoiorg101016jbiocon200510017

OBrienTGKinnairdMFampWibisonoHT (2003)Crouching ti‐gers hiddenprey Sumatran tiger andprey populations in a tropi‐calforestlandscapeAnimal Conservation6(2)131ndash139httpsdoiorg101017S1367943003003172

OksanenJ(2015)VegananintroductiontoordinationVol8(p19)Retrieved from httpscranr‐projectorgwebpackagesveganvi‐gnettesintroveganpdf

PeresCAampPalaciosE(2007)Basin‐wideeffectsofgameharvestonvertebrate populationdensities inAmazonian forests Implicationsfor animal‐mediated seed dispersal Biotropica 39(3) 304ndash315httpsdoiorg101111j1744‐7429200700272x

PotapovPVTurubanovaSAHansenMCAduseiBBroichMAltstattAhellipJusticeCO(2012)QuantifyingforestcoverlossinDemocraticRepublicoftheCongo2000ndash2010withLandsatETM+data Remote Sensing of Environment 122 106ndash116 httpsdoiorg101016jrse201108027

PoulsenJRKoernerSEMooreSMedjibeVPBlakeSClarkC JhellipRosinC (2017) Poaching empties criticalCentralAfricanwilderness of forest elephants Current Biology 27(4) 134ndashR135httpsdoiorg101016jcub201701023

PurvisAGittlemanJlCowlishawGampMaceGM(2000)PredictingextinctionriskindecliningspeciesProceedings of the Royal Society B Biological Sciences267(1456) 1947ndash1952 httpsdoiorg101098rspb20001234

RayJ(1997)ComparativeecologyoftwoAfricanforestmongoosesHerpestesnasoandAtilaxpaludinosusAfrican Journal of Ecology35(3)237ndash253httpsdoiorg101111j1365‐20281997086‐ 89086x

Redford K H (1992) The empty forest BioScience 42(6) 412ndash422httpsdoiorg1023071311860

RepublicofCameroon(1994)Lawno9401du20janvier1994portantreacutegimedesforecirctsdelafauneetdelapecirccheRepublicofCameroon

RoveroFampMarshallAR(2009)CameratrappingphotographicrateasanindexofdensityinforestungulatesJournal of Applied Ecology46(5)1011ndash1017httpsdoiorg101111j1365‐2664200901705x

Royle J A amp Nichols J D (2003) Estimating abundance from re‐peated presence‐absence data or point counts Ecology 84(3)777ndash790 httpsdoiorg1018900012‐9658(2003)084[0777EAFRPA]20CO2

Seddon P J Griffiths C J Soorae P S ampArmstrongD P (2014)ReversingdefaunationRestoringspeciesinachangingworldScience345(6195)406ndash412httpsdoiorg101126science1251818

Silveira L Jacomo A T amp Diniz‐Filho J A F (2003) Camera trapline transect census and track surveys A comparative evaluationBiological Conservation 114(3) 351ndash355 httpsdoiorg101016S0006‐3207(03)00063‐6

Sonkeacute B (1998) Etudes floristiques et structurales des forecircts de laReacuteserve de Faune du Dja (Cameroun) Laboratoire de BotaniqueSysteacutematique et de Phytosociologie Universiteacute Libre de Bruxelles(ULB)

Srbek‐AraujoACampChiarelloAG(2005)Iscameratrappinganeffi‐cientmethodforsurveyingmammalsinNeotropicalforestsAcasestudyinsouth‐easternBrazilJournal of Tropical Ecology21(1)121ndash125httpsdoiorg101017S0266467404001956

Stiles D (2011) Elephant meat and ivory trade in Central AfricaPachyderm5026ndash36

TEAMNetwork(2008)Terrestrialvertebrateprotocol implementationmanualv30(p56)WashingtonDCTropicalEcologyAssessmentandMonitoringNetworkCenter forAppliedBiodiversity ScienceConservationInternational

Tobler M W Carrillo‐Percastegui S E Leite Pitman R MaresR amp Powell G (2008) An evaluation of camera traps for in‐ventorying large‐and medium‐sized terrestrial rainforestmammals Animal Conservation 11(3) 169ndash178 httpsdoiorg101111j1469‐1795200800169x

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574

Page 18: Using camera trap data to characterise terrestrial larger ... Mammal... · May 2016 and the Southern (management) Sector (02°59’37’’N, 13°07’43’’E) of the DFR between

776emsp |emsp emspensp Bruce et al

TuckerMAOrdTJampRogersTL(2014)EvolutionarypredictorsofmammalianhomerangesizeBodymassdietandtheenvironmentGlobal Ecology and Biogeography 23(10) 1105ndash1114 httpsdoiorg101111geb12194

Williamson L amp Usongo L (1995) Recensement des populationsde primates et inventaire des grands mammifegraveres Recensementdes eacuteleacutephants gorilles et chimpanzeacutes reacuteserve de faune du Dja‐CamerounProjetEcofac‐ComposanteCameroun

Ziegler S Fa J EWohlfartC StreitB Jacob SampWegmannM(2016) Mapping bushmeat hunting pressure in Central AfricaBiotropica48(3)405ndash412httpsdoiorg101111btp12286

ZSL amp MINFOF (2017a) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2016 au 31 deacutecembre 2016)UnpublishedreportZoologicalSocietyofLondon

ZSL amp MINFOF (2017b) Rapport de patrouilles SMART - Reacuteserve de Biosphegravere du Dja au Cameroun (Du 1 janvier 2017 au 30 septembre 2017)UnpublishedreportZoologicalSocietyofLondon

How to cite this articleBruceTAminRWacherTetalUsingcameratrapdatatocharacteriseterrestriallarger‐bodiedmammalcommunitiesindifferentmanagementsectorsoftheDjaFaunalReserveCameroonAfr J Ecol 201856759ndash776 httpsdoiorg101111aje12574