Unsteady heat conduction - Värmeöverföring...Outline Lumped capacitance method: object with very...

23
Unsteady Heat Conduction (Chapter 4) Zan Wu [email protected]

Transcript of Unsteady heat conduction - Värmeöverföring...Outline Lumped capacitance method: object with very...

  • Unsteady Heat Conduction(Chapter 4)Zan Wu [email protected]

  • Recap of the previous lecture

    To derive the governing equation for rectangular fin To calculate temperature distribution, heat transfer rate, fin

    effectiveness, fin efficiency- the meanings of C, A, m and beta

    Fin optimization at a given fin mass- rectangular fin: (mL)optimum =1.419- triangular fin: (mL)optimum =1.309

    The total heat transfer rate from fin arrays, Eq. (3.71)

  • Three clarifications

    • Fin?

    • Eq. (15.1b) thermal conductivity of plate material unimportant?

    • Ex. 122

    + + e.g., fouling ignored

  • Outline

    Lumped capacitance method: object with very high thermal conductivity

    - Derive the function of temperature vs. time- Bi, Fo- Validity of the lumped capacitance method

    Unsteady heat conduction in- infinite plane walls- long cylinders- spheres- 2D and 3D cases

    Unsteady heat conduction in semi-infinite bodies

  • Unsteady heat conduction with very high thermal conductivity

    First law of thermodynamics

  • Solution

    0

    expA

    Vc AeVc

    Set a characteristic length Lc

    cVLA

    20

    exp exp exp Bi Focc

    LA aVc L

    = t tf

  • Dimensionless numbers: Biot number and Fourier number

    conductive resistance within the solidBi1 convective resistance across the fluid boundary layer

    cc L ALA

    2Foc

    aL

    If Bi < 0.1, the body temperature can be assumed to be uniform

  • Outline

    Lumped capacitance method: object with very high thermal conductivity

    - Derive the function of temperature vs. time- Bi, Fo- Validity of the lumped capacitance method

    Unsteady heat conduction in- infinite plane walls- long cylinders- spheres- 2D and 3D cases

    Unsteady heat conduction in semi-infinite bodies

  • Infinite plate with moderate thermal conductivity

    2

    2

    xa

    = t tf

    1D; Edge effects negligible

  • Infinite plate with moderate thermal conductivity

    = t tf

    Initial condition (I.C.) : = 0 ; (x, 0) = 0(x) = t0(x) - tfBoundary conditions:

    2

    2

    xa

    x

    ttxt:Lx

    0x

    0xt:0x

    f

    (x

    L

    x

    tf

  • Infinite plate, limited thermal conductivity

    aeCF2

    )(

    Assumption: (x, ) = F() G(x)

    xsinCxcosC)x(G 21

    )184(sincos),( 2 xBxAex a

    x, are independent variables

  • Cont’d

    20

    , , (4 34)a xfunctionL L L

  • Graphical representation of solution

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    m = 0.00.100.25

    0.50

    0.75

    1.00

    1.502.00

    3.004.006.0010.020.0

    x ' = 0.4

    0

    2/ La

    Fig. 4.4

  • Long circular cylinder

    r

    z

    ro

  • Figs. long circular cylinder

    0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    m = 0.0 0.250.50

    0.751.00

    1.50

    2.00

    3.00

    4.00

    6.00

    10.020.050.0

    r ' = 0.0

    2o/ra

    0

    f2

    0 0 f o o o

    function ( , , )t t a rt t r r r

    Fig. 4.6

  • Figs. long circular cylinder

    0 0.5 1 1.5 20

    0 .2

    0 .4

    0 .6

    0 .8

    1

    m = 0 .25 0 .500 .751 .00

    1 .50

    2 .00

    4 .00

    3 .00

    6 .00

    10.0

    20.050.0

    r ' = 1 .0

    2o/ ra

    0

    f2

    0 0 f o o o

    f u n c t i o n ( , , )t t a rt t r r r

  • Two- and three-dimensional solutions

    Product of two one-dimensional solutions

    Three-dimensional case

    2

    2

    2

    2

    2

    2

    zyxa

    0 0 0x y

    0 0 0 0x y z

    A

    Bx

    ytf

  • Semi-infinite bodies

    Initial condition = 0 : t(x, 0) = t0BC

    The solution is given by

    error function

    2

    2

    xtat

    st),0(t:00x

    x finitet

    0

    (4.51)2

    s

    s

    t t xerft t a

    de2a2

    xerfa2/x

    0

    2

    x

  • Heat flux: heat transfer rate/surface area

    a

    ttAQ s

    x

    )( 00

    20( )1 e x p

    4st tQ d Q x

    A A d aa

    (4.53)

    (4.54)

  • Total heat amount

    = QQ d

  • Recap• Solid with very high thermal conductivity or Bi < 0.1

    - First law of thermodynamics

    -

    • Infinite plate, cylinder, sphere- Figs. 4.4, 4.6, 4.7

    - extended to 2D, 3D cases

    • Semi-infinite bodies- Eqs. (4.51), (4.53), (4.54)

    - Gaussian error function, Table 4.1

    0 exp Bi Fo

  • Wind turbine cooling

  • Heating of wind turbine blades