Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating...

21
1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation of a Cu(II) Complex with N 2 O 2 Donor Unsymmetrical Ligand Souvik Maity, Soumavo Ghosh,* ,† and Ashutosh Ghosh* ,† Department of Chemistry, University College of Science, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India, Email: [email protected] (A.G.), [email protected] (S.G.) Fig. S1. Benesi−Hilderbrand plot for [CuL] + K + (upper panel left side), [CuL] + Na + (upper panel right side), [CuL] + Mg 2+ (lower panel left side) and [CuL] + Ca 2+ (lower panel right side) complex formation. Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019

Transcript of Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating...

Page 1: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

1

Supporting Information

Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation of a Cu(II) Complex with N2O2 Donor Unsymmetrical Ligand

Souvik Maitydagger Soumavo Ghoshdagger and Ashutosh Ghoshdagger

daggerDepartment of Chemistry University College of Science University of Calcutta 92 A P C

Road Kolkata 700009 India Email ghosh_59yahoocom (AG) sanjuchem08gmailcom

(SG)

Fig S1 BenesiminusHilderbrand plot for [CuL] + K+ (upper panel left side) [CuL] + Na+ (upper

panel right side) [CuL] + Mg2+ (lower panel left side) and [CuL] + Ca2+ (lower panel right side)

complex formation

Electronic Supplementary Material (ESI) for Dalton TransactionsThis journal is copy The Royal Society of Chemistry 2019

2

Fig S2 BenesiminusHilderbrand plot for [CuL] + Li+ (upper panel) [CuL] + Zn2+ (lower panel left

side) and [CuL] + Cd2+ (lower panel right side) complex formation

3

Fig S3 Representative ESI mass spectrum of [CuL]ndashLi+ mixture in acetonitrile

Fig S4 Representative ESI mass spectrum of [CuL]ndashZn2+ mixture in acetonitrile

4

Fig S5 Representative ESI mass spectrum of [CuL]ndashCd2+ mixture in acetonitrile

Fig S6 Representative ESI mass spectrum of [CuL]ndashPr3+ mixture in acetonitrile

5

Fig S7 Representative ESI mass spectrum of [CuL]ndashNd3+ mixture in acetonitrile

Fig S8 Representative ESI mass spectrum of [CuL]ndashSm3+ mixture in acetonitrile

6

Fig S9 Dependence of LMCT energy bands on pKa of M(aqua)n+ ion as a measure of its Lewis acidity in presence of 100 equivalent of MprimeXn salts

Fig S10 Potential scan of unbound [CuL] and [CuL]+K+ upto first oxidation step

7

Fig S11 Left Multicycle CV of [CuL] Right CV of [CuL] at different concentration at 300 mVS scan rate in acetonitrile

Fig S12 Differential pulse voltametric (DPV) analysis of unbound [CuL] and [CuL]+K+

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 2: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

2

Fig S2 BenesiminusHilderbrand plot for [CuL] + Li+ (upper panel) [CuL] + Zn2+ (lower panel left

side) and [CuL] + Cd2+ (lower panel right side) complex formation

3

Fig S3 Representative ESI mass spectrum of [CuL]ndashLi+ mixture in acetonitrile

Fig S4 Representative ESI mass spectrum of [CuL]ndashZn2+ mixture in acetonitrile

4

Fig S5 Representative ESI mass spectrum of [CuL]ndashCd2+ mixture in acetonitrile

Fig S6 Representative ESI mass spectrum of [CuL]ndashPr3+ mixture in acetonitrile

5

Fig S7 Representative ESI mass spectrum of [CuL]ndashNd3+ mixture in acetonitrile

Fig S8 Representative ESI mass spectrum of [CuL]ndashSm3+ mixture in acetonitrile

6

Fig S9 Dependence of LMCT energy bands on pKa of M(aqua)n+ ion as a measure of its Lewis acidity in presence of 100 equivalent of MprimeXn salts

Fig S10 Potential scan of unbound [CuL] and [CuL]+K+ upto first oxidation step

7

Fig S11 Left Multicycle CV of [CuL] Right CV of [CuL] at different concentration at 300 mVS scan rate in acetonitrile

Fig S12 Differential pulse voltametric (DPV) analysis of unbound [CuL] and [CuL]+K+

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 3: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

3

Fig S3 Representative ESI mass spectrum of [CuL]ndashLi+ mixture in acetonitrile

Fig S4 Representative ESI mass spectrum of [CuL]ndashZn2+ mixture in acetonitrile

4

Fig S5 Representative ESI mass spectrum of [CuL]ndashCd2+ mixture in acetonitrile

Fig S6 Representative ESI mass spectrum of [CuL]ndashPr3+ mixture in acetonitrile

5

Fig S7 Representative ESI mass spectrum of [CuL]ndashNd3+ mixture in acetonitrile

Fig S8 Representative ESI mass spectrum of [CuL]ndashSm3+ mixture in acetonitrile

6

Fig S9 Dependence of LMCT energy bands on pKa of M(aqua)n+ ion as a measure of its Lewis acidity in presence of 100 equivalent of MprimeXn salts

Fig S10 Potential scan of unbound [CuL] and [CuL]+K+ upto first oxidation step

7

Fig S11 Left Multicycle CV of [CuL] Right CV of [CuL] at different concentration at 300 mVS scan rate in acetonitrile

Fig S12 Differential pulse voltametric (DPV) analysis of unbound [CuL] and [CuL]+K+

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 4: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

4

Fig S5 Representative ESI mass spectrum of [CuL]ndashCd2+ mixture in acetonitrile

Fig S6 Representative ESI mass spectrum of [CuL]ndashPr3+ mixture in acetonitrile

5

Fig S7 Representative ESI mass spectrum of [CuL]ndashNd3+ mixture in acetonitrile

Fig S8 Representative ESI mass spectrum of [CuL]ndashSm3+ mixture in acetonitrile

6

Fig S9 Dependence of LMCT energy bands on pKa of M(aqua)n+ ion as a measure of its Lewis acidity in presence of 100 equivalent of MprimeXn salts

Fig S10 Potential scan of unbound [CuL] and [CuL]+K+ upto first oxidation step

7

Fig S11 Left Multicycle CV of [CuL] Right CV of [CuL] at different concentration at 300 mVS scan rate in acetonitrile

Fig S12 Differential pulse voltametric (DPV) analysis of unbound [CuL] and [CuL]+K+

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 5: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

5

Fig S7 Representative ESI mass spectrum of [CuL]ndashNd3+ mixture in acetonitrile

Fig S8 Representative ESI mass spectrum of [CuL]ndashSm3+ mixture in acetonitrile

6

Fig S9 Dependence of LMCT energy bands on pKa of M(aqua)n+ ion as a measure of its Lewis acidity in presence of 100 equivalent of MprimeXn salts

Fig S10 Potential scan of unbound [CuL] and [CuL]+K+ upto first oxidation step

7

Fig S11 Left Multicycle CV of [CuL] Right CV of [CuL] at different concentration at 300 mVS scan rate in acetonitrile

Fig S12 Differential pulse voltametric (DPV) analysis of unbound [CuL] and [CuL]+K+

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 6: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

6

Fig S9 Dependence of LMCT energy bands on pKa of M(aqua)n+ ion as a measure of its Lewis acidity in presence of 100 equivalent of MprimeXn salts

Fig S10 Potential scan of unbound [CuL] and [CuL]+K+ upto first oxidation step

7

Fig S11 Left Multicycle CV of [CuL] Right CV of [CuL] at different concentration at 300 mVS scan rate in acetonitrile

Fig S12 Differential pulse voltametric (DPV) analysis of unbound [CuL] and [CuL]+K+

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 7: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

7

Fig S11 Left Multicycle CV of [CuL] Right CV of [CuL] at different concentration at 300 mVS scan rate in acetonitrile

Fig S12 Differential pulse voltametric (DPV) analysis of unbound [CuL] and [CuL]+K+

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 8: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

8

Fig S13 Cyclic voltammograms of electrochemical reduction of unbound [CuL] (upper panel

left side) and [CuL] + 10 equiv of KPF6 (upper panel right side) in acetonitrile at multiple scan

rate (mVS-1) and Differential pulse voltametric (DPV) analysis of unbound [CuL] and

[CuL]+K+(lower panel) at a scan rate of 20 mVS-1

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 9: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

9

Fig S14 Left Panel Cyclic voltammograms of Cu(III) couple in presence of 10 equiv of

specified redox-inactive metal ions in acetonitrile at a scan rate of 300 mVs-1 Right panel DPV

analysis of the corresponding mixtures at a scan rate of 20 mVs-1

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 10: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

10

Fig S15 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 1 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 11: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

11

Fig S16 Top UV-VIS spectra Middle CV (300 mVs-1 scan rate) and Bottom DPV (20 mVs-1 scan rate) of complex 2 at different potential range in presence of 100 equiv of TBAHFP in acetonitrile

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 12: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

12

Fig S17 Dependence of half-wave potentials (E12) of electrochemical reduction of the

heterometallic complexes ([(CuL)M]n+) vs pKa of M(aqua)n+ ions as measure of their Lewis

acidity

Fig S18 Electrochemical response of [CuL] in acetonitrile upon incremental addition of aquous

acetonirile (left) and the corresponding change in molar extinction coefficient of LMCT band

(right)

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 13: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

13

Fig S19 Electrochemical response of [CuL] + 10 eqv Zn2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

Fig S20 Electrochemical response of [CuL] + 10 eqv Mg2+ in acetonitrile upon incremental

addition of aquous acetonirile (left) and the corresponding change in molar extinction coefficient

of LMCT band (right)

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 14: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

14

Fig S21 Correlation of shift of oxidation peak potential with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

Fig S22 Correlation of change of molar absorptivity with equivalent of water added for

[CuL]+Mn+( Mn+ = Pr3+ Zn2+ Mg2+) (Solid line is guide for eye)

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 15: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

15

Fig S23 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL] in acetonitrile upon incremental addition of aquous acetonirile

Fig S24 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Zn2+ in acetonitrile upon incremental addition of aquous

acetonirile

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 16: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

16

Fig S25 Correlation of the shift of oxidation peak potential with the change of molar extinction

coefficient of [CuL]+10 eqv Mg2+ in acetonitrile upon incremental addition of aquous

acetonirile

Table S1 List of bond lengths (Aring) and bond angles (ordm) of complexes 1 and 2

M = K M = Zn

M(1)O(1) 2020(6) 2000(4)

M(1)O(2) 2179(5) 2279(5)

M(1)O(3) 2012(5) 1986(4)

M(1)O(4) 2184(6)) 2345(5)

M(1)O(5) 2058(6) 2062(5)

M(1)O(6) 2037(5) 2031(5)

Cu(1)O(1) 1920(5) 1909(5)

Cu(1)O(2) 1944(4) 1917(4)

Cu(1)N(1) 2004(6) 1982(6)

Cu(1)N(2) 1937(7) 1913(6)

Cu(2)O(3) 1909(5) 1922(5)

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 17: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

17

Cu(2)O(4) 1937(5) 1896(4)

Cu(2)N(3) 1966(5) 1963(5)

Cu(2)N(4) 1933(7) 1927(5)

O(1)M(1)O(2) 7448(18) 7182(17)

O(1)M(1)O(3) 1567(2) 14831(19)

O(1)M(1)O(4) 891(2) 8456(17)

O(1)M(1)O(5) 1020(2) 1061(2)

O(1)M(1)O(6) 942(2) 954(2)

O(2)M(1)O(3) 8738(19) 8400(18)

O(2)M(1)O(4) 813(2) 7719(17)

O(2)M(1)O(5) 929(2) 9441(18)

O(2)M(1)O(6) 1684(2) 16616(18)

O(3)M(1)O(4) 734(2) 7002(16)

O(3)M(1)O(5) 933(2) 9563(19)

O(3)M(1)O(6) 1028(2) 1058(2)

O(4)M(1)O(5) 1657(2) 16385(18)

O(4)M(1)O(6) 963(2) 9675(18)

O(5)M(1)O(6) 919(2) 943(2)

O(1)Cu(1)O(2) 824(2) 8238(18)

O(1)Cu(1)N(1) 905(2) 902(2)

O(1)Cu(1)N(2) 1693(3) 1690(2)

O(2)Cu(1)N(1) 1633(2) 1656(2)

O(2)Cu(1)N(2) 918(3) 920(2)

N(1)Cu(1)N(2) 974(3) 973(2)

O(2)Cu(2)O(3) 7047(16) 6993(16)

O(2)Cu(2)O(4) 684(2) 7092(17)

O(2)Cu(2)N(3) 982(2) 9683(17)

O(2)Cu(2)N(4) 1134(2) 11492(18)

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 18: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

18

O(3)Cu(2)O(4) 815(2) 8190(18)

O(3)Cu(2)N(3) 903(2) 901(2)

O(3)Cu(2)N(4) 1712(2) 1717(2)

O(4)Cu(2)N(3) 1660(3) 1671(2)

O(4)Cu(2)N(4) 925(3) 932(2)

N(3)Cu(2)N(4) 968(3) 959(2)

Table S2 Correlation of electrochemical response of previously reported 11 metallohost redox-inactive ion adducts derived from bicompartmental macrocyclic ligands containing adjacent N2O2 and 18-crown-6 like cavity with pKa of corresponding metal-aqua complex

[MnL](PF6)+MXn in acetonitrile MXn =

pKa E12 for Mn(IIIII) (V vs SCE)

KPF6 1625 0025LiClO4 1382 0055Ba(OTf)2 1336 0200Ca(OTf)2 1260 0245

Li+(expected)

[Li+(experimental) - Li+(expected)]

0176

0055 - 0176 =-0121

Data plotted from reference [16] of the main text

[NiL]+MXn in acetonitrileMXn =

pKa EPC for Ni(III)(V vs ferrocene)

NaPF6 1477 -165Ca(OTf)2 1260 -142Nd(OTf)3 843a -118Y(OTf)3 804a -122

Y3+(expected)

[Y3+(experimental) - Y3+(expected)]

-113

-122-(-113) =-009

aobtained from ref Data plotted from reference [17] of the main text

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 19: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

19

[56] of main text[CoL] + MXn in DMF MXn =

pKa E12 for Co(III)(V vs ferrocene)

K(OTf) 1625 -158Na(OTf) 1477 -158Ba(OTf)2 1336 -148Sr(OTf)2 1318 -144Ca(OTf)2 1260 -141

Na+(expected)

[Na+(experimental) - Na+(expected)]

-1515

-158 - (-1515)=-0065

Data plotted from reference [18] of the main text

[CuL]+Mn+ in DMSO Mn+=

pKa E12 for Cu(III)(V vs AgAgCl)

K+ 1625 -1277Na+ 1477 -1279Li+ 1382 -1286Ba2+ 1336 -1119Na+(expected)

[Na+(experimental) - Na+(expected)]

Li+(expected)

[Li+(experimental) - Li+(expected)]

-1185-1279-(-1185)=-0094

-1134-1286-(-1134)=-0152

Data plotted from reference [19] of the main text Line is guide for eye

[Mn(N)L] + MXn in acetonitrile MXn =

pKa E12 for Mn(VVI) (V vs ferrocene)

K(OTf) 1625 0616Na(OTf) 1477 0591Ba(OTf)2 1336 0805Sr(OTf)2 1318 0880

Na+(expected)

[Na+(experimental) - Na+(expected)]

0723

0591-0723 =-0132

Data plotted from reference [31] of the main text

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 20: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

20

Table S3 Masses of species obtained with their calculated values

[CuL]+ 10 eqv MXn

salts

Figure Species detected

with charge

Experimental

Mass (mz)

Calculated

Mass

(mz)

[CuL]M

[(CuL)2Li]+ 72116 72114 21Li(ClO4)3H2O S3

[(CuL)Li]+ 36407 36408 11

[(CuL)2Zn(ClO4)]+ 87701 87701 21

[(CuL)2Zn]2+ 39003 39003 21

Zn(ClO4)26H2O S4

[(CuL)Zn(ClO4)]+ 51994 51994 11

[(CuL)2Cd(ClO4)]+ 92698 92698 21

[(CuL)2Cd]2+ 41402 41401 21

Cd(ClO4)26H2O S5

[(CuL)Cd(ClO4)]+ 56991 56991 11

[(CuL)2Pr(NO3)2]+ 97903 97902 21Pr(NO3)36H2O S6

[(CuL)Pr(NO3)2]+ 62196 62196 11

[(CuL)2Nd(NO3)2]+ 98001 98001 21Nd(NO3)36H2O S7

[(CuL)Nd(NO3)2]+ 62295 62294 11

[(CuL)2Sm(NO3)2]+ 99002 99002 21Sm(NO3)36H2O S8

[(CuL)Sm(NO3)2]+ 63296 63296 11

Table S4 Comparison of HOMO-LUMO gap with the overall electrochemical shift in 11 adducts

Complex Relative stabilization of HOMO-LUMO gap (max) with

respect to [CuL]+K+

(meV)

Expected shift with respect to [CuL]+K+

1198981198901198811 119890

= 119898119881

[E12 (ox) - E12 (red)] =E12 observed from

DPV (V)

Relative shift of E12 with respect to

[CuL]+K+

(mV)

[CuL]+K+ (943-943) = 0 0466-(-1487) =1953 1953-1953 = 0

[CuL]+Na+ (4868-943) = 3925 0487-(-1412) =1899 1953-1899 = 54

[CuL]+Li+ (19920-943) = 18977 0555-(-1207) = 1762 1953-1762 = 191

[CuL]+Ca2+ (25807-943) = 24864 0589-(-1111) = 1700 1953-1700 = 253

[CuL]+Mg2+ (28543-943) = 27600 0623-(-1107) = 1730 1953-1730 = 223

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done

Page 21: Unsymmetrical Ligand Electrochemical Oxidation of a Cu(II ...1 Supporting Information Elucidating the Secondary Effect in Lewis Acid Mediated Anodic Shift of Electrochemical Oxidation

21

Table S5 Summary of UV-Vis and electrochemical properties of complexes 1 and 2

Complex 1 [CuL]+10 equiv

K+

Complex 2 [CuL]+10 equiv

Zn2+

max ( LMCT) nm 3655 362 344 nm 3325

E12 (ox) (V) from

DPV

0493 0898 0466 0913 0471 0612

0920

0652 0784

E12 (red) (V) from

DPV

-1175 (hump) -

1459

-1487 -0875 (hump)

-1011 -1477

Not done