University of Groningen Structure and activity studies of ...Reproducible improvements in order and...

21
University of Groningen Structure and activity studies of tyrosinases and related proteins Lai, Xuelei IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2017 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Lai, X. (2017). Structure and activity studies of tyrosinases and related proteins. University of Groningen. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 15-08-2021

Transcript of University of Groningen Structure and activity studies of ...Reproducible improvements in order and...

Page 1: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

University of Groningen

Structure and activity studies of tyrosinases and related proteinsLai, Xuelei

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Lai, X. (2017). Structure and activity studies of tyrosinases and related proteins. University of Groningen.

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 15-08-2021

Page 2: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

109

ReferencesAdams, P.D., Afonine, P. V., Bunkóczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 213–221. Aguilera, F., McDougall, C., and Degnan, B.M. (2013). Origin, evolution and classification of type-3 copper proteins: lineage-specific gene expansions and losses across the Metazoa. BMC Evol. Biol. 13, 96.

Ai, N., Welsh, W.J., Santhanam, U., Hu, H., and Lyga, J. (2014). Novel virtual screening approach for the discovery of human tyrosinase inhibitors. PLoS One 9, 1–11. Altmann, F., Staudacher, E., Wilson, I.B.H., and März, L. (1999). Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj. J. 16, 109–123.

Arndt, J.W., Gu, J., Jaroszewski, L., Schwarzenbacher, R., Hanson, M. a, Lebeda, F.J., and Stevens, R.C. (2005). The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J. Mol. Biol. 346, 1083–1093.

Aroca, P., Urabe, K., Kobayashi, T., Tsukamoto, K., and Hearing, V.J. (1993). Melanin biosynthesis patterns following hormonal stimulation. J. Biol. Chem. 268, 25650–25655. Azam, S.S., Uddin, R., Syed, A.A.S., and Zaheer-ul-Haq (2012). Molecular docking studies of potent inhibitors of tyrosinase and alpha-glucosidase. Med. Chem. Res. 21, 1677–1683.

Baker, H.M., Day, C.L., Norris, G.E., and Baker, E.N. (1994). Enzymatic deglycosylation as a tool for crystallization of mammalian binding proteins. Acta Crystallogr. D. Biol. Crystallogr. 50, 380–384. Bart, H., Magnus, K.A., Bonaventura, C., Bonaventura, J., Zbigniew, D., Kalk, K.H., and Hol, W.G.J. (1993). Crystal Structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 Å resolution: Clues for a mechanism for allosteric regulation. Protein Sci. 2, 597–619. Beermann, F., Orlow, S.J., Boissy, R.E., Schmidt, A., Boissy, Y.L., and Lamoreux, M.L. (1995). Misrouting of tyrosinase with a truncated cytoplasmic tail as a result of the murine platinum (cp) mutation. Exp. Eye Res. 61, 599–607.

Benham, A.M. (2012). Protein secretion and the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 4, a012872–a012872.

Bergfors, T. (2003). Seeds to crystals. J. Struct. Biol. 142, 66–76. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. (2000). The Protein Data Bank. Nucleic Acids Res. 28, 235–242.

Berson, J.F., Frank, D.W., Calvo, P.A., Bieler, B.M., and Marks, M.S. (2000). A common temperature-sensitive allelic form of human tyrosinase is retained in the endoplasmic reticulum at the nonpermissive temperature. J. Biol. Chem. 275,

Page 3: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

110

12281–12289. Bijelic, A., Pretzler, M., Molitor, C., Zekiri, F., and Rompel, A. (2015). The structure of a plant tyrosinase from walnut leaves reveals the importance of “substrate-guiding residues” for enzymatic specificity. Angew. Chemie - Int. Ed. 54, 14677–14680. Boissy, R.E. (1988). The melanocyte: Its structure, function, and subpopulations in skin, eyes, and hair. Dermatol. Clin. 6, 161–173. Boissy, R.E., Zhao, H., Oetting, W.S., Austin, L.M., Wildenberg, S.C., Boissy, Y.L., Zhao, Y., Sturm, R. a, Hearing, V.J., King, R. a, et al. (1996). Mutation in and lack of expression of tyrosinase-related protein-1 (TRP-1) in melanocytes from an individual with brown oculocutaneous albinism: a new subtype of albinism classified as “OCA3.” Am. J. Hum. Genet. 58, 1145–1156.

Boissy, R.E., Sakai, C., Zhao, H., Kobayashi, T., and Hearing, V.J. (1998). Human tyrosinase related protein-1 (TRP-1) does not function as a DHICA oxidase activity in contrast to murine TRP-1. Exp Dermatol 7, 198–204. Boissy, R.E., Visscher, M., and DeLong, M.A. (2005). DeoxyArbutin: a novel reversible tyrosinase inhibitor with effective in vivo skin lightening potency. Exp. Dermatol. 14, 601–608.

Bouchet, B.P., Fromentel, C.C. De, Puisieux, A., and Mar, C. (2006). p53 as a target for anti-cancer drug development. 58, 190–207.

Bowler, M.W., Montgomery, M.G., Leslie, A.G.W., and Walker, J.E. (2006). Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration. Acta Crystallogr. Sect. D Biol. Crystallogr. 62, 991–995.

Bowler, M.W., Nurizzo, D., Barrett, R., Beteva, A., Bodin, M., Caserotto, H., Delagenire, S., Dobias, F., Flot, D., Giraud, T., et al. (2015). MASSIF-1: A beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. J. Synchrotron Radiat. 22, 1540–1547. Braberg, H., Webb, B.M., Tjioe, E., Pieper, U., Sali, A., and Madhusudhan, M.S. (2012). Salign: A web server for alignment of multiple protein sequences and structures. Bioinformatics 28, 2072–2073.

Branza-Nichita, N., Petrescu, A.J., Dwek, R.A., Wormald, M.R., Platt, F.M., and Petrescu, S.M. (1999). Tyrosinase folding and copper loading in vivo: a crucial role for calnexin and alpha-glucosidase II. Biochem. Biophys. Res. Commun. 261, 720–725.

Branza-Nichita, N., Petrescu, A.J., Negroiu, G., Dwek, R.A., and Petrescu, S.M. (2000a). N-glycosylation processing and glycoprotein folding-lessons from the tyrosinase-related proteins. Chem. Rev. 100, 4697–4712. Branza-Nichita, N., Negroiu, G., Petrescu, A.J., Garman, E.F., Platt, F.M., Wormald, M.R., Dwek, R.A., and Petrescu, S.M. (2000b). Mutations at critical N-glycosylation sites reduce tyrosinase activity by altering folding and quality control. J. Biol. Chem. 275, 8169–8175. Brenner, M., and Hearing, V.J. (2008). The protective role of melanin against

Page 4: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

111

UV damage in human skin. Photochem. Photobiol. 84, 539–549. Briganti, S., Camera, E., and Picardo, M. (2003). Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16, 101–110. Burmester, T. (2001). Molecular evolution of the arthropod hemocyanin superfamily. Mol. Biol. Evol. 18, 184–195. Burton, S.G. (2003). Oxidizing enzymes as biocatalysts. Trends Biotechnol. 21, 543–549. Butler, M.J., and Day, A.W. (1998). Fungal melanins: A review. Can. J. Microbiol. 44, 1115–1136. Cabanes, J., Garcia-Canovas, F., Tudela, J., Lozano, J.A., and Garcia-Carmona, F. (1987). L-mimosine, a slow-binding inhibitor of mushroom tyrosinase. Photochemistry 26, 917–919.

Cabanes, J., Chazarra, S., and Garcia-Carmona, F. (1994). Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46, 982–985. Calvo, P.A., Frank, D.W., Bieler, B.M., Berson, J.F., and Marks, M.S. (1999). A cytoplasmic sequence in human tyrosinase defines a second class of di-leucine-based sorting signals for late endosomal and lysosomal delivery. J. Biol. Chem. 274, 12780–12789. Carstam, R., Brinck, C., Hindemith-Augustsson, A., Rorsman, H., and Rosengren, E. (1991). The neuromelanin of the human substantia nigra. BBA - Mol. Basis Dis. 1097, 152–160.

Chang, T.-S. (2009). An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 10, 2440–2475.

Chang, T.-S. (2012). Natural melanogenesis inhibitors acting through the down-regulation of tyrosinase activity. Materials (Basel). 5, 1661–1685.

Chayen, N.E., and Saridakis, E. (2008). Protein crystallization: from purified protein to diffraction-quality crystal. Nat. Methods 5, 147–153.

Chen, G.H., Chen, W.M., Huang, Y.C., and Jiang, S.T. (2012). Expression of recombinant mature human tyrosinase from Escherichia coli and exhibition of its activity without phosphorylation or glycosylation. J. Agric. Food Chem. 60, 2838–2843.

Chen, L.-Y., Leu, W.-M., Wang, K.-T., and Lee, Y.-H. (1992). Copper transfer and activation of the streptomyces apotyrosinase are mediated through a complex formation between apotyrosinase and its trans-activator MelC l. J. Biol. Chem. 267, 20100–20107.

Chiang, P.-W., Fulton, A.B., Spector, E., and Hisama, F.M. (2008). Synergistic interaction of the OCA2 and OCA3 genes in a family. Am. J. Med. Genet. A 146A, 2427–2430. Chiang, P.W., Spector, E., and McGregor, T.L. (2009). Evidence suggesting digenic inheritance of waardenburg syndrome type II with ocular albinism. Am. J. Med. Genet. Part A 149, 2739–2744.

Claus, H., and Decker, H. (2006). Bacterial tyrosinases. Syst. Appl. Microbiol.

Page 5: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

112

29, 3–14. Cooper, D. (1998). The human gene mutation database. Nucleic Acids Res. 26, 285–287. Costin, G.-E., and Hearing, V.J. (2007). Human skin pigmentation: melanocytes modulate skin color in response to stress. FASEB J. 21, 976–994. Cruz-Inigo, A.E., Ladizinski, B., and Sethi, A. (2011). Albinism in Africa: Stigma, slaughter and awareness campaigns. Dermatol. Clin. 29, 79–87. Cruz-Vega, D., Verde-Star, M.J., Salinas-Gonzalez, N.R., Rosales-Hernandez, B., Estrada-Garcia, I., Mendez-Aragon, P., Carranza-Rosales, P., Gonzalez-Garza, M., and Castro-Garza, J. (2009). Review of pharmacological effects of Glycyrrhiza radix and its bioactive compounds. Phyther. Res. 22, 557–559. Cuff, M.E., Miller, K.I., van Holde, K.E., and Hendrickson, W.A. (1998). Crystal structure of a functional unit from Octopus hemocyanin. J. Mol. Biol. 278, 855–870.

D’Mello, S.A.N., Finlay, G.J., Baguley, B.C., and Askarian-Amiri, M.E. (2016). Signaling pathways in melanogenesis. Int. J. Mol. Sci. 17.

Decker, H., and Tuczek, F. (2000). Tyrosinase/catecholoxidase activity of hemocyanins: Structural basis and molecular mechanism. Trends Biochem. Sci. 25, 392–397. Decker, H., Schweikardt, T., and Tuczek, F. (2006). The first crystal structure of tyrosinase: All questions answered? Angew. Chemie - Int. Ed. 45, 4546–4550. Decker, H., Hellmann, N., Jaenicke, E., Lieb, B., Meissner, U., and Markl, J. (2007a). Minireview: Recent progress in hemocyanin research. Integr. Comp. Biol. 47, 631–644.

Decker, H., Schweikardt, T., Nillius, D., Salzbrunn, U., Jaenicke, E., and Tuczek, F. (2007b). Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene 398, 183–191. Desilet, N., Campbell, T.N., and Choy, F.Y.M. (2010). p53-based anti-cancer therapies: An empty promise? Curr. Issues Mol. Biol. 12, 143–146. Dolinska, M.B., Kovaleva, E., Backlund, P., Wingfield, P.T., Brooks, B.P., and Sergeev, Y. V (2014). Albinism-causing mutations in recombinant human tyrosinase alter intrinsic enzymatic activity. PLoS One 9, e84494.

Duffy, D.L., Zhao, Z.Z., Sturm, R.A., Hayward, N.K., Martin, N.G., and Montgomery, G.W. (2010). Multiple pigmentation gene polymorphisms account for a substantial proportion of risk of cutaneous malignant melanoma. J. Invest. Dermatol. 130, 520–528.

Dupeux, F., Rower, M., Seroul, G., Blot, D., and Marquez, J.A. (2011). A thermal stability assay can help to estimate the crystallization likelihood of biological samples. Acta Crystallogr. Sect. D Biol. Crystallogr. 67, 915–919. Eicken, C., Krebs, B., and Sacchettini, J.C. (1999). Catechol oxidase - Structure and activity. Curr. Opin. Struct. Biol. 9, 677–683. Emsley, P., Lohkamp, B., Scott, W.G., and Cowtan, K. (2010). Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 486–501.

Page 6: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

113

Ericsson, U.B., Hallberg, B.M., Detitta, G.T., Dekker, N., and Par Nordlund (2006). Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298. Espín, J.C., and Wichers, H.J. (1999). Activation of a latent mushroom (Agaricus bisporus) tyrosinase isoform by sodium dodecyl sulfate (SDS). Kinetic properties of the SDS-activated isoform. J. Agric. Food Chem. 47, 3518–3525. Espín, J.C., Morales, M., García-Ruiz, P.A., Tudela, J., and García-Cánovas, F. (1997). Improvement of a continuous spectrophotometric method for determining the monophenolase and diphenolase activities of mushroom polyphenol oxidase. J. Agric. Food Chem. 45, 1084–1090. Espín, J.C., Soler-Rivas, C., and Wichers, H.J. (2000). Maturation and activation of latent tyrosinase from Agaricus bisporus. In Science and Cultivation of Edible Fungi, Van Griensven (Ed.), pp. 79–86.

Evans, P. (2006). Scaling and assessment of data quality. Acta Crystallogr. Sect. D Biol. Crystallogr. 62, 72–82.

Fedorow, H., Tribl, F., Halliday, G., Gerlach, M., Riederer, P., and Double, K.L. (2005). Neuromelanin in human dopamine neurons: Comparison with peripheral melanins and relevance to Parkinson’s disease. Prog. Neurobiol. 75, 109–124. Fewell, S.W., Travers, K.J., Weissman, J.S., and Brodsky, J.L. (2001). The action of molecular chaperones in the early secretory pathway. Annu. Rev. Genet. 35, 149–191.

Flynn, G.C., Pohl, J., Flocco, M.T., and Rothman, J.E. (1991). Peptide-binding specificity of the molecular chaperone BiP. Nature 353, 726–730.

Fogal, S., Carotti, M., Giaretta, L., Lanciai, F., Nogara, L., Bubacco, L., and Bergantino, E. (2015). Human tyrosinase produced in insect cells: A landmark for the screening of new drugs addressing its activity. Mol. Biotechnol. 57, 45–57.

Fronk, P., Hartmann, H., Bauer, M., Solem, E., Jaenicke, E., Tenzer, S., and Decker, H. (2015). Polyphenoloxidase from Riesling and Dornfelder wine grapes (Vitis vinifera) is a tyrosinase. Food Chem. 183, 49–57. Fujieda, N., Ikeda, T., Murata, M., Yanagisawa, S., Shigetoshi, A., Ohkubo, K., Nagao, S., Ogura, T., Hirota, S., Fukuzumi, S., et al. (2011). Post-translational His-Cys cross-linkage formation in tyrosinase induced by copper(II)-peroxo species. J. Am. Chem. Soc. 1, 1180–1183. Fujieda, N., Yabuta, S., Ikeda, T., Oyama, T., Muraki, N., Kurisu, G., and Itoh, S. (2013). Crystal structures of copper-depleted and copper-bound fungal pro-tyrosinase: Insights into endogenous cysteine-dependent copper incorporation. J. Biol. Chem. 288, 22128–22140. Fukai, K., Holmes, S.A., Lucchese, N.J., Siu, V.M., Weleber, R.G., Schnur, R.E., and Spritz, R.A. (1995). Autosomal recessive ocular albinism associated with a functionally significant tyrosinase gene polymorphism. Nat. Genet. 9, 92–95.

Furumura, M., Solano, F., Matsunaga, N., Sakai, C., Spritz, R.A., and Hearing, V.J. (1998). Metal ligand-binding specificities of the tyrosinase-related proteins.

Page 7: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

114

Biochem. Biophys. Res. Commun. 242, 579–585. Gabadinho, J., Beteva, A., Guijarro, M., Rey-Bakaikoa, V., Spruce, D., Bowler, M.W., Brockhauser, S., Flot, D., Gordon, E.J., Hall, D.R., et al. (2010). MxCuBE: A synchrotron beamline control environment customized for macromolecular crystallography experiments. J. Synchrotron Radiat. 17, 700–707.

García-Borrón, J.C., and Solano, F. (2002). Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine-bound metal catalytic center. Pigment Cell Res. 15, 162–173. Garcia-Molina, M. of the S., Munoz-Munoz, J.L., Berna, J., Rodriguez-Lopez, J.N., Varon, R., and Garcia-Canovas, F. (2013). Hydrogen peroxide helps in the identification of monophenols as possible substrates of tyrosinase. Biosci. Biotechnol. Biochem. 77, 2383–2388. García-molina, M., Luis, J., Muñoz, M., Martinez-ortiz, F., Rodriguez, J., García-ruiz, P.A., Rodriguez-lópez, J.N., and García-cánovas, F. (2014). Tyrosinase-catalyzed hydroxylation of hydroquinone , a depigmenting agent , to hydroxyhydroquinone : A kinetic study. Bioorg. Med. Chem. 22, 3360–3369. Gargiulo, A., Testa, F., Rossi, S., Di Iorio, V., Fecarotta, S., de Berardinis, T., Iovine, A., Magli, A., Signorini, S., Fazzi, E., et al. (2011). Molecular and clinical characterization of albinism in a large cohort of Italian patients. Invest. Ophthalmol. Vis. Sci. 52, 1281–1289. Gerdemann, C., Eicken, C., and Krebs, B. (2002). The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Acc. Chem. Res. 35, 183–191.

Gerstenblith, M.R., Shi, J., and Landi, M.T. (2010). Genome-wide association studies of pigmentation and skin cancer: a review and meta-analysis. Pigment Cell Melanoma Res. 23, 587–606. Ghanem, G., and Fabrice, J. (2011). Tyrosinase related protein 1 (TYRP1/gp75) in human cutaneous melanoma. Mol. Oncol. 5, 150–155. Giebel, L.B., Tripathi, R.K., Strunk, K.M., Hanifin, J.M., Jackson, C.E., King, R.A., and Spritz, R.A. (1991a). Tyrosinase gene mutations associated with type 1B (“Yellow”) Oculocutaneous Albinism. Am. J. Hum. Genet. 48, 1159–1167.

Giebel, L.B., Tripathi, R.K., King, R.A., and Spritz, R.A. (1991b). A tyrosinase gene missense mutation in temperature-sensitive type I Oculocutaneous Albinism. J. Clin. Invest. 87, 1119–1122. Goldfeder, M., Kanteev, M., Isaschar-Ovdat, S., Adir, N., and Fishman, A. (2014). Determination of tyrosinase substrate-binding modes reveals mechanistic differences between type-3 copper proteins. Nat. Commun. 135, 1890–1892.

Grønskov, K., Ek, J., and Brondum-Nielsen, K. (2007). Oculocutaneous albinism. Orphanet J. Rare Dis. 2, 43.

Grueninger-Leitch, F., Darcy, A., Darcy, B., and Chene, C. (1996). Deglycosylation of proteins for crystallization using recombinant fusion protein glycosidases. Protein Sci. 5, 2617–2622. Gudbjartsson, D.F., Sulem, P., Stacey, S.N., Goldstein, A.M., Rafnar, T.,

Page 8: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

115

Sigurgeirsson, B., Benediktsdottir, K.R., Thorisdottir, K., Ragnarsson, R., Sveinsdottir, S.G., et al. (2008). ASIP and TYR pigmentation variants associate with cutaneous melanoma and basal cell carcinoma. Nat. Genet. 40, 886–891. Gupta, G., Sinha, S., Mitra, N., and Surolia, A. (2009). Probing into the role of conserved N-glycosylation sites in the tyrosinase glycoprotein family. Glycoconj. J. 26, 691–695.

Hakulinen, N., Gasparetti, C., Kaljunen, H., Kruus, K., and Rouvinen, J. (2013). The crystal structure of an extracellular catechol oxidase from the ascomycete fungus Aspergillus oryzae. J. Biol. Inorg. Chem. 18, 917–929. Halaban, R., and Moellmann, G. (1990). Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity. Proc. Natl. Acad. Sci. U. S. A. 87, 4809–4813.

Halaban, R., Svedine, S., Cheng, E., Smicun, Y., Aron, R., and Hebert, D.N. (2000). Endoplasmic reticulum retention is a common defect associated with tyrosinase-negative albinism. Proc. Natl. Acad. Sci. U. S. A. 97, 5889–5894. Hamosh, A., Scott, A.F., Amberger, J.S., Bocchini, C.A., and McKusick, V.A. (2005). Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 33, 514–517.

Han, H.-Y., Zou, H.-C., Jeon, J.-Y., Wang, Y.-J., Xu, W.-A., Yang, J.-M., and Park, Y.-D. (2007). The inhibition kinetics and thermodynamic changes of tyrosinase via the zinc ion. Biochim. Biophys. Acta 1774, 822–827. Hanson, B.L., and Bunick, G.J. (2007). Annealing macromolecular crystals. Methods Mol. Biol. 364, 31–42. Hara, I., Takechi, Y., and Houghton, A.N. (1995). Implicating a role for immune recognition of self in tumor rejection: passive immunization against the brown locus protein. J. Exp. Med. 182, 1609–1614.

Hearing, V.J., and Tsukamoto, K. (1991). Enzymatic control of pigmentation in mammals. FASEB J. 5, 2902–2909.

Hearing, V.J., Tsukamot, K., Urabe, K., Kameyama, K., Montague, P.M., and Jackson, I.A.N.J. (1992). Function properties of cloned melanogenic proteins. Pigment Cell Res. 5, 264–270. Hebert, D.N., Garman, S.C., and Molinari, M. (2005). The glycan code of the endoplasmic reticulum: Asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370.

Helenius, A., and Aebi, M. (2001). Intracellular functions of N-linked glycans. Science 291, 2364–2369.

Helenius, A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73, 1019–1049.

Hirobe, T., and Abe, H. (1999). Genetic and epigenetic control of the proliferation and differentiation of mouse epidermal melanocytes in culture. Pigment Cell Res. 12, 147–163. Holde, K.E. Van, and Miller, K.I. (1995). Hemocyanins. In Advances in Protein Chemistry, pp. 1–81.

Page 9: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

116

Holm, L., and Rosenström, P. (2010). Dali server: Conservation mapping in 3D. Nucleic Acids Res. 38.

Holm, L., Kääriäinen, S., Rosenström, P., and Schenkel, a. (2008). Searching protein structure databases with DaliLite v.3. Bioinformatics 24, 2780–2781.

Hong, E.S., Zeeb, H., and Repacholi, M.H. (2006). Albinism in Africa as a public health issue. BMC Public Health 6, 212.

Höning, S., Sandoval, I. V, and von Figura, K. (1998). A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17, 1304–1314. Hsin-Su, Y. (1999). The pigmentary system: Physiology and pathophysiology. Arch. Dermatol. 135, 478–478. Hutton, S.M., and Spritz, R.A. (2008a). Comprehensive analysis of oculocutaneous albinism among non-Hispanic caucasians shows that OCA1 is the most prevalent OCA type. J. Invest. Dermatol. 128, 2442–2450.

Hutton, S.M., and Spritz, R.A. (2008b). A comprehensive genetic study of autosomal recessive ocular albinism in caucasian patients. Investig. Ophthalmol. Vis. Sci. 49, 868–872. Ikeda, K., Masujima, T., Suzuki, K., and Sugiyama, M. (1996). Cloning and sequence analysis of the highly expressed melanin-synthesizing gene operon from Streptomyces castaneoglobisporus. Appl. Microbiol. Biotechnol. 45, 80–85.

Imokawa, G., and Mishima, Y. (1982). Loss of melanogenic properties in tyrosinases induced by glycosylation inhibitors within malignant melanoma cells. Cancer Res. 42, 1994–2002. Inagaki, K., Suzuki, T., Shimizu, H., Ishii, N., Umezawa, Y., Tada, J., Kikuchi, N., Takata, M., Takamori, K., Kishibe, M., et al. (2004). Oculocutaneous Albinism type 4 is one of the most common types of albinism in Japan. Am. J. Hum. Genet. 74, 466–471. Ismaya, W.T., Rozeboom, H.J., Weijn, A., Mes, J.J., Fusetti, F., Wichers, H.J., and Dijkstra, B.W. (2011). Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry 50, 5477–5486. Ismaya, W.T., Yunita, Efthyani, A., Lai, X., Retnoningrum, D.S., Rachmawati, H., Dijkstra, B.W., and Tjandrawinata, R.R. (2016). A novel immune-tolerable and permeable lectin-like protein from mushroom Agaricus bisporus. Biochem. Biophys. Res. Commun. 473, 1090–1093. Ito, S., and Wakamatsu, K. (2008). Chemistry of mixed melanogenesis - Pivotal roles of dopaquinone. Photochem. Photobiol. 84, 582–592. Ito, S., and Wakamatsu, K. (2015). A convenient screening method to differentiate phenolic skin whitening tyrosinase inhibitors from leukoderma-inducing phenols. J. Dermatol. Sci. 80, 18–24.

Ito, S., Gerwat, W., Kolbe, L., Yamashita, T., Ljika, M., and Wakamatsu, K. (2014). Human tyrosinase is able to oxidize both enantiomers of rhododendrol. Pigment Cell Melanoma Res. 1149–1153. Jablonski, N.G., and Chaplin, G. (2010). Human skin pigmentation as an

Page 10: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

117

adaptation to UV radiation. Proc. Natl. Acad. Sci. 107, 8962–8968. Jackson, I.J., Chambers, D.M., Tsukamoto, K., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., and Hearing, V. (1992). A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J. 11, 527–535.

Jaenicke, E., and Decker, H. (2004). Functional changes in the family of type 3 copper proteins during evolution. In ChemBioChem, pp. 163–169.

Jakób, M., Lubkowski, J., O’Keefe, B.R., and Wlodawer, A. (2015). Structure of a lectin from the sea mussel Crenomytilus grayanus (CGL). Acta Crystallogr. Sect. F Struct. Biol. Commun. 71, 1429–1436. Jaworek, T.J., Kausar, T., Bell, S.M., Tariq, N., Maqsood, M.I., Sohail, A., Ali, M., Iqbal, F., Rasool, S., Riazuddin, S., et al. (2012). Molecular genetic studies and delineation of the Oculocutaneous Olbinism phenotype in the Pakistani population. Orphanet J. Rare Dis. 7, 44. Jiménez, M., and García-Carmona, F. (2000). Hydroxylating activity of tyrosinase and its dependence on hydrogen peroxide. Arch. Biochem. Biophys. 373, 255–260.

Jiménez, M., Tsukamoto, K., and Hearing, V.J. (1991). Tyrosinases from two different loci are expressed by normal and by transformed melanocytes. J. Biol. Chem. 266, 1147–1156. Jimenez-Cervantes, C., Garcia-Borron, J.C., Valverde, P., Solano, F., and Lozano, J.A. (1993). Tyrosinase isoenzymes in mammalian melanocytes. 1. Biochemical characterization of two melanosomal tyrosinases from B16 mouse melanoma. Eur J Biochem 217, 549–556. Jiménez-Cervantes, C., Solano, F., Kobayashi, T., Urabe, K., Hearing, V.J., Lozano, J.A., and García-Borrón, J.C. (1994). A new enzymatic function in the melanogenic pathway: The 5,6-dihydroxyindole-2-carboxylic acid oxidase activity of tyrosinase-related protein-1 (TRP1). J. Biol. Chem. 269, 17993–18000.

Jiménez-Cervantes, C., Martínez-Esparza, M., Solano, F., Lozano, J.A., and García-Borrón, J.C. (1998). Molecular interactions within the melanogenic complex: formation of heterodimers of tyrosinase and TRP1 from B16 mouse melanoma. Biochem. Biophys. Res. Commun. 253, 761–767.

Johnson, R., and Jackson, I.J. (1992). Light is a dominant mouse mutation resulting in premature cell death. Nat Genet. 1, 226–229.

Kabsch, W. (2010). XDS. Acta Crystallogr. Sect. D Biol. Crystallogr. 66, 125–132.

Kang, S.M., Heo, S.J., Kim, K.N., Lee, S.H., Yang, H.M., Kim, A.D., and Jeon, Y.J. (2012). Molecular docking studies of a phlorotannin, dieckol isolated from Ecklonia cava with tyrosinase inhibitory activity. Bioorganic Med. Chem. 20, 311–316.

Kanteev, M., Goldfeder, M., and Fishman, A. (2015). Structure-function correlations in tyrosinases. Protein Sci. 24, 1360–1369.

Kenny, E.E., Timpson, N.J., Sikora, M., Yee, M.-C., Moreno-Estrada, A., Eng, C., Huntsman, S., Burchard, E.G., Stoneking, M., Bustamante, C.D., et al.

Page 11: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

118

(2012). Melanesian blond hair is caused by an amino acid change in TYRP1. Science (80). 336, 554–554.

Kim, Y.J., and Uyama, H. (2005). Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 62, 1707–1723. Kim, M., Park, J., Song, K., Kim, H.G., Koh, J.S., and Boo, Y.C. (2012). Screening of plant extracts for human tyrosinase inhibiting effects. Int. J. Cosmet. Sci. 34, 202–208.

King, R.A., Mentink, M.M., and Oetting, W.S. (1991a). Non-random distribution of missense mutations within the human tyrosinase gene in type I (tyrosinase-related) Oculocutaneous Albinism. Mol Biol Med 8, 19–29. King, R.A., Townsend, D., Oetting, W., Summers, C.G., Olds, D.P., White, J.G., and Spritz, R.A. (1991b). Temperature-sensitive tyrosinase associated with peripheral pigmentation in Oculocutaneous Albinism. J. Clin. Invest. 87, 1046–1053. King, R.A., Pietsch, J., Fryer, J.P., Savage, S., Brott, M.J., Russell-Eggitt, I., Gail Summers, C., and Oetting, W.S. (2003). Tyrosinase gene mutations in Oculocutaneous Albinism 1 (OCA1): Definition of the phenotype. Hum. Genet. 113, 502–513. Kitajima, N., and Moro-oka, Y. (1994). Copper-Dioxygen Complexes. Inorganic and Bioinorganic Perspectives Nobumasa. Chem. Rev. 94, 737–757. Klabunde, T., Eicken, C., Sacchettini, J.C., and Krebs, B. (1998). Crystal structure of a plant catechol oxidase containing a dicopper center. Nat. Struct. Biol. 5, 1084–1090.

Kobayashi, T., and Hearing, V.J. (2007). Direct interaction of tyrosinase with Tyrp1 to form heterodimeric complexes in vivo. J. Cell Sci. 120, 4261–4268.

Kobayashi, T., Urabe, K., Winder, A., Tsukamoto, K., Brewington, T., Imokawa, G., Potterf, B., and Hearing, V.J. (1994a). DHICA oxidase activity of TRP1 and interactions with other melanogenic enzymes. Pigment Cell Res 7, 227–234. Kobayashi, T., Urabe, K., Winder, A., Jiménez-Cervantes, C., Imokawa, G., Brewington, T., Solano, F., García-Borrón, J.C., and Hearing, V.J. (1994b). Tyrosinase related protein 1 (TRP1) functions as a DHICA oxidase in melanin biosynthesis. EMBO J. 13, 5818–5825. Kobayashi, T., Vieira, W.D., Potterf, B., Sakai, C., Imokawa, G., and Hearing, V.J. (1995). Modulation of melanogenic protein expression during the switch from eu- to pheomelanogenesis. J. Cell Sci. 108 ( Pt 6, 2301–2309.

Kobayashi, T., Imokawa, G., Bennett, D.C., and Hearing, V.J. (1998). Tyrosinase stabilization by Tyrp1 (the brown locus protein). J. Biol. Chem. 273, 31801–31805. Kong, J.-N., Lee, H.-J., Jo, D.-H., and Kong, K.-H. (2010). Characterization of Human Tyrosinase Ectodomain Expressed in Escherichia coli. Protein Pept. Lett. 17, 1026–1030.

Kong, K.-H., Park, S.-Y., Hong, M.-P., and Cho, S.-H. (2000). Expression and characterization of human tyrosinase from a bacterial expression system. Comp.

Page 12: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

119

Biochem. Physiol. B. Biochem. Mol. Biol. 125, 563–569. Korner, A., and Pawelek, J. (1982). Mammalian tyrosinase catalyzes three reactions in the biosynthesis of melanin. Science 217, 1163–1165. Krissinel, E., and Henrick, K. (2004). Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 2256–2268.

Kwon, B.S., Haq, A.K., Pomerantz, S.H., and Halaban, R. (1987). Isolation and sequence of a cDNA clone for human tyrosinase that maps at the mouse c-albino locus. Proc. Natl. Acad. Sci. U. S. A. 84, 7473–7477. Kwon, H., Liu, P.H., Lew, D., Nishimura, E., and Orgill, D.P. (2008). Hair follicle melanocyte cells as a renewable source of melanocytes for culture and transplantation. Eplasty 8, e7.

Lai, X., Soler-Lopez, M., Ismaya, W.T., Wichers, H.J., and Dijkstra, B.W. (2016a). Crystal structure of recombinant tyrosinase-binding protein MtaL at 1.35 Å resolution. Acta Crystallogr. Sect. Struct. Biol. Commun. 72, 244–250. Lai, X., Soler-Lopez, M., Wichers, H.J., and Dijkstra, B.W. (2016b). Large-Scale Recombinant Expression and Purification of Human Tyrosinase Suitable for Structural Studies. PLoS One 1–16.

Land, E.J., Ramsden, C.A., and Riley, P.A. (2004). Quinone chemistry and melanogenesis. Methods Enzymol. 378, 88–109.

Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., Mcgettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948. Leonard, G.A., Solé, V.A., Beteva, A., Gabadinho, J., Guijarro, M., McCarthy, J., Marrocchelli, D., Nurizzo, D., McSweeney, S., and Mueller-Dieckmann, C. (2009). Online collection and analysis of X-ray fluorescence spectra on the macromolecular crystallography beamlines of the ESRF. J. Appl. Crystallogr. 42, 333–335.

Lerch, K. (1982). Primary structure of tyrosinase fiom Neurospora crassa. J. Biol. Chem. 257, 6414–6419.

Li, Y., Wang, Y., Jiang, H., and Deng, J. (2009). Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes. Proc. Natl. Acad. Sci. U. S. A. 106, 17002–17006. Lu, H., Chai, J., Li, M., Huang, B., He, C., and Bi, R. (2001). Crystal structure of human epidermal growth factor and its dimerization. 276, 34913–34917. Magnus, K.A., Ton-That, H., and Carpenter, J.E. (1994a). Recent structural work on the oxygen transport protein hemocyanin. Chem. Rev. (Washington, D. C.) 94, 727–735.

Magnus, K. a, Hazes, B., Ton-That, H., Bonaventura, C., Bonaventura, J., and Hol, W.G. (1994b). Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Proteins 19, 302–329. Mains, P.E., Sulston, I.A., and Wood, W.B. (1990). Dominant maternal-effect mutations causing embryonic lethality in Caenorhabditis elegans. Genetics 125, 351–369.

Page 13: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

120

Maley, F., Trimble, R.B., Tarentino, A.L., and Plummer, T.H. (1989). Characterization of glycoproteins and their associated oligosaccharides through the use of endoglycosidases. Anal. Biochem. 180, 195–204. Manga, P., Kromberg, J.G.R., Box, N.F., Sturm, R.A., and Ramsay, M. (1997). Rufous Oculocutaneous Albinism in southern African Blacks is caused mutations in the TYRPI gene. Am. J. Hum. Genet. 61, 1095–1101.

Marks, M.S., and Seabra, M.C. (2001). The melanosome: membrane dynamics in black and white. Nat. Rev. Mol. Cell Biol. 2, 738–748.

Del Marmol, V., and Beermann, F. (1996). Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381, 165–168.

Martinez-Esparza, M., Jimenez-Cervantes, C., Garcia-Borron, J.C., Lozano, J.A., del Marmol, V., Ghanem, G., and Solano, F. (1997). Comparison of TRPs from murine and human malignant melanocytes. Pigment Cell Res 10, 229–235. Mártinez-García, M., and Montoliu, L. (2013). Albinism in Europe. J. Dermatol. 40, 319–324. Marusek, C.M., Trobaugh, N.M., Flurkey, W.H., and Inlow, J.K. (2006). Comparative analysis of polyphenol oxidase from plant and fungal species. J. Inorg. Biochem. 100, 108–123.

Masuda, T., Momoji, K., Hirata, T., and Mikami, B. (2014). The crystal structure of a crustacean prophenoloxidase provides a clue to understanding the functionality of the type 3 copper proteins. FEBS J. 281, 2659–2673. Matoba, Y., Kumagai, T., Yamamoto, A., Yoshitsu, H., and Sugiyama, M. (2006). Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J. Biol. Chem. 281, 8981–8990.

Matoba, Y., Bando, N., Oda, K., Noda, M., Higashikawa, F., Kumagai, T., and Sugiyama, M. (2011). A molecular mechanism for copper transportation to tyrosinase that is assisted by a metallochaperone, caddie protein. J. Biol. Chem. 286, 30219–30231.

Mauracher, S.G., Molitor, C., Al-Oweini, R., Kortz, U., and Rompel, A. (2014a). Latent and active abPPO4 mushroom tyrosinase cocrystallized with hexatungstotellurate(VI) in a single crystal. Acta Crystallogr. D. Biol. Crystallogr. 70, 2301–2315.

Mauracher, S.G., Molitor, C., Al-Oweini, R., Kortz, U., and Rompel, A. (2014b). Crystallization and preliminary X-ray crystallographic analysis of latent isoform PPO4 mushroom (Agaricus bisporus) tyrosinase. Acta Crystallogr. Sect. F, Struct. Biol. Commun. 70, 263–266.

McCoy, A.J., Grosse-Kunstleve, R.W., Adams, P.D., Winn, M.D., Storoni, L.C., and Read, R.J. (2007). Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674. Mcdonald, T.A., Holland, N.T., Skibola, C., Duramad, P., and Smith, M.T. (2001). Hypothesis : Phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia. Leukemia 10–20.

Mesters, J.R., and Hilgenfeld, R. (2007). Protein glycosylation, sweet to crystal growth? In Crystal Growth and Design, pp. 2251–2253.

Page 14: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

121

Molitor, C., Mauracher, S.G., Pargan, S., Mayer, R.L., Halbwirth, H., and Rompel, A. (2015a). Latent and active aurone synthase from petals of C. grandiflora: a polyphenol oxidase with unique characteristics. Planta 242, 519–537.

Molitor, C., Mauracher, S.G., and Rompel, A. (2015b). Crystallization and preliminary crystallographic analysis of latent, active and recombinantly expressed aurone synthase, a polyphenol oxidase, from Coreopsis grandiflora. Acta Crystallogr. Sect. F Struct. Biol. Commun. 71, 746–751.

Molitor, C., Mauracher, S.G., and Rompel, A. (2016). Aurone synthase is a catechol oxidase with hydroxylase activity and provides insights into the mechanism of plant polyphenol oxidases. Proc. Natl. Acad. Sci. 113, E1806–E1815.

Montoliu, L., Grønskov, K., Wei, A.H., Martínez-García, M., Fernández, A., Arveiler, B., Morice-Picard, F., Riazuddin, S., Suzuki, T., Ahmed, Z.M., et al. (2014). Increasing the complexity: New genes and new types of albinism. Pigment Cell Melanoma Res. 27, 11–18.

Murshudov, G.N., Skubák, P., Lebedev, A.A., Pannu, N.S., Steiner, R.A., Nicholls, R.A., Winn, M.D., Long, F., and Vagin, A.A. (2011). REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 67, 355–367.

Nakamura, E., Miyamura, Y., Matsunaga, J., Kano, Y., Dakeishi-Hara, M., Tanita, M., Kono, M., and Tomita, Y. (2002). A novel mutation of the tyrosinase gene causing Oculocutaneous Albinism type 1 (OCA1). J. Dermatol. Sci. 28, 102–105.

Nan, H., Kraft, P., Hunter, D.J., and Han, J. (2009). Genetic variants in pigmentation genes, pigmentary phenotypes, and risk of skin cancer in Caucasians. Int. J. Cancer 125, 909–917. Negroiu, G., Dwek, R.A., and Petrescu, S.M. (2000). Folding and maturation of tyrosinase-related protein-1 are regulated by the post-translational formation of disulfide bonds and by N-glycan processing. J. Biol. Chem. 275, 32200–32207.

Negroiu, G., Dwek, R. a, and Petrescu, S.M. (2005). Tyrosinase-related protein-2 and -1 are trafficked on distinct routes in B16 melanoma cells. Biochem. Biophys. Res. Commun. 328, 914–921. Nishigori, C., Aoyama, Y., Ito, A., Suzuki, K., Suzuki, T., Tanemura, A., Ito, M., Katayama, I., Oiso, N., Kagohashi, Y., et al. (2015). Guide for medical professionals ( i.e. dermatologists) for the management of rhododenol-induced leukoderma. J. Dermatol. 113–128. O’Donoghue, J.L. (2006). Hydroquinone and its analogues in dermatology – a risk-benefit viewpoint. J. Cosmet. Dermatol. 196–203. Oetting, W.S. (2000). The tyrosinase gene and Oulocutaneous Albinism type 1 (OCA1): A model for understanding the molecular biology of melanin formation. Pigment Cell Res. 13, 320–325.

Oetting, W.S., Fryer, J.P., and King, R.A. (1998). Mutations of the human tyrosinase gene associated with tyrosinase related Oculocutaneous Albinism (OCA1). Hum Mutat 12, 433–434.

Page 15: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

122

Oetting, W.S., Fryer, J.P., Shriram, S., and King, R.A. (2003). Oculocutaneous Albinism type 1: The last 100 years. Pigment Cell Res. 16, 307–311.

Okulicz, J.F., Shah, R.S., Schwartz, R.A., and Janniger, C.K. (2003). Oculocutaneous albinism. J. Eur. Acad. Dermatol. Venereol. 17, 251–256.

Olivares, C., and Solano, F. (2009). New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 22, 750–760. Olivares, C., Jiménez-Cervantes, C., Lozano, J. a, Solano, F., and García-Borrón, J.C. (2001). The 5,6-dihydroxyindole-2-carboxylic acid (DHICA) oxidase activity of human tyrosinase. Biochem. J. 354, 131–139.

Olivares, C., García-Borrón, J.C., and Solano, F. (2002). Identification of active site residues involved in metal cofactor binding and stereospecific substrate recognition in mammalian tyrosinase. Implications to the catalytic cycle. Biochemistry 41, 679–686.

Opitz, S., Käsmann-Kellner, B., Kaufmann, M., Schwinger, E., and Zühlke, C. (2004). Detection of 53 novel DNA variations within the tyrosinase gene and accumulation of mutations in 17 patients with albinism. Hum. Mutat. 23, 630–631.

Orlow, S.J., Zhou, B.K., Chakraborty, a K., Drucker, M., Pifko-Hirst, S., and Pawelek, J.M. (1994). High-molecular-weight forms of tyrosinase and the tyrosinase-related proteins: Evidence for a melanogenic complex. J. Invest. Dermatol. 103, 196–201.

Ortonne, J.-P. (2002). Photoprotective properties of skin melanin. Br. J. Dermatol. 146, 7–10.

Palumbo, A., d’Ischia, M., Misuraca, G., Carratu, L., and Prota, G. (1990). Activation of mammalian tyrosinase by ferrous ions. BBA - Gen. Subj. 1033, 256–260. Park, K.C., Huh, S.Y., Choi, H.R., and Kim, D.S. (2010). Biology of melanogenesis and the search for hypopigmenting agents. Dermatologica Sin. 28, 53–58.

Passmore, L.A., Kaesmann-Kellner, B., and Weber, B.H.F. (1999). Novel and recurrent mutations in the tyrosinase gene and the P gene in the German albino population. Hum. Genet. 105, 200–210. Patel, D., Bassi, R., Hooper, A.T., Sun, H., Huber, J., Hicklin, D.J., and Kang, X. (2008). Enhanced suppression of melanoma tumor growth and metastasis by combined therapy with anti-VEGF receptor and anti-TYRP-1/gp75 monoclonal antibodies. Anticancer Res. 28, 2679–2686. Perbandt, M., Guthohrlein, E.W., Rypniewski, W., Idakieva, K., Stoeva, S., Voelter, W., Genov, N., and Betzel, C. (2003). The structure of a functional unit from the wall of a gastropod hemocyanin offers a possible mechanism for cooperativity. Biochemistry 42, 6341–6346. Petris, M.J., Strausak, D., and Mercer, J.F.B. (2000). The Menkes copper transporter is required for the activation of tyrosinase. Hum. Mol. Genet. 9, 2845–2851.

Page 16: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

123

Plonka, P.M., and Grabacka, M. (2006). Melanin synthesis in microorganisms - Biotechnological and medical aspects. Acta Biochim. Pol. 53, 429–443.

Pohleven, J., Renko, M., Magister, Š., Smith, D.F., Künzler, M., Štrukelj, B., Turk, D., Kos, J., and Sabotič, J. (2012). Bivalent carbohydrate binding is required for biological activity of Clitocybe nebularis lectin (CNL), the N,N’-diacetyllactosediamine (GalNAcβ1-4GlcNAc, LacdiNAc)-specific lectin from basidiomycete C. nebularis. J. Biol. Chem. 287, 10602–10612. Preising, M.N., Forster, H., Gonser, M., and Lorenz, B. (2011). Screening of TYR, OCA2, GPR143, and MC1R in patients with congenital nystagmus, macular hypoplasia, and fundus hypopigmentation indicating albinism. Mol. Vis. 17, 939–948. Prota, G. (2000). Melanins, melanogenesis and melanocytes: Looking at their functional significance from the chemist’s viewpoint. Pigment Cell Res. 13, 283–293.

Ramsden, C.A., and Riley, P.A. (2014). Tyrosinase: The four oxidation states of the active site and their relevance to enzymatic activation, oxidation and inactivation. Bioorg. Med. Chem. 22, 2388–2395. Raposo, G., Tenza, D., Murphy, D.M., Berson, J.F., and Marks, M.S. (2001). Distinct protein sorting and localization to premelanosomes, melanosomes, and lysosomes in pigmented melanocytic cells. J. Cell Biol. 152, 809–823.

Rees, J.L. (2003). Genetics of hair and skin color. Annu. Rev. Genet. 37, 67–90. Riley, P.A. (1997). Melanin. Int. J. Biochem. Cell Biol. 29, 1235–1239.

Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, 320–324.

Rolff, M., Schottenheim, J., Decker, H., and Tuczek, F. (2011). Copper–O2 reactivity of tyrosinase models towards external monophenolic substrates: Molecular mechanism and comparison with the enzyme. Chem. Soc. Rev. 40, 4077–4098.

Rooryck, C., Roudaut, C., Robine, E., Müsebeck, J., and Arveiler, B. (2006). Oculocutaneous albinism with TYRP1 gene mutations in a Caucasian patient. Pigment Cell Res. 19, 239–242. Ros, J.R., Rodrigues-Lopez, J.N., and Garcia-Canovas, F. (1993). Effect of L-ascorbic acid on the monophenolase activity of tyrosinase. Biochem. J. 295, 309–312.

Roversi, P., Blanc, E., Johnson, S., and Lea, S.M. (2012). Tetartohedral twinning could happen to you too. Acta Crystallogr. Sect. D Biol. Crystallogr. 68, 418–424. Saenger, Y.M., Li, Y., Chiou, K.C., Chan, B., Rizzuto, G., Terzulli, S.L., Merghoub, T., Houghton, A.N., and Wolchok, J.D. (2008). Improved tumor immunity using anti-tyrosinase related protein-1 monoclonal antibody combined with DNA vaccines in murine melanoma. Cancer Res. 68, 9884–9891. Sánchez-Ferrer, Á., Rodríguez-López, J.N., García-Cánovas, F., and García-Carmona, F. (1995). Tyrosinase: a comprehensive review of its mechanism. Biochim. Biophys. Acta 1247, 1–11.

Page 17: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

124

Sanchez-Weatherby, J., Bowler, M.W., Huet, J., Gobbo, A., Felisaz, F., Lavault, B., Moya, R., Kadlec, J., Ravelli, R.B.G., and Cipriani, F. (2009). Improving diffraction by humidity control: A novel device compatible with X-ray beamlines. Acta Crystallogr. Sect. D Biol. Crystallogr. 65, 1237–1246.

Sarangarajan, R., and Boissy, R.E. (2001). Tyrp1 and Oculocutaneous Albinism type 3. Pigment Cell Res. 14, 437–444.

Sendovski, M., Kanteev, M., Ben-Yosef, V.S., Adir, N., and Fishman, A. (2011). First structures of an active bacterial tyrosinase reveal copper plasticity. J. Mol. Biol. 405, 227–237. Setaluri, V. (2000). Sorting and targeting of melanosomal membrane proteins: Signals, pathways, and mechanisms. Pigment Cell Res. 13, 128–134. Setty, S.R.G., Tenza, D., Sviderskaya, E. V, Bennett, D.C., Raposo, G., and Marks, M.S. (2008). Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454, 1142–1146.

Shen, B., Samaraweera, P., Rosenberg, B., and Orlow, S.J. (2001). Ocular Albinism type 1: More than meets the eye. Pigment Cell Res. 14, 243–248.

Shin, J.W., and Park, K.C. (2014). Current clinical use of depigmenting agents. Dermatologica Sin. 32, 205–210.

Siegel, R.L., Miller, K.D., and Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin 66, 7–30.

Slominski, A., Tobin, D.J., Shibahara, S., and Wortsman, J. (2004). Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 84, 1155–1228. Slominski, A., Wortsman, J., Plonka, P.M., Schallreuter, K.U., Paus, R., and Tobin, D.J. (2005). Hair follicle pigmentation. J. Invest. Dermatol. 124, 13–21. Slominski, A., Zbytek, B., and Slominski, R. (2009). Inhibitors of melanogenesis increase toxicity of cyclophosphamide and lymphocytes against melanoma cells. Int. J. Cancer 124, 1470–1477.

Solano, F., Martinez-Liarte, J.H., Jemenez-Cervantes, C., Garcia-Borron, J.C., and Lozano, J.A. (1994). Dopachrome tautomerase is a Zn-containing enzyme. Biochem. Biophys. Res. Commun. 204, 1243–1250. Solano, F., Jiménez-Cervantes, C., Martínez-Liarte, J.H., García-Borrón, J.C., Jara, J.R., and Lozano, J. a (1996). Molecular mechanism for catalysis by a new zinc-enzyme, dopachrome tautomerase. Biochem. J. 313 ( Pt 2, 447–453.

Solé, V.A., Papillon, E., Cotte, M., Walter, P., and Susini, J. (2007). A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra. Spectrochim. Acta - Part B At. Spectrosc. 62, 63–68. Solomon, E.I., Sundaram, U.M., and Machonkin, T.E. (1996). Multicopper oxidases and oxygenases. Chem. Rev. 96, 2563–2606. Spritz, R.A., Strunk, K.M., Hsieh, C.L., Sekhon, G.S., and Francke, U. (1991). Homozygous tyrosinase gene mutation in an American black with tyrosinase-negative (type IA) Oculocutaneous Albinism. Am. J. Hum. Genet. 48, 318–324.

Spritz, R.A., Oh, J., Fukai, K., Holmes, S.A., Ho, L., Chitayat, D., France, T.D.,

Page 18: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

125

Musarella, M.A., Orlow, S.J., Schnur, R.E., et al. (1997). Novel mutations of the tyrosinase (TYR) gene in type I Oculocutaneous Albinism (OCA1). Hum. Mutat. 10, 171–174. Stein, N. (2008). CHAINSAW: A program for mutating pdb files used as templates in molecular replacement. J. Appl. Crystallogr. 41, 641–643. Stenson, P.D., Mort, M., Ball, E. V, Howells, K., Phillips, A.D., Thomas, N.S., and Cooper, D.N. (2009). The Human Gene Mutation Database: 2008 update. Genome Med. 1, 13.

Strothkamp, K.G., Jolley, R.L., and Mason, H.S. (1976). Quaternary structure of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 70, 519–524.

Stura, E.A., and Wilson, I.A. (1990). Analytical and production seeding techniques. Methods 1, 38–49.

Sturm, R.A., and Larsson, M. (2009). Genetics of human iris colour and patterns. Pigment Cell Melanoma Res. 22, 544–562.

Svedine, S., Wang, T., Halaban, R., and Hebert, D.N. (2004). Carbohydrates act as sorting determinants in ER-associated degradation of tyrosinase. J. Cell Sci. 117, 2937–2949. Takechi, Y., Hara, I., Naftzger, C., Xu, Y., and Houghton, A.N. (1996). A melanosomal membrane protein is a cell surface target for melanoma therapy. Clin. Cancer Res. 2, 1837–1842.

Tessier, D.C., Thomas, D.Y., Khouri, H.E., Laliberte, F., and Vernet, T. (1991). Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene 98, 177–183. Thomson, T.M., Mattes, M.J., Roux, L., Old, L.J., and Lloyd, K.O. (1985). Pigmentation-associated glycoprotein of human melanomas and melanocytes: Definition with a mouse monoclonal antibody. J. Invest. Dermatol. 85, 169–174.

Thomson, T.M., Real, F.X., Murakami, S., Cordon-Cardo, C., Old, L.J., and Houghton, A.N. (1988). Differentiation antigens of melanocytes and melanoma: analysis of melanosome and cell surface markers of human pigmented cells with monoclonal antibodies. J Invest Dermatol 90, 459–466.

Toyofuku, K., Wada, I., Hirosaki, K., Park, J.S., Hori, Y., and Jimbow, K. (1999). Promotion of tyrosinase folding in COS 7 cells by calnexin. J. Biochem. 125, 82–89. Toyofuku, K., Wada, I., Spritz, R. a, and Hearing, V.J. (2001). The molecular basis of Oculocutaneous Albinism type 1 (OCA1): Sorting failure and degradation of mutant tyrosinases results in a lack of pigmentation. Biochem. J. 355, 259–269. Tsukamoto, K., Jackson, I.J., Urabe, K., Montague, P.M., and Hearing, V.J. (1992). A second tyrosinase-related protein, TRP-2, is a melanogenic enzyme termed DOPAchrome tautomerase. EMBO J. 11, 519–926.

Ujvari, A., Aron, R., Eisenhaure, T., Cheng, E., Parag, H.A., Smicun, Y., Halaban, R., and Hebert, D.N. (2001). Translation rate of human tyrosinase determines its N-linked glycosylation level. J. Biol. Chem. 276, 5924–5931. Urabe, K., Aroca, P., Tsukamoto, K., Mascagna, D., Palumbo, A., Prota, G., and

Page 19: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

126

Hearing, V.J. (1994). The inherent cytotoxicity of melanin precursors: A revision. BBA - Mol. Cell Res. 1221, 272–278.

Vallee, B.L., and Auld, D.S. (1993). Zinc: biological functions and coordination motif. Acc. Chem. Res. 543–551.

Vijayasaradhi, S., and Houchton, A.N. (1991). Purification of an autoantigenic 75-kDa human melanosomal glycoprotein. Int. J. Cancer 47, 298–303.

Vijayasaradhi, S., Bouchard, B., and Houghton, A.N. (1990). The melanoma antigen gp75 is the human homologue of the mouse b (brown) locus gene product. J. Exp. Med. 171, 1375–1380. Vijayasaradhi, S., Xu, Y., Bouchard, B., and Houghton, A.N. (1995). Intracellular sorting and targeting of melanosomal membrane proteins: identification of signals for sorting of the human brown locus protein, gp75. J. Cell Biol. 130, 807–820. Virador, V.M., Reyes Grajeda, J.P., Blanco-Labra, A., Mendiola-Olaya, E., Smith, G.M., Moreno, A., and Whitaker, J.R. (2010). Cloning, sequencing, purification, and crystal structure of grenache (Vitis vinifera) polyphenol oxidase. J. Agric. Food Chem. 58, 1189–1201. Volbeda, A., and Hol, W.G. (1989). Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 Å resolution. J. Mol. Biol. 209, 249–279.

Vontzalidou, A., Zoidis, G., Chaita, E., Makropoulou, M., Aligiannis, N., Lambrinidis, G., Mikros, E., and Skaltsounis, A.-L. (2012). Design, synthesis and molecular simulation studies of dihydrostilbene derivatives as potent tyrosinase inhibitors. Bioorg. Med. Chem. Lett. 22, 5523–5526.

Wang, N., and Hebert, D.N. (2006). Tyrosinase maturation through the mammalian secretory pathway: Bringing color to life. Pigment Cell Res. 19, 3–18. Wang, Y., and Androlewicz, M.J. (2000). Oligosaccharide trimming plays a role in the endoplasmic reticulum-associated degradation of tyrosinase. Biochem Biophys Res Commun 271, 22–27.

Wang, H., Qiao, Y., Chai, B., Qiu, C., and Chen, X. (2015). Identification and molecular characterization of the homogentisate pathway responsible for pyomelanin production, the major melanin constituents in Aeromonas media WS. PLoS One 10, e0120923.

Wang, T., Waters, C.T., Jakins, T., Yates, J.R., Trump, D., Bradshaw, K., and Moore, A.T. (2005). Temperature sensitive oculocutaneous albinism associated with missense changes in the tyrosinase gene. Br. J. Ophthalmol. 89, 1383–1384. Wang, Y., Guo, X., Li, W., and Lian, S. (2009). Four novel mutations of TYR gene in Chinese OCA1 patients. J. Dermatol. Sci. 53, 80–81. Wei, A., Wang, Y., Long, Y., Wang, Y., Guo, X., Zhou, Z., Zhu, W., Liu, J., Bian, X., Lian, S., et al. (2010). A comprehensive analysis reveals mutational spectra and common alleles in Chinese patients with oculocutaneous albinism. J. Invest. Dermatol. 130, 716–724. Wei, A., Yang, X., Lian, S., and Li, W. (2011). Implementation of an optimized

Page 20: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

127

strategy for genetic testing of the Chinese patients with oculocutaneous albinism. J. Dermatol. Sci. 62, 124–127.

Weijn, A., Bastiaan-Net, S., Wichers, H.J., and Mes, J.J. (2013). Melanin biosynthesis pathway in Agaricus bisporus mushrooms. Fungal Genet. Biol. 55, 42–53. Welt, S., Mattes, M.J., Grando, R., Thomson, T.M., Leonard, R.W., Zanzonico, P.B., Bigler, R.E., Yeh, S., Oettgen, H.F., and Old, L.J. (1987). Monoclonal antibody to an intracellular antigen images human melanoma transplants in nu/nu mice. Proc. Natl. Acad. Sci. U. S. A. 84, 4200–4204. Winder, A.J., and Harris, H. (1991). New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur. J. Biochem. 198, 317–326. Winder, A., Kobayashi, T., Tsukamoto, K., Urabe, K., Aroca, P., Kameyama, K., and Hearing, V.J. (1994a). The tyrosinase gene family--interactions of melanogenic proteins to regulate melanogenesis. Cell. Mol. Biol. Res. 40, 613–626. Winder, A.J., Wittbjer, A., Rosengren, E., and Rorsman, H. (1993). The mouse brown (b) locus protein has dopachrome tautomerase activity and is located in lysosomes in transfected fibroblasts. J. Cell Sci. 106 ( Pt 1, 153–166.

Winder, A.J., Wittbjer, A., Odh, G., Rosengren, E., and Rorsman, H. (1994b). The mouse brown (b) locus protein functions as a dopachrome tautomerase. Pigment Cell Res 7, 305–310. Winn, M.D., Ballard, C.C., Cowtan, K.D., Dodson, E.J., Emsley, P., Evans, P.R., Keegan, R.M., Krissinel, E.B., Leslie, A.G.W., McCoy, A., et al. (2011). Overview of the CCP 4 suite and current developments. Acta Crystallogr. Sect. D Biol. Crystallogr. 67, 235–242. Xing, R., Wang, F., Dong, L., Zheng, A.P., Wang, L., Su, W.J., and Lin, T. (2016). Inhibitory effects of Na7PMo11CuO40 on mushroom tyrosinase and melanin formation and its antimicrobial activities. Food Chem. 197, 205–211.

Xu, Y., Setaluri, V., Takechi, Y., and Houghton, a N. (1997). Sorting and secretion of a melanosome membrane protein, gp75/TRP1. J. Invest. Dermatol. 109, 788–795. Yamada, M., Sakai, K., Hayashi, M., Hozumi, Y., Abe, Y., Kawaguchi, M., Ihn, H., and Suzuki, T. (2011). Oculocutaneous Albinism Type 3: A Japanese girl with novel mutations in TYRP1 gene. J. Dermatol. Sci. 64, 217–222.

Yamaguchi, Y., and Hearing, V.J. (2014). Melanocytes and their diseases. Cold Spring Harb. Perspect. Med. 4, 1–19.

Yokoyama, K., Suzuki, H., Yasumoto, K., Tomita, Y., and Shibahara, S. (1994). Molecular cloning and functional analysis of a cDNA coding for human DOPAchrome tautomerase/tyrosinase-related protein-2. Biochim Biophys Acta 1217, 317–321.

Yoshimori, A., Oyama, T., Takahashi, S., Abe, H., Kamiya, T., Abe, T., and Tanuma, S.I. (2014). Structure-activity relationships of the thujaplicins for inhibition of human tyrosinase. Bioorganic Med. Chem. 22, 6193–6200. Zander, U., Bourenkov, G., Popov, A.N., and Sanctis, D. De (2015).

Page 21: University of Groningen Structure and activity studies of ...Reproducible improvements in order and diffraction limit of crystals of bovine mitochondrial F1-ATPase by controlled dehydration.

128

MeshAndCollect : an automated multi-crystal data-collection workflow for synchrotron macromolecular crystallography beamlines. Acta Crystallogr. Sect. D Biol. Crystallogr. 71, 2328–2343. Zecca, L., Zucca, F.A., Wilms, H., and Sulzer, D. (2003). Neuromelanin of the substantia nigra: A neuronal black hole with protective and toxic characteristics. Trends Neurosci. 26, 578–580.

Zekiri, F., Molitor, C., Mauracher, S.G., Michael, C., Mayer, R.L., Gerner, C., and Rompel, A. (2014a). Purification and characterization of tyrosinase from walnut leaves (Juglans regia). Phytochemistry 101, 5–15. Zekiri, F., Bijelic, A., Molitor, C., and Rompel, A. (2014b). Crystallization and preliminary X-ray crystallographic analysis of polyphenol oxidase from Juglans regia (jrPPO1). Acta Crystallogr. Sect. F, Struct. Biol. Commun. 70, 832–834.

Zhang, K., Li, Z., Lei, J., Pang, T., and Xu, B. (2011). Oculocutaneous Albinism Type 3 (OCA3): Analysis of Two Novel Mutations in TYRP1 Gene in Two Chinese Patients. Cell Biochem. Biophys. 61, 523–529. Zhang, Q., Dai, X., Cong, Y., Zhang, J., Chen, D.H., Dougherty, M.T., Wang, J., Ludtke, S.J., Schmid, M.F., and Chiu, W. (2013). Cryo-EM structure of a molluscan hemocyanin suggests its allosteric mechanism. Structure 21, 604–613.

Zhao, H., Zhao, Y., Nordlund, J.J., and Boissy, R.E. (1994). Human TRP-1 has tyrosine hydroxylase but no DOPA oxidase activity. Pigment Cell Res. 7, 131–140.