Urban Fabric Types and Microclimate Response Assessment...

29
Urban Fabric Types and Microclimate Response Assessment and Design Improvement. Final Report R. Stiles, B. GasienicaWawrytko, K. Hagen, H. Trimmel, W. Loibl, M. Köstl, T. Tötzer, S. Pauleit, A. Schirmann, W. Feilmayr SUMMARY REPORT Vienna, April 2014 A project within the program ACRP 3 rd Call Climate and Energy Fund of the Federal State – managed by Kommunalkredit Public Consulting GmbH

Transcript of Urban Fabric Types and Microclimate Response Assessment...

Page 1: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

 

Urban Fabric Types and Microclimate Response ‐ 

Assessment and Design Improvement. 

Final Report R. Stiles, B. Gasienica‐Wawrytko, K. Hagen, H. Trimmel, W. Loibl, M. Köstl, T. Tötzer, 

S. Pauleit, A. Schirmann, W. Feilmayr 

 

SUMMARY REPORT  

  

Vienna, April 2014  

A project within the program 

ACRP 3rd Call    

Climate and Energy Fund of the Federal State –  managed by Kommunalkredit Public Consulting GmbH 

Page 2: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

CONTENTS  

1   SUMMARY  REPORT  .............................................................................................................................................  1  

1.1   Project  data  ..........................................................................................................................................................  1  

1.2   Abstract  ................................................................................................................................................................  2  

1.3   Motivation  and  objectives  ....................................................................................................................................  3  

1.4   Work  Packages  .....................................................................................................................................................  4  1.4.1   WP  2  –  Generation  of  urban  fabric  typologies  ..............................................................................................  4  1.4.2   WP  3  -­‐  Characterisation  of  urban  fabric  types  and  identification  of  open  space  typologies  ........................  8  1.4.3   WP  4  -­‐  Investigation  of  interactions  between  urban  open  space  design  and  microclimate  .......................  13  1.4.4   WP  5  -­‐  Application  of  findings  to  the  urban  fabric  and  open  space  typologies  ..........................................  14  1.4.5   WP  6  -­‐  Recommendations  of  planning  and  design  measures  .....................................................................  20  1.4.6   WP  7  -­‐  Dissemination  and  public  discussion  ...............................................................................................  22  

1.5   Conclusions  ........................................................................................................................................................  22  

1.6   Discussion  and  outlook  ......................................................................................................................................  24    

 

Page 3: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         1  

1  SUMMARY  REPORT  

The  short  summary  is  based  on  the  official  Final  Report  for  the  ACRP  submitted  in  April  2014.  

The  full-­‐length  report  (in  german)  is  available  for  download  on  the  project  website  www.urbanfabric.ac.at.  

 

1.1 Project  data  

Title:    

Urban   Fabric   and   Microclimate   Response   –   Assessment   and   Design   Improvement   (Urban   Fabric   +  Microclimate)  

Programme:    

ACRP  3rd  Call,  Thematic  Area  4:  Understanding  the  climate  system  and  consequences  of  climate  change  Klima-­‐  und  Energiefonds,  Bundesministerium  für  Innovation,  Verkehr  und  Technik  (bmvit)  

Project  start  and  duration:    

1.5.2011  –  20.1.2014  (33  months)  

Coordination  of  project:    

Vienna  Technical  University,  Department  of  Landscape  Architecture  (Team:  Prof.  DI  Richard  Stiles,  Dr.  Katrin  Hagen,  DI  Heidelinde  Trimmel,  DI  Beatrix  Gasienica-­‐Wawrytko)  

Project  partners:    

Austrian   Institute  of   Technology  GmbH;  Energy  Department   (Team:  Dr.  Wolfgang   Loibl,  Dr.   Tanja  Tötzer,  Mag.  Mario  Köstl)  

TU  München;  Strategic  Landscape  Planning  and  Management   (Team:  Prof.  Dr.  Stephan  Pauleit,  DI  Annike  Schirmann)  

Scientific  advisory  board:  

The  project  has  been  accompanied  by  a  scientific  advisory  board.  Members:  J-­‐Prof.  Dr.  Fazia  Ali-­‐Toudert  (TU  Dortmund);  Dr.  Maria  Balas  (Umweltbundesamt);  Prof.  Dr.  Christiane  Brandenburg  (BOKU  Wien);  Prof.  Dr.  Jürgen  Breuste  (Universität  Salzburg);  Prof.  Dr.  Michael  Bruse  (Johannes  Gutenberg  Universität  Mainz);  DI  Jürgen  Preiss    (Wiener  Umweltschutzabteilung  MA22);  Prof.  Dr.  Erich  Mursch-­‐Radlgruber  (BOKU  Wien);  DI  Thomas  Proksch  (Planungsbüro  Land  in  Sicht,  Wien);  DI  Eva  Prochazka    (Stadtentwicklung  und  Stadtplanung  MA18);  Dr.  Maja  Zuvela-­‐Aloise  (Zentralanstalt  für  Meteorologie  und  Geodynamik).    

Page 4: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         2  

1.2 Abstract  

Urban   areas   are   particularly   vulnerable   to   the   impact   of   climate   change;   they   are   also   the   living  environment   of   choice   for   a   significant   majority   of   Europe‘s   population.   Global   warming   has   an  increasing  influence  on  the  urban  climate  and  will  consequently  affect  the  future  health  and  well-­‐being  of  a  large  proportion  of  the  people  of  Europe.  The  aim  of  this  project  was  to  understand  better  the  way  in  which  the  small  scale  structure  of  the  urban  fabric  contributes  different  to  the  urban  heat  island  effect  and  other  urban  climate  phenomena.  The  results  were  used  to  develop  specific  strategies   for  counter-­‐acting  and  mitigating  these  effects  at  a  local  level.  A  major  focus  of  the  project  was  on  characterising  the  morphology   of   the   urban   landscape   and  on   understanding   the   interaction   between   different   types   of  urban  fabric  and  the  urban  microclimate.  The  aim  was  to  identify  the  different  climate  sensitivity  of  the  urban   fabric   –   using   the   example   of   Vienna   -­‐   and   to   investigate   concrete   design   measures   aimed   at  modifying  open  spaces  in  order  to  counteract  the  effects  of  overheating  during  hot  summer  days.    

Using  500x500m  square  quadrants  based  on  grid  applied  by  Statistik  Austria  an  urban  fabric  typology  for  the   city   of   Vienna   has   been   generated.   Data   sets  were   compiled   describing   key   aspects   of   the   urban  climate  and  urban  morphology  in  terms  of  terrain,  open  space  and  built  structure,  all  of  which  influence  the  microclimatic  conditions  and  parameters.  A  „two-­‐step“  cluster  analysis  was  then  carried  out,  which  resulted   in   the   identification  of   9  urban   fabric   types,   that   closely   reflected   the   varying  morphology  of  Vienna’s  entire  urban  landscape.  Subsequently,   further   investigations  concentrated  on  the  three  urban  landscape  classes  which  were  considered  most   climate-­‐sensitive,  namely   those  within   the  dense   inner  city  and  in  the  main  urban  development  areas  northeast  of  the  Danube.  These  were  then  subjected  to  a  further  cluster  analysis  in  order  to  increase  the  resolution  of  the  classification  as  a  result  of  which  each  was  resolved  into  three  sub-­‐classes  (WP2).  

The   quadrants   representing   these   ‘critical’   urban   fabric   types   were   then   analysed   and   characterised,  after  which  a   statistically   representative   sample  of  quadrants  was  drawn   from  each   class.   These  were  then   analysed   further   using   other   geospatial   data   sets,   in   particular   the  Grünraummonitoring   (‘green  space  monitoring’),  the  Flächenmehrzweckkarte  (‘multi-­‐purpose  digital  map’)  and  aerial  photographs,  as  a  result  of  which  one  sample  quadrant  for  each  urban  fabric  type  was  identified.  Five  sample  quadrants,  which  are  subject   to  distinct  heat  exposure  regimes  were  selected  and  have  been   further   investigated  and   characterised.   The   characterisation   included   a   description   of   the   typical   open   space   patterns   for  each  quadrant  and  was  followed  by  the  simulation  of  the  status-­‐quo  and  future  climate  conditions  using  the   programme   ENVI-­‐met   version   4.0.   By   comparing   the   respective   maps,   the   climate   sensitivity   of  different   open   space   patterns   could   be   identified  with   respect   to   the   specific   conditions  of   the   urban  fabric  types  in  question  (WP3).  

In   parallel   the   interaction   of   open   space   and  microclimate   has   been   investigated   on   the   one  hand  by  means  of  a  literature  review  and  on  the  other  hand  by  studying  the  climate  conditions  within  different  open   space   situations   by  means   of  measurements   and   simulations  with   ENVI-­‐met   4.0.   Comparing   the  results  it  was  possible  to  validate  the  simulation  model  for  further  investigation  steps  (WP4).  

The   characterisation   of   the   sample   quadrants   led   to   specific   design   recommendations   aimed   at  maximising   thermal   comfort.  Design  measures   included   tree  planting,   the   replacement  of   sealed  hard  surfaces  with  permeable  materials,  and  -­‐  where  appropriate  -­‐  roof  planting  (on  the  basis  of  the  City  of  Vienna’s   map   of   Gründachpotential   -­‐   ‘green   roof   potential’).   The   effects   of   these   measures   were  simulated  under   the  same  climatic  conditions  as   the  status-­‐quo.   In   response   to   the  specific   conditions  prevailing   in   each   sample   quadrant,   the   design   variants   focused   on   different   aspects,   such   as   street  orientation  and  width,  influence  of  density  of  development  and  the  influence  of  adjacent  areas,  etc.  The  evaluation  of   the  data  generated  focused  on  those  climatic   factors  most  relevant   for  thermal  comfort:  

Page 5: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         3  

wind  speed,  mean  radiant  temperature,  air  temperature  and  humidity  and  on  the  thermal  comfort  value  itself   using   the   index   PMV   (predicted  mean   vote).   The   results   are   presented   as  maps   depicting  mean  values  and  diurnal  variations  (WP5).    

Based   on   the   simulation   results,   and   taking   into   account   findings   of   a   previous   project,   a   general  catalogue  of  open  space  design  measures  was  compiled.  As  a  final  step  a  combination  of  measures  was  defined   for   each   sample   quadrant,   as   a   representative   of   an   urban   fabric   type.   These   reflected   their  specific  characteristics  in  term  of  their  typical  open  space  patterns  and  their  climate  sensitivity.  The  aim  in  each  case  was  to  have  an  optimal  influence  on  thermal  comfort  (WP6).  

1.3 Motivation  and  objectives  

Urban  areas  are  the  living  space  or  place  of  residence  for  a  significant  proportion  of  Europe‘s  population.  But  at  the  same  time,  because  of  their  tendency  to  overheat  during  hot  summers,  cities  are  particularly  vulnerable   to   the   impacts   of   climate   change.   There   are   strong   interactions   between   the   design  treatment  of  open  spaces  and  their  microclimate.    

The  objective  of  this  project  was  to  better  understand  the  way  in  which  the  small  scale  structure  of  the  urban  fabric  contributes  different  to  the  heat  island  effect  and  other  urban  climate  phenomena.  It  also  aimed   to   use   this   information   to   develop   specific   strategies   for   counter-­‐acting   and   mitigating   these  effects  at  the  local  level  in  order  to  help  secure  the  future  health  and  well-­‐being  of  the  urban  population  as  global  warming  increasingly  influences  the  urban  climate.  

Furthermore,   the  study  aimed  to   investigate  how  the  detailed  urban  morphology   is   likely   to   influence  the  changing  urban  microclimate,  and  to  consider  how  urban  design  solutions  incorporating  appropriate  mitigating  measures  can  be  tailored  to  suit  different  settlement  structures.  

The  project   followed  a  systematic  approach  which   involved  the  analysis  of   the  climatic  conditions  and  the  effects  of  possible  design  measures  based  on  quadrants  defined  by  a  500m  x  500m  grid  laid  over  the  entire   area   of   Vienna.   The   quadrants  were   representative   of   different   ‘urban   fabric   types’,  which   are  also   likely  to  be  similar  to  those  that  might  be  found  in  other  European  cities,  expecting  the  results  of  the  project  could  be  transferable.  

An   important  aspect  was   the  close  exchange  with  other   specialists   from  related  disciplines.  An  expert  panel  was  assembled,  including  researchers  on  urban  climate  issues,  city  authorities  and  urban  planners.  The  panel  came  together  in  the  crucial  phases  of  the  project  to  discuss  the  (interim)  results  and  advise  on  following  project  steps.  

   

Page 6: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         4  

1.4 Work  Packages  

Work  packages  

Title   Methodology  

WP  1   Project  management   Project  management;  Expert  meetings  

WP  2   Generation  of  urban  fabric  typologies  and  sample  quadrant  selection  

Spatial  and  climate  data  acquisition  /  extraction;  

Spatial  analysis,  multivariate  statistics  

WP  3   Characterisation  of  urban  fabric  typologies  and  identification  of  open  space  typologies  

Numerical  microclimate  simulations  considering  heat  exchange,  ventilation  and  cooling  through  physical  properties  and  open  space  interior;  Microclimate  impact  analysis;  Literature  review  

WP  4   Investigation  of  interactions  between  urban  open  space  design  and  microclimate  

Literature  study;  

Atmospheric  condition  monitoring  at  reference  sites  and  parallel  numerical  microclimate  simulations  for  model  validation;  

Microclimate  impact  analysis  

WP  5   Application  of  findings  into  the  urban  fabric  and  open  space  typologies  

Design  recommendations;  

Simulations  

WP  6   Recommendations  of  planning  and  design  measures  

 

WP  7   Dissemination  and  public  discussion   Dissemination  of  results  and  public  discussion  of  recommendations  with  urban  stakeholders  

WP  8   Report:  Formulation  of  policy  recommendations  

Final  Report  

 

1.4.1 WP  2  –  Generation  of  urban  fabric  typologies  

Urban   typologies   were   defined   using   data   describing   the   terrain,   urban   morphology   and   open   space  characteristics,  as  well  as  selected  microclimatic  indicators  for  each  of  the  500x500  m  quadrants.  based  on  the  sample  grid  used  by  Statistik  Austria.  Several  steps  were  necessary  to  generate  the  final  urban  fabric  types:    

First,  a  large  set  of  variables  for  Vienna  was  acquired,  extracted,  and  generated  from  other  datasets  from  which   a   series   of   indicators  were  developed.   In   total   around  250   indicators  were  extracted,   44  of  which  were  selected  to  be  used  in  the  multivariate  statistical  analysis.  The  indicators  selected  were  classified  into  four  groups:  climate,  topography,  open  space  and  buildings.    

The   next   step   was   to   analyse   these   four   groups   using   factor   analysis   in   order   to   eliminate   redundant  information   and   to   identify   the   most   influential   parameters.   Using   this   approach,   a   limited   number   of  factors  for  each  group  was  selected  to  serve  as  “super  variables”,  containing  the  information  of  the  entire  indicator  set.  The  data  subset  “Climate”  was  represented  by  one  factor,  the  data  subset  “Topography”  by  

Page 7: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         5  

two   factors   and   the   last   two   subsets   “Open   Space”   and   “Buildings”   were   represented   by   three   factors  respectively.    

These  factors  were  then  used   in  a  cluster  analysis  to  generate  different  forced  numbers  of  clusters.  After  reviewing   alternative   results   (applying   different   cluster   numbers,   different   similarity   measures   and  metrics),  a  cluster  analysis  resulting  in  9  clusters  was  finally  selected,  providing  the  best  differentiation  of  built-­‐up  districts,  but  without  distinguishing  too  many  clusters  in  less  densely  populated  areas.  Finally,  the  cluster   types   relating   to   statistical   cases   representing   the   500x500m   grid   squares   were   linked   with   the  respective  geospatial  entities.  

In   this  way  the  distribution  of   the  nine  different  urban   fabric   types  was  determined;  each  representing  a  combination  of  physical  morphology  and  climate  sensitivity  (Fig.  1  and  Table  1).  

 

 

 

Fig.  1:  Final  Cluster  analysis  of  urban  fabric  types.  

Urban  Fabric  Type   Climate     Building  /  Land  Use  /  Vegetation  

Type  1   Industrial   and  commercial  zones  

Strong   influence   of  urban   heat   island  phenomena  

Heterogeneous   building   structure   ;   High  percentage  rate  of  sealed  surfaces;    

Perimeter   block   development   dominant  block   characteristics,   besides   this   linear  development  since  the  1960ies  and  1970ies;  large   industrial   areas   with   generous   green  spaces   –   therefore   high   percentage   of  grassland    

Type  2   Densely   built-­‐up   inner  urban  areas  

Highest   number   of   hot  nights,  warmest  winter  

Cluster   with   highest   percentage   of   sealed  surfaces;   highest   buildings,   historic   building  structure   predominates   (especially  perimeter  block  development)  with  low  rate  of   vegetation   in   inner   courtyards;   less  vegetation  area  overall  

Type  3   Urban   expansion   areas  on  level  terrain  

Highest   number   of   hot  summer   days;   but  cooling  at  night  

Heterogeneous   building   structure;   approx.  half   the   cluster   surface   is   sealed;   level  terrain;   high   proportion   of   grassland   and  agricultural  use;  moderate  amount  of  shrub  

Page 8: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         6  

vegetation  and  small  trees  

Type  4   Low   density  development   on  sloping   terrain   (West  Vienna)  

Cooler   and  more   humid  because  of  the  proximity  to   the  higher  altitude  of  the  Vienna  Woods  

Terrain  with   very   varied   elevation;   areas   of  detached   housing   and   villa-­‐lined  thoroughfares   with   big   private   garden  estates;   mainly   perimeter   block  development   with   a   higher   amount   of  vegetation   in   inner   courtyards;   higher  amount  of  shrub  and  tree  vegetation  (height  <  0,5m  and  >  3,5m  

Type  5   Urban   fringe   areas   on  level   terrain   (Vienna  Basin)  

Hot   summer   days,   cool  nights  

low-­‐density   residential   areas,   with   low  building   heights;   recreations   areas   with  large  areas  of  low  vegetation;  few  trees  

Type  6   River   corridor  (Danube)    

Moderately   influenced  by   urban   heat   island  effects   –   similar   to  Cluster   5;   faster   cooling  process  at  night  

Very  low  percentage  of  sealed  surfaces;  very  low   numbers   of   building   –   high   proportion  of  water  areas  and  trees  

Type  7   Un-­‐built   agricultural  land  

Lowest   amount   of  precipitation;    

little  vegetation  shade    

Detached   housing   areas   with   low   building  density;   lower   amount   of   building   shade,  low   percentage   of   sealed   surfaces   –   large  proportion  of  agricultural  land  

Type  8   Urban   fringe   on  wooded  slopes  

Cool,   few   sealed  surfaces   subject   to  heating  up  

Detached   housing   areas   with   a   high  proportion  of  vegetation;    

Highest   amount   of   shrub   and   vegetation  with  heights  between  3,5m  and  15m  

Type  9   Wooded   hills   (Vienna  Woods)  

Cool,   humid,   high  amount   of   shade  vegetation,   highest  amount  of  precipitation  

Low  building  density;  high  amount  of  forest,  low   proportion   of   low   vegetation;   high  variations  in  altitude  

Table  1:  Characteristics  of  urban  fabric  types  

The   urban   fabric   types   which   appeared   having   the   most   potential   to   be   explored   further   were   those  represented  by  clusters  1-­‐5  and  8.  These  fabric  types  turn  out  to  be  more  vulnerable  to  certain  impacts  of  climate  change  (due  to  the  high  proportion  of  sealed  surfaces,  the  low  proportion  of  green  open  space,  the  high  proportion  of  hot  summer  nights,  etc.),  and  were  expected  as  the  most  promising  targets   for   future  mitigation   measures.   The   other   fabric   types   are   characterised   by,   for   example,   a   higher   amount   of  vegetation  and  fewer  sealed  surfaces,  fewer  hot  summer  nights  and  colder  winters,  etc.  (e.g.  Fabric  Type  9  “Wooded  hills”),  and  as  a  result  the  impact  of  climate  change  here  is  likely  to  be  much  less  critical.    

Although  the  selected  clusters  characterising  the  city’s  urban  fabric  types  generally  presented  a  convincing  representation  of  Vienna’s  urban  morphology,   a   further   attempt  was  made   to   see,   if   it  were  possible   to  derive  a  more  detailed  resolution  of  the  urban  structure  by  sub-­‐dividing  some  of  the  more  heterogeneous  classes  –  in  particular  urban  fabric  types  2  and  3,  and  the  Danube  river  corridor  Cluster  6.  For  these  clusters  further  analysis  was  therefore  conducted,  leading  to  the  generation  of  another  three  ‘sub-­‐types’  each  (Fig.  2  and  Table  2).    

 

Page 9: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         7  

 

 

Fig.  2:  Final  Cluster  analysis  of  urban  fabric  subtypes  

Urban  Fabric  Sub-­‐type   Climate     Building  /  Land  Use  /  Vegetation  

Sub-­‐type  2a  

Late   19th   century  perimeter   block  development   on  sloping   terrain   (West  Vienna)  

 

 

Hot;   highest   amount   of  precipitation   of   the   three  others   sub-­‐clusters;   “coolest”  sub-­‐cluster  

Perimeter   block   structure,   about   86%  sealed  surfaces,  elevations  in  the  terrain  structure,   low   amount   of   vegetation  structure,   but   trees   with   a   height   until  3,5m  and  grassland  dominates    

Sub-­‐type  2b  

Late  19th   century   inner  urban   perimeter   block  development   (Inner  urban   Vienna;  Floridsdorf)  

Hot;   high   number   of   hot  summer  nights;  high  proportion  of   sealed   surfaces   subject   to  heating  effects  

Perimeter   block   structure;   high  proportion   amount   of   sealed   surfaces;  small  differences   in  elevation;  grassland  and  small  trees  structure  dominates  the  cluster  vegetation  

Sub-­‐type  2c  

Historic  city  centre   Highest  number  of  hot  days  and  hot  nights,   influenced  by  urban  heat  island  –  high  proportion  of  sealed  surfaces  

Perimeter   block   structure   and   historic  buildings;   high   percentage   of   sealed  surfaces;   grassland   and   small   trees  structure   dominates   the   vegetation;  highest   proportion   of  water   surfaces   of  the  three  sub-­‐clusters  

Sub-­‐type  3a  

Post   WW   II   urban  expansion   areas   –  (South/South   East  Vienna)  

Hot   days   and   warm   nights;  average   amount   of  precipitation;   50%   sealed  surfaces   which   influences   the  heat  island  effect  

Detached   housing   areas   –   land   in  agricultural  use;  average  building  height  about   6m;   low   building   density;   high  amount  of  grassland  (agricultural  areas);  fewer  trees    

Sub-­‐type  3b  

Compact   development  in   urban   expansion  areas   and   old   village  centres   (North   and  East  of  Vienna)    

Warm   days   and  warm   nights   –  highest   rate   of   warm   nights  among  the  sub-­‐clusters  

Different   types   of   built   structures  (residential   and   agricultural   buildings);  highest   building   density   of   these   three  sub-­‐clusters;   average   of   building   height  of  about  11m    

Sub-­‐type  3c  

Single   family   houses  (West  Vienna)    

Coolest  sub-­‐cluster  of  the  three,  highest  amount  of  precipitation  among   the   three   sub-­‐clusters;  

Detached   housing   areas   with   more  perimeter   block   structure   than   in   the  other   two   sub-­‐clusters;   building   height  

Page 10: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         8  

about  50%  sealed  surfaces   of   about   8m;   low  building   density;   high  level  of  shrub  and  small  trees  structure;  terrain   with  most   variation   in   elevation  of  the  three  sub-­‐clusters    

 

Sub-­‐type  6a  

Riverine   woodland  (National  Park  ‚Lobau‘)  

Cool,   low   proportion   of   hot  nights    

the   lowest   percentage   of   buildings   and  very   low   building   heights;   Highest  amount   of   shrub   and   tree   vegetation  with  heights  between  3,5m  to  15m    

Sub-­‐type  6b  

Waterside   green  spaces   (east   of   the  Danube)  

Cool;   highest   rate   of  precipitation  

Higher   percentage   of   buildings   –   but  quite   low   from   a   overall   point   of   view;  an   average   building   height;   detached  housing   areas;   about   30%   sealed  surfaces;   high   amount   of   grassland   and  shrubs;  high  percentage  of  water  areas    

Sub-­‐type  6c  

Waterside   landscape  parkland   (Danube  banks  and  Prater)  

Lowest   rate   of   winter   severity;  cool   in   comparison   to   sub-­‐clusters  2+3  

Sub-­‐cluster   with   the   highest   amount   of  water;  very  low  building  and  percentage  of   sealed   surfaces;   low   variations   in  terrain;   high   proportion   of   shrubs   and  grassland    

Table  2:  Characteristics  of  urban  fabric  sub-­‐types  

1.4.2 WP  3  -­‐  Characterisation  of  urban  fabric  types  and  identification  of  open  space  typologies  

The  aim  of  this  work  package  was  to  identify  the  characteristics  of  different  urban  fabric  types  in  terms  of  their  open  space  structures  and  microclimatic  conditions.    

(1)  A   selection  of   sample  quadrants  was  made  and   those   representing  each  of   the   selected  urban   fabric  types   were   identified   in   order   to   investigate   their   microclimatic   characteristics   as   a   function   of   their  morphology.  The  quadrants  were  selected  according  to  the  climate  sensitivity  open  space  patterns  and  as  being  characteristic  of  average  indicator  values  for  their  respective  urban  fabric  types.  The  final  selection  of  sample  quadrants  within  the  urban  fabric  types  1-­‐5  took  place  in  several  steps.    

(a)   Statistical   analysis   was   carried   out   to   obtain   a   significant   number   of   samples   which   were  representative  of  a  particular  urban  fabric  type.  The  number  of  samples  required  depended  on  the  number  of  and  spread  of  quadrants  within  an  urban  fabric  type  (Fig.  3).    

(b)   Representative   sample   quadrants  were   selected   for   each  urban   fabric   type   for   further   analysis  and   simulations.   The   main   focus   was   on   the   identification   of   typical   urban   open   space   patterns,  making   use   of   information   from   the   Grünraummonitoring   (‘green   space   monitoring’)   and   the  Flächenmehrzweckkarte  (‘multi-­‐purpose  digital  map’)  databases,  which  were  integrated  using  ArcGIS.  The  most   representative  quadrants  were   identified  by  making  use  of   the  spatial  data,   focussing  on  categories  covering  at  least  5%  of  the  total  quadrant  area.  

(c)  Comparison  of  aerial  photos  of  the  most  representative  quadrants  for  the  final  selection  to  assure  the  applicability  of  the  simulation  method  (e.g.  localisation  of  important  open  space  patterns  within  sample  quadrant  and  avoiding  falsification  of  simulation  results  due  to  boundary  effects).    

Page 11: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         9  

Fig.  3:  Random  sample  and  final  selection  of  quadrants  for  further  investigation  

The  quadrants  selected  were:  number  555  -­‐  representing  urban  fabric  type  1  as  an  example  for  a  typical  commercial   and   industrial   area;   number   723   -­‐   representing   sub-­‐type   2a,   characterised   by   late   19th  century  perimeter  block  development;  number  919   -­‐   representing   sub-­‐type  2b,   characterised  by   late  19th   century   perimeter   block   development   with   integrated   parks   near   the   southern   Gürtel   area;  number   983   -­‐   representing   sub-­‐type   3b,   characterised   by   residential   development   with   apartment  blocks  separated  by  green  open  spaces;  and  number  1264  -­‐  representing  sub-­‐type  3a,  characterised  by  detached  houses  and  agricultural  land  (Fig.  4).  

     

555  –  Cluster  1    723  –  Cluster  2b      919  –  Cluster  2c  

   

 

 1264  –  Cluster  3a    983  –  Cluster  3b    

Fig.  4:  Orthophotos  of  the  selected  sample  quadrants  

 

   

Page 12: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         10  

(2)   Typical   urban   open   space   patterns  were   identified   for   each   urban   fabric   type   as   represented   by   the  quadrant  selected,  with   the  help  of  an  analysis  of   rectified  aerial  photos,  which  were  compared  with   the  databases   referred   to   above.   This   led   to   a   classification   with   respect   to   potential   open   space   design  measures  (Table  3).    

Road  system   linear  street  area      

    widenings   Cross-­‐section  of  road  

     

specific  junctions  

potential  to  abandonate  road  sections  

Courtyard   fragmented  within  block   isolated  

        (partially)  connected  

    entire  block   enclosed  

        opened    

Green  area   fragmented  ("mosaic")      

    connected  (“flow“)      

    extensive  ("solitaire")      

Square   fragmented  ("mosaic")      

    connected  (“flow“)      

    extensive  ("solitaire")      

Other  open  areas   parking  areas      

    paved  areas  within  industrial  sites      

    rail  tracks      

    waste  land      

    agricultural  land      

Roof  area   potential  for  roof  planting      

Table  3:  Classification  of  identified  open  space  structures  within  quadrants  

The  open  space  structures   identified  were  digitized  for  all  the  sample  quadrants  using  ArcGIS,   in  order  to  facilitate  an  analysis  of  the  percentage  distribution  typical  of  each  urban  fabric  type  (Fig.  5).  The  keywords  relating  to  the  respective  characterisation  are  presented   in  Table  4  and  these   led  to  different   focuses   for  further  investigation.  

 

Page 13: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         11  

555   –   Urban  fabric  type  1  

     

723   –   Urban  fabric  type  2b  

   

 

919   –   Urban  fabric  type  2c  

   

 

983   –   Urban  fabric  type  3a  

   

 

Page 14: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         12  

1264   –   Urban  fabric  type  3b  

     

Fig.  5:  Open  space  structures  and  their  percentage  distribution  within  sample  quadrants  

(3)   The  microclimatic   conditions   of   the   status   quo   of   each   selected   quadrant   were   simulated   using   the  ENVI-­‐met  model,  and  the  results  were  compared  to  the  maps  of  the  open  space  structures  obtained  in  step  2  and  discussed  with  regard  to  the  typical  and  critical  climate  situations  (Fig.  6).  The  atmospheric  input  data  used  for  the  simulations  referred  to  current  climatic  extremes  using  a  day  exhibiting  heat  wave  conditions,  measured  in  the  inner  city  of  Vienna,  and  reaching  the  99-­‐percentile  of  the  daily  maximum  air  temperature.  Further  simulations  were  conducted  under  future  climate  conditions  projected  for  the  year  2050  based  on  the  results  of  the  regional  climate  model  COSMO-­‐CLM  (AIT;  reclip:century-­‐Simulation).  The  results  showed  that   the   current   climate   sensitivity   will   be   intensified   significantly,   emphasising   the   urgent   need   for  immediate  counter-­‐measures.  

 Fig.   6:   Comparison   of   open   space   structures   (left)   and   status-­‐quo   thermal   comfort   conditions   (PMV)   showing   the   example   of  sample  quadrant  919  (Urban  fabric  type  2b)  

Comparable  open  space  patterns  within   the  sample  quadrants  exhibited  different  climate  sensitivity  due,  for  example,  to  their  particular  proportions.  Open  spaces  with  sealed  surfaces  heat  up  strongly,  while  green  open   spaces  with   ground   cover   vegetation   and   trees   result   in   the   lowest   temperatures   and   the   highest  comfort  values.  However,  even  within  green  courtyards,  sealed  areas  form  hotspots,  which  result  in  clearly  identifiable   thermal  discomfort  zones  especially  during   the  afternoon.  Critical  areas  within   the  dense  city  structure   could   also   be   identified,   for   example,   in   areas   where   the   streets   widen   and   where   there   are  junctions.  Figure  6  shows  an  example  of  the  comparison  of  the  two  maps  for  sample  quadrant  919.  

 

   

Page 15: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         13  

1.4.3 WP  4  -­‐  Investigation  of  interactions  between  urban  open  space  design  and  microclimate  

The  fourth  work  package  comprised  a  review  of  the  microclimatic  conditions  in  the  context  of  open  space  adaption  strategies  aimed  at  influencing  the  local  climate  under  current  and  future  climate  conditions.    

In   addition,   a   field   study   investigating   certain   reference   locations   at   AIT’s   Seibersdorf   Campus   helped   to  explore   the  microclimatic   conditions   of   different   open   space   situations   such   as   open   grassland,  wooded  areas,   courtyards   (observing   sites   at   the   south   and   north   side)   a   non-­‐shaded   asphalt   area   and   a   shaded  gravel  area  in  the  undercroft  of  a  building.  Six  micro-­‐climate  monitoring  stations  were  installed  and  a  set  of  variables   was   recorded   and   stored   as   mean   value   every   15   minutes.   These   were   wind   speed,   wind  direction,  temperature  (at  the  ground  surface  and  in  2m  height),  relative  humidity,  radiation,  precipitation  (only  at  the  grassland  site)  and  soil  humidity  at  the  grassland  and  the  forest  sites.  The  measurements  were  carried  out  from  the  end  of  July  to  the  beginning  of  December  2011.  

This   long   monitoring   period   covered   different   seasons   and   weather   events   and   helped   to   improve   the  quality  of  the  modelling  exercise  for  different  seasonal  conditions.  Additionally,  it  allowed  the  identification  of  a  reference  date  which  was  representative  of  a  longer  stable  weather  period.  The  analysis  of  the  micro-­‐climatic  data  showed  an  extended  period  of  hot  sunny  weather  around  the  21st  of  August  2011,  which   is  where  the  research  was  focussed,  providing  the  basis  for  various  micro-­‐climatic  simulations.  A  comparison  of  the  empirical  results  with  the  simulations  was  undertaken  to  calibrate  the  ENVI-­‐met  model.  This  helped  to  improve  the  understanding  how  the  model  works  and  which  parameters  are  sensitive  to  changes.  It  also  provided  insights  into  the  conditions  in  different  urban  settings  and  their  influence  on  microclimate.    

As  a  first  step,  the  input  data  for  the  simulation  were  prepared.  The  raster  layer  of  the  Seibersdorf  Campus  test  site  (190x190  pixels,  2m  cell  size)  was  generated;  ground  surface,  buildings  (heights,  roofs,  materials)  and  plants   defined   and   local   soils   and  plants  were   added   to   the   ENVI-­‐met  parameter-­‐databases.   Initially  ENVI-­‐met   version   3.1  was   used.   This   could   only   allow   for   the   definition   of   temperature,   humidity,   cloud  cover,  wind  speed  and  direction  as   initial   framework  conditions.  During  each  simulation  the  temperature  and   humidity   gradient   was   calculated   within   the   model,   depending   on   the   irradiance   conditions   with  respect   to   the   diurnal   variation   of   the   season   and   on   the   day-­‐time   specific   solar   angle   according   to   the  geographic   location.   This   resulted   in   a   significant   deviation   between   simulation   and   measurements.  Subsequently,   a   newer   version,   ENVI-­‐met   (version   4.0)  was   used,  which   allows   a   “simple   forcing”   of   the  hourly   temperature   and   humidity   gradation.   As   a   first   simple   forcing   attempt,   the   monitored   hourly  temperature  values  (and  the  related  relative  humidity)  were  included.  However,  the  simulation  results  still  remained  4-­‐5°C  below  the  monitored  values  especially  between  the  hours  noon  and  the  early  afternoon.  The   results   matched   the   average   temperature   progression   during   August   quite   well,   but   still   showed   a  deviation  from  the  values  of  the  specific  day.  So  the  external  temperature  forcing  was  adapted,  achieving  a  peak   of   2-­‐4.5   °C   above   the   monitored   temperatures.   The   new   simulation   results   now   showed   a   curve  similar  to  the  measurements  (Fig.  7).  

Page 16: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         14  

 

Fig.   7:   Temperature   gradation   of   the   ENVI-­‐met   simulation   and   the   measured   temperature   on   21st   August   2011   at   the   AIT  Seibersdorf  campus.  

 

1.4.4 WP  5  -­‐  Application  of  findings  to  the  urban  fabric  and  open  space  typologies  

The  aim  of  this  work  package  was  the  definition  of  design  variants  aimed  at  the  amelioration  of  the  local  climate  conditions.  It  included  the  respective  simulations  using  ENVI-­‐met  and  the  evaluation  of  the  results  in  the  form  of  simulation  maps,  extracted  mean  values  and  diurnal  variations.  

(1)   Based   on   the   input   files   and   results   of   the   status   quo   simulations   (work   package   3)   different   design  variants  were  defined  and  modelled  using  ENVI-­‐met  to  investigate  the  respective  microclimatic  effects.  The  modelled  design  variants  were:    

(a)   different   forms   of   tree   planting   with   respect   to   appropriate   measures   for   the   identified   critical  climatic  aspects  within  each  open  space  type.  The   implementation  of   tree  planting  with  regard  to   the  type  (deciduous),  size  (crown  12m)  and  planting  distance  (canopy  closure)  was  based  on  the  results  of  a  previous  project  (FREIRAUM  UND  MIKROKLIMA  2011).    

(b)   the  de-­‐sealing  of   the   ground   surface  within   the   affected  open   space   types.   This   involves   a   simple  change  of  surface  material  as  well  as  potential  changes  of  use  e.g.  the  transformation  of  certain  traffic  lanes  to  public  space.    

(c)   implementation   of   extensive   roof   planting   based   on   the   data   of   the   Gründachpotentialkataster  (‘green  roof  potential  map’).    

The  design  measures  were  simulated  individually  and  in  appropriate  combinations,  allowing  conclusions  to  be  drawn   regarding   specific  open   space   situations   including  an   “optimal   variant”   for   the  entire  quadrant  area.   Depending   on   the   characteristics   of   each   sample   quadrant   the   focus   of   the   design  measures   was  placed  on  the  corresponding  aspects  (Table  4).  

   

Page 17: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         15  

Quadrant   Open  space  structure   Focus  of  design  variants   Variants  

555    

Urban   Fabric  Type  1  

characterised  by  extensive  paved  surfaces   and   parking   areas,   high  potential  for  roof  planting  

De-­‐sealing   of   ground   surfaces   in   extensive   paved  areas   as   far   as   reasonable,   unsealing   of   ground  surfaces   together  with   tree   planting   along   building  sites  and  on  parking  areas,  area-­‐wide  extensive  roof  planting  

4  

723    

Urban   Fabric  Type  2a  

characterised  by  orthogonal  road  system   (N,   W)   and   fragmented,  partially  connected  courtyards  

tree  planting  along  the  streets  with   focus  on  street  orientation  as  well  as  on  the  respective  street  sides  (facades)  

5  

919    

Urban   Fabric  Type  2b  

Characterised   by   orthogonal  road   system   with   widenings  (NW,   NE),   rail   tracks   and  adjacent  paved  operational  areas  as  well  as  all   types  of  courtyards  and  extensive  green  areas.  

tree   planting   along   the   streets   with   focus   on   the  south   façade   along   the   Gürtel-­‐road,   de-­‐sealing   of  ground  surfaces  within  areas  of  street  widening  and  possible   abandoning   of   street   section   along   the  Gürtel-­‐road,   de-­‐sealing   of   parking   and   paved  operational   areas   as   far   as   reasonable,   de-­‐sealing  and  tree  planting  within  larger  courtyards  

10  

983    

Urban   Fabric  Type  3a  

characterised   by   linear   street  areas   with   widenings   at   road  junctions,   open   courtyards,  linked   green   areas   and   parking  areas.  

tree   planting   along   the   streets   with   focus   on  junction  widenings,   de-­‐sealing   and   tree   planting   in  possible   closed   street   sections,   de-­‐sealing   and   tree  planting  within  parking  areas  

9  

1264    

Urban   Fabric  Type  3b  

characterised   by   linear   street  areas,   fragmented   green   areas  and  agricultural  land  

 

tree  planting  along  the  streets  with   focus  on  street  orientation  as  well  as  on  the  respective  street  sides  (facades),   de-­‐sealing   and   tree   planting   within  parking  areas  

6  

Table  4:  Open  space  structure  characteristics  and  focus  of  the  investigated  design  variants    

(2)  The  simulations  were  conducted  using  ENVI-­‐met  version  4.0,  simulating  36  hour  run  time  durations  for  selected   seasonal   characteristics   focussing   on   hot,   cloud-­‐free   summer   days   with   high   temperature  amplitude.  

The  resulting  data  was  analysed  through  simulation  maps  of  mean  values  and  diurnal  variations.  The  focus  was   placed   on   the   PMV   (predicted  mean   vote)   value,  which   integrates   the   effects   of  wind   speed,  mean  radiant  temperature,  potential  air  temperature  and  humidity.  Figure  8  gives  an  overview  of  the  simulation  maps  generated  for  the  different  variants  of  sample  quadrant  919  as  an  example  of  the  approach  taken  for  all  sample  quadrants.  

Page 18: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         16  

 

Fig.  8:  Overview  of  simulated  variants  for  the  sample  quadrant  919  and  respective  maps  of  mean  radiant  temperature,  potential  air  temperature,  wind  speed,  specific  humidity  and  PMV  (predicted  mean  vote)  

Generally,   tree  planting   shows   the  greatest  effect  on  all  microclimatic   factors  analysed,  especially  within  the  immediate  area  shaded  by  the  tree  crown.  The  PMV  value  is  reduced  from  “extreme  hot  conditions”  to  “slight  warm  conditions”.  A  clear  correlation  can  be  observed  with  specific  pattern  of   tree  distribution   in  relation   to   the   adjacent   open   space   structures   and   to   the  width   and   orientation   of   the   respective   open  spaces.   Figure   9   shows   the   differences   between   the   status   quo   and   the   design   variants   of   tree   planting  along  the  east-­‐west  (VB2)  versus  north-­‐south  orientated  streets  within  sample  quadrant  723.  The  maps  of  the   respective   PMV   values   and   the   differential  maps   show   the   greater   effectiveness   of   taking  measures  within  the  east-­‐west  orientated  streets,  which  lowers  the  PMV  by  3,5  degrees  across  a  wider  street  area.  Figure  10  shows  the  diurnal  variations  for  different  microclimatic  factors  of  the  status  quo  (purple)  versus  the   design   variant   of   street   planting   in   the   east-­‐west   orientated   streets   (blue).   The   diagrams   illustrate   a  significant   decrease   of   the  mean   radiant   temperature   and   a   similarly   significant   increase   of   the   specific  humidity  due  to  tree  planting.  Although  the  wind  speed  is  only  reduced  slightly,  the  air  temperature  can  be  lowered  by  up  to  1.5°C  during  the  hottest  period  of  the  day  and  by  3°C  at  night.  

Page 19: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         17  

 

Fig.  9:  Simulation  maps  for  the  PMV-­‐values  showing  the  status  quo  and  the  design  variants  for  tree  planting  in  the  east-­‐west  versus  the  north-­‐south  orientated  streets  for  quadrant  723  

 

Page 20: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         18  

Fig.   10:   Diurnal   variations   for   the   climatic   factors:  mean   radiant   temperature   (top.left),  windspeed   (top.right),   specific   humidity  (bottow.left)  and  air  temperature  (bottom.right)  for  the  status  quo  and  for  the  design  variant  of  tree  planting  along  the  east-­‐west  orientated  streets  fo  sample  quadrant  723  

Just  de-­‐sealing  the  ground  surface  generally  results  in  a  slight  reduction  of  the  PMV  value.  Figure  11  shows  the   maps   for   the   PMV   values   for   the   status   quo   and   the   design   variant   of   permeable   ground   surface  (especially  parking  areas)  for  quadrant  555,  illustrating  the  effect  referred  to  above.    

 

Fig.  11:  Simulation  maps  for  the  PMV-­‐values  showing  the  status  quo  and  the  design  variant  for  de-­‐sealing  of  ground  surfaces  for  quadrant  555  

The   following  simulation  maps   for   sample  quadrant  919  highlight   further  microclimatic  effects.  Figure  12  shows  the  PMV  values  for  the  status  quo  and  the  design  variant  of  de-­‐sealing  of  the  industrial  area  to  the  south-­‐west   showing   a   slight   reduction   at   3   p.m.   as   mentioned   above.   Yet   looking   at   the   respective  differential  maps  of  diurnal  variation  in  Figure  13  a  cooling  effect  of  air  temperature  within  the  residential  area  to  the  north-­‐west  can  be  observed  due  to  the  south-­‐easterly  wind  conditions.  

   

Page 21: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         19  

919        

Status  quo  vs.    

unsealing  of  areas  

PMV  value   Differential  map    

   

 

 

 

   

     

 

Fig.  12:  Simulation  maps  for  the  PMV-­‐values  showing  the  status  quo  and  the  design  variant  for  de-­‐sealing  of  ground  surfaces  for  quadrant  919  

     

     

Fig.   13:   Differential   maps   between   the   status   quo   and   the   design   variant   for   de-­‐sealing   of   ground   surfaces   for   quadrant   919  showing  the  PMV-­‐values  differences  at  9  a.m.,  3  p.m.,  6  p.m.,  9  p.m.  and  0  a.m.  

Page 22: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         20  

Roof   planting   generally   has   less   direct   effect   at   ground   level.   Looking   at   the   vertical   dispersion   of  microclimatic   data   values,   however,   the   amelioration   effect   is   highlighted.   Figure   14   shows   a   vertical  section  of  the  potential  air  temperature  for  the  design  variant  involving  roof  planting  for  quadrant  555.  The  map  illustrates  a  significant  cooling  effect  at  higher  air  levels  and  on  the  leeward  side  of  the  buildings.  

 

Fig.  14:  Vertical  section  of  simulation  map  showing  the  vertical  distribution  of  air  temperature  for  the  design  variant:  roof  planting  for  quadrant  555  

(3)   Finally   the   status   quo   situation   for   selected   quadrants   was   compared   to   their   respective   “optimal  variants”   in  order  to  demonstrate  the  effects  of  the  simulated  design  measures  within  the  different  open  space  structures.  To  show  the  effects  of  individual  measures  on  the  entire  quadrant  area  and  the  changes  during  the  course  of  the  day,  average  mean  values  were  calculated  for  9  times  of  day.  The  main  focus  has  been  put  on  dense  urban  areas,  as   represented  by  quadrants  723,  919  and  983,  where   large  numbers  of  citizens   are   likely   to   be   affected.   This   final   analysis   provided   an   important   basis   for   the   “packages   of  measures”  proposed  for  the  sample  quadrants  in  their  capacity  as  representatives  of  the  individual  urban  fabric  types  in  Workpackage  6.    

The  detailed  simulation  results  and  the  final  analysis  can  be  found  in  the  full-­‐length  report  published  on  the  project  website  (www.urbanfabric.tuwien.ac.at).    

1.4.5 WP  6  -­‐  Recommendations  of  planning  and  design  measures  

The  results  of  the  simulations  have  been  evaluated  with  respect  to  the  overall  open  space  patterns,  leading  both   to   general   recommendations   and   to   specific   packages   of  measures   for   each   sample   quadrant   and  corresponding  urban  fabric  type.  

(1)  The  catalogue  of  general  recommendations  (Maßnahmenkatalog)  has  been  drawn  up  according  to  the  type   of   design   measures   concerned:   tree   planting,   de-­‐sealing   of   ground   surfaces   and   roof   planting.  Additional   information   and   recommendations   are   based   on   a   literature   review   and   on   the   results   of   a  previous  project,  dealing  with  aspects  of  tree  size,  type,  distribution,  planting  distance  and  different  forms  of  de-­‐sealing  ground  surfaces  (FREIRAUM  UND  MIKROKLIMA  2011    

Page 23: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         21  

 (2)  Specific  packages  of  measures  (Maßnahmenpakete)  have  been  defined  according  to  the  characteristic  open   space   structures   within   the   respective   sample   quadrants   and   ranked   on   the   basis   of   their  effectiveness,  thereby  defining  a  hierarchy  of  priorities.  

For   each  urban   fabric   type   a   short   description  of   the   characteristic   topography,   the  urban   structure   and  climatic  conditions  is  presented.  The  sample  quadrants  are  discussed  on  the  basis  of  the  percentage  area  of  existing  open  space  patterns,  which  define  their  representative  status  for  the  urban  fabric  type.  Based  on  the  general  recommendations  in  the  catalogue,  packages  of  measures  have  been  defined  and  ranked  in  the  form  of  priorities  which  take  into  account  the  climatic  effect  of  the  recommended  measures  (locally  as  well  as   on   the   nearby   surroundings),   the   potential   areas   involved,   the   extent   of   implementation   and   the  potential  density  of  users.  In  a  second  ranking  (see  Priority*)  the  percentage  occurence  of  the  open  space  structures   in   question   has   additionally   been   taken   into   account.   This   differentiation   allows   for   the  consideration  of   different   aspects  with   respect   to   local   or   area-­‐wide   implementation,   for   example,   or   to  time   and   effort   required.   Figure   15   shows   an   example   of   the   percentage   distribution   of   open   space  structures  within  quadrant  555  representing  urban  fabric  type  1  (Industrial  and  commercial  zones)  leading  to  the  package  of  recommendation  in  Table  5.  

   

Fig.  15:  Percentage  distribution  of  open  space  patterns  within  sample  quadrant  555  

 

 

Table  5:  Package  of  measures  for  sample  quadrant  555  representing  urban  fabric  type  1  and  ranked  in  order  of  priority.    

The  complete  catalogue  of   recommendations  and   the  specific  packages  of  measures  can  be   found   in   the  full-­‐length  report  published  on  the  project  website  (www.urbanfabric.tuwien.ac.at).    

 

Page 24: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         22  

1.4.6 WP  7  -­‐  Dissemination  and  public  discussion  

An  important  aim  of  the  project  was  the  public  dissemination  of  the  results  in  order  to  raise  the  awareness  of  climate  and  open  space  issues  in  urban  planning.  As  a  result,  poster  exhibitions  presenting  information  about  urban  microclimate   in   general   as  well   as   specific   information   about   the  project  were  organised   in  June  and  August  2013  as  a  basis  for  public  discussion  evenings.  The  16th,  21st  and  23rd  districts  of  the  City  were   chosen   for   dissemination   events   as   these   were   the   locations   of   three   of   the   sample   quadrants  studied.   The  exhibitions  were  organized   in   cooperation  with  each  of   the   local  Gebietsbetreuung   (‘district  urban   renewal   offices’).   A   concluding   presentation   with   a   final   discussion   was   organized   at   the  Gebietsbetreuung   in   the  16th  district,  and  this  also  offered  the  opportunity  to  present  the  first  simulation  results.   The   audience   included   the   project   partners,   members   of   the   expert   team,   and   colleagues   from  related  projects  as  well  as  interested  citizens,  who  responded  to  the  invitation  of  the  Gebietsbetreuung.    

1.5 Conclusions  

General  Conclusions  

• Climate  change  projections  consistently  point   towards  an   increasing  occurrence  and   intensity  of  heat  

waves,  which  are  expected  to  become  a  considerable  public  health  problem,  especially  in  cities,  due  to  

urban  heat  island  effects.    

• When   dealing   with   urban   heat   island   effects   the   influence   of   the   built   environment   and   the   open  

spaces   between   must   be   considered.   The   typology   of   the   different   urban   fabric   types   represented  

through  the  sample  quadrants  illustrates  the  close  interaction  between  open  space  structure  and  local  

climate  conditions.    

• Urban  green  is  very  important  to  decrease  the  local  temperature  regime,  to  avoid  higher  irradiance  and  

support  nocturnal  cooling  by  energy  flux  to  the  free  atmosphere  improving  outdoor  and  indoor  thermal  

comfort.   The  microclimate   simulations,   virtually   testing   different   adaptation  measures,   show   a   clear  

correlation  between  cooling  effects  and  the  distribution  of  trees  and  further  the  width  and  orientation  

of  open  spaces.  Tree  planting  was  observed  to  have  the  greatest  effect  on  all  microclimatic  factors  as  it  

helps  to  enlarge  the  shaded  area  and  to  reduce  the  extent  of  areas  exposed  to  high  radiant  and  surface  

temperature,  further  increasing  cooling  through  transpiration.    

 

Typology  of  urban  fabric  types  and  open  space  patterns  of  Vienna  

The   typology   considers   a   large   number   of   indicators   including   aspects   of   climate   as  well   as   topography,  built  up  area  and  open  space.  

• The   urban   space   typology   shows   close   agreement   with   similar   urban   typologies   addressing   other  

criteria,  as  well  as  reflecting  the  relationships  between  urban  structure  and  urban  climate  pattern.  The  

characterization  of  different  urban  space  types,  on  the  basis  of  the  sample  quadrants  investigated  also  

illustrates  the  close  interrelationship  between  open  space  structure  and  the  local  climate  conditions.    

• One  important  finding  was  that  the  microclimate  conditions  showed  a  high  level  of  variation  between  

the  different  urban   fabric   types  but  also  within   individual  quadrants  across   relatively  small  distances.  

The  explanation  lays  in  the  layout  and  volume  of  the  built  structures  as  well  as  the  percentage  of  paved  

Page 25: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         23  

surfaces  with  respect  to  heat  storage,  to  the  shading  conditions  and  general  air  ventilation  as  well  as  

open  space  characteristics.  

• The  simulation  showed   that   the   right   location  of  planting  measures  can  be  more   important   than   the  

overall  extent  of  planting.  In  some  cases  a  single  line  of  trees  between  street  and  settlement  area  has  

more  cooling  effects  on   the  microclimate  of   the   settlement  behind   the   treeline   than   several   rows  of  

trees  in  the  narrow  streets  within  the  settlement  area.    

• Comment:  Additional   support   is  provided  when   the  open  space   is   to   some  extent   irrigated  providing  

moisture   which   accelerates   evaporation   from   the   soil   and   transpiration   from   vegetation   and   thus  

cooling.    

 

Measures  

The  implementation  of  the  proposed  amelioration  measures  in  open  spaces  helps  to  improve  local  thermal  conditions.   The   analysis   of   the   microclimate   simulations   show   the   effect   of   various   measures   (planting  trees,  unsealing  of  paved  surfaces,  roof  greening).  

• Tree  planting  

Planting   trees   helps   -­‐   in   addition   to   the   increase   of   evaporative   cooling   through   transpiration   -­‐   by  enlarging   the   shaded   area   and   thus   reducing   the   extent   of   areas   exposed   to   irradiance   and   radiant  temperature.  

Taking  into  account  the  average  effects  over  the  course  of  the  day,  tree  planting  causes  a  significant  reduction   of   mean   radiant   but   also   air   temperature.   The   minimum,   maximum   and   mean   air  temperature  are  all  reduced.  

The  minimum  air  temperature  occurs  earlier  than  without  tree  plantations.  

Comment:   locally,   e.g.   in   courtyards,   a   negative   effect  may  occur   especially   in   the  morning  hours   so  that   the   temperature   is   a   little   higher   with   additional   trees   than   without.   This   can   be   explained   by  reduced  wind  and  air  exchange  due  to  smaller  sky  view  characteristics.    

• De-­‐sealing  

De-­‐sealing  of  paved  surface  generally  reduces  the  surface  temperature  and  increases  the  area  able  to  provide  evaporation  as  long  as  the  soil  contains  a  certain  water  concentration.    

De-­‐sealing   of   large   surfaces   can   cool   down   the   air   temperature   within   neighbouring   dense   city  quarters  in  the  direction  of  the  wind.  

Comment:   de-­‐sealing   has   a   further   effect   providing   extended   porous   surfaces   serving   as   drainage  facility   that   can   act   to   reduce   flooding,  which   is   expected   to   increase   because   of   climate   change.   In  addition  it  can  contribute  to  recharging  groundwater.  .    

• Roof  planting  

Roof  planting  generally  has  effect  within   the  roof  area   itself  and  on  the  equivalent   levels  of  adjacent  buildings.  

Roof  planting  has   a   cooling  effect   even  on  ground   level   in   the  direction  of  wind,  particularly  when  implemented  on  lower  buildings.  

Page 26: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         24  

Comment:  roof  planting  (as  well  as  planting  on  facades)  also  contributes  to  enlargement  of  shading  and  building  insulation  enhancing  indoor  cooling  during  summer  days  

 

Recommendations  

In  quadrants  with  similar  open  space  characteristics,  differences  could  be  identified  due  to  local  variations  in  the  urban  fabric  (orientation,  ratio  height  /  width,  adjacent  land  or  buildings,  etc),  leading  to  the  need  for  different  priorities  with  regard  to  design  measures.  

• The  results  can  serve  as  a  planning  guideline  and  to  provide  decision  support   for  urban  design  and  

should   create   greater   awareness   for   the   need   for   climate   sensitive   open   space   design   given  

appropriate  presentation  of  measures  and  impacts.  

1.6 Discussion  and  outlook  

Project  highlights  

• The  urban  space  typology  shows  close  agreement  with  similar  city  typologies  addressing  other  criteria,  

as  well  as  reflecting  the  relationships  between  urban  structure  and  urban  climate  pattern.  

• The   simulation   results   support   the   theoretical   knowledge   in   the   urban   climate   debate   facilitating   a  

better  understanding  and  stronger  arguments  for  the  proposed  measures.  

• The  expert  meetings  proved  to  be  very  constructive  and  the  participants  were  very  supportive  of  the  

project.   They   resulted   in   a   high   level   of   interdisciplinary   and   transdisciplinary   discussion.   The  

contributions  of  the  experts  were  particularly  valuable  in  refining  the  project  approach,  and  both  sides  

were  able  to  profit  from  the  intense  discussions.    

• The  findings  of  the  research  project  are  not  only  sound  from  a  scientific  point  of  view,  but  also  of  high  

relevance  for  practitioners.  Representatives  from  the  City  of  Vienna  also  showed  great  interest  in  this  

project.   There   has   been   a   close   exchange  with   the  MA22   for   Environmental   Protection   opening   the  

potential  for  future  cooperation.  

 

Target  groups  able  to  benefit  from  the  results  of  the  project  

• City  authorities  responsible  for  open  space  maintenance  may  benefit   from  the  results  as  help  guiding  

the  practitioners  in  implementing  the  suggested  measures  real  time.  

• Researchers   in   the   field  of  urban  climate  and  open   space  design  can  profit   from   the   results   for   their  

own  research.  

• The  project  results  constitute  a  basis  for  urban  design  processes,  strengthening  the  awareness  of  urban  

climate  issues  and  providing  practicable  measurement  proposals  for  urban  planners.  

• Last  but  not  least  the  exhibition  posters  and  public  discussions  serve  the  awareness  raising  with  regard  

to  urban  climate  issues  and  to  possible  mitigation  measures  which  can  be  implemented  by  local  people.  

Page 27: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         25  

Difficulties  during  the  project  period  encountered  in  the  achievement  of  the  project  targets  

• The  choice  of  the  indicators  required  a  very  intensive  review  of  the  literature  which  led  to  a  small  delay  

in  the  beginning  of  the  study.  

• Not  all   important   indicators  could  be  extracted  from  the  available  data  sources  (e.g.  sky  view  factor),  

because  this  would  have  required  additional  programming  efforts,  which  were  outside  the  scope  of  this  

project.    

• Initial  problems  with  the  climate  simulations  due  to  the  usage  of  the  latest  undocumented  Beta-­‐version  

of  the  simulation  programme  ENVI-­‐met,  which  was  more  suited  for  this  project  and  thus  recommended  

by  the  developer  during  the  1st  expert  meeting,  which  led  to  a  delay  in  WP  3  of  about  3  months.  

• Despite   the   dissemination   efforts   in   form   of   the   exhibitions,   there   was   not   enough   opportunity   to  

discuss   the   different   measures   proposed   in   the   project   with   all   stakeholders.   It   would   have   been  

especially   interesting   to   consider   the   final   recommendations   with   a   broader   group   of   stakeholders  

including  the  proprietors  of  the  open  spaces.  

 

General  outlook    

• The  results  obtained  suggest  that  the  approach  used  based  on  generating  an  urban  fabric  typology  as  

the   basis   for   a   differentiated   assessment   of   the   local   impacts   of   climate   change   is   one  which   could  

usefully  be  refined  and  extended  to  other  cities.    This  could  involve  expanding  the  types  of  open  space  

characteristics  considered  and  range  of  climate  conditions  at  the  city  scale  as  a  means  of  supporting  the  

urban  population  in  adapting  to  climate  change  and  higher  temperatures.  

• It  is  possible  that  the  results  may  encourage  local  activities  to  implement  selected  measures  in  sample  

areas.  Monitoring  of  the  results  of  this  work  and  comparing  these  to  those  from  the  ex  ante  assessment  

carried  out  in  this  study  would  provide  important  information.  

• Potential  adaptation  measures  countering  heat  stress  ought  not  only  to  focus  on  the  treatment  of  open  

spaces,  but  also  on  their  interaction  with  the  building  design  considering,  for  example,  building  facades  

and  the  implementation  of  evaporative  cooling  instead  of  standard  air  conditioning.  

• The  effects  of  the  proposed  measures  have  only  been  investigated  for  a  small  portion  of  the  city.  How  

they  would  affect  the  city  area  as  a  whole,  for  example  in  terms  of  large  scale  ventilation  or  sultriness,  

needs  to  be  studied.  This  could  be  answered  using  the  model  MUKLIMO3  

• The   design   measures   have   only   been   simulated   for   one   set   of   specific   extreme   conditions   during  

summer   (hot/dry/windstill).   How   the   recommended   measures   could   affect   the   microclimate   during  

other  weather  conditions  and  seasons  needs  to  be  investigated  in  further  detail.  

• Within   the   framework   of   the   project,   the   focus   has   been   on   current   climate   conditions   against   the  

background   of   their   intensification   as   a   result   of   climate   change.   How   the   recommended  measures  

perform   in   the   face  of  changing  climate,   for  example  with   respect   to   increased  drought  and   reduced  

winter  length  is  a  question  for  which  answers  need  to  be  found.    

Page 28: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

Urban  fabric  types  and  microclimate  response  –  assessment  and  design  improvement  

Summary  Report         26  

• The  results  are  based  on  the  assumption  that  the  measures  will  be   implemented,  something  which   is  

dependent   on   various   factors,   such   as   legal   or   political   restrictions,   technical   problems,   financial  

difficulties,   conflicts   of   use,   lack   of   knowledge   and   acceptance   of   the   resident   population,   etc.   To  

improve   the   chances  of   the  proposed  measures  being   carries  out,   the   current  governance   structures  

and  adaptation  policies  need  to  be  investigated  and  opportunities  for  interventions  in  policy  identified.  

(This  could  partly  be  answered  during  the  current  UHI-­‐project)  

 

Further  steps  that  will  be  taken  by  the  project  team    

• A  further  cooperation  with  the  Vienna  environment  protection  department  MA  22  will  be  appreciated  

to  start  implementation,  allowing  real  world  tests.    

• Further  work  to  test  and  refine  the  approach  to  the  definition  of  the  urban  fabric  typology  and  to  make  

it  applicable  to  both  a  wider  range  of  subject  areas  (in  addition  to  climate  change)  as  well  as  in  a  wider  

geographic  context  (other  cities)  needs  to  be  pursued.    

• A   follow   up   project   will   conduct   city-­‐wide   urban   climate   simulations   to   roughly   identify   not   typical  

sample   quadrants   but   hot   spot   zones   where   residents   display   a   greater   vulnerability   to   heat   stress.  

Further   simulations  will   be   conducted   to   obtain   a   detailed   view   of   heat   stress   for   different  weather  

conditions   in   those   neighbourhoods   and   living   labs   will   be   established,   inviting   local   residents,  

stakeholders,  experts  and  city  representatives  to  share  experience  of  local  heat  stress,  compared  with  

simulation  results.  

 

 

Page 29: Urban Fabric Types and Microclimate Response Assessment ...urbanfabric.tuwien.ac.at/documents/_SummaryReport.pdf · Urban Fabric Types and Microclimate Response ‐ Assessment and

 

Urban fabric types and microclimate response – 

assessment and design improvement. 

Final Report 

 

Website: www.urbanfabric.tuwien.ac.at 

 

 

 

 

 

 

           

TU Wien 

Institut für Städtebau, Landschaftsarchitektur und Entwerfen 

Fachbereich für Landschaftsplanung und Gartenkunst 

Operngasse 11, A – 1040 Wien 

www.landscape.tuwien.ac.at 

Prof. DI Richard Stiles, Dr. Katrin Hagen, DI Heidelinde Trimmel, DI Beatrix Gasienica‐Wawrytko  

Prof. Dr. Wolfgang Feilmayr (Fachbereich Stadt‐ und Regionalforschung) 

 

AIT Austrian Institute of Technology GmbH 

Energy Department 

Giefinggasse 6, A – 1210 Wien 

www.ait.ac.at 

Dr. Wolfgang Loibl, Dr. Tanja Tötzer, Mag. Mario Köstl 

 

TU München 

Lehrstuhl für Strategie und Management der Landschaftsplanung 

Hans‐Carl‐von‐Carlowitz‐Platz 2, D – 85354 Freising 

www.landschaftsentwicklung.wzw.tum.de 

Prof. Dr. Stephan Pauleit, DI Annike Schirmann