University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm)...

16
University of Birmingham Investigating the limits of resin-based luting composite photopolymerization through various thicknesses of indirect restorative materials Hardy, C. M. F.; Bebelman, S.; Leloup, G.; Hadis, M. A.; Palin, W. M.; Leprince, J. G. DOI: 10.1016/j.dental.2018.05.009 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): Hardy, CMF, Bebelman, S, Leloup, G, Hadis, MA, Palin, WM & Leprince, JG 2018, 'Investigating the limits of resin-based luting composite photopolymerization through various thicknesses of indirect restorative materials', Dental Materials, vol. 34, no. 9, pp. 1278-1288. https://doi.org/10.1016/j.dental.2018.05.009 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. • Users may freely distribute the URL that is used to identify this publication. • Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. • User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document. When citing, please reference the published version. Take down policy While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive. If you believe that this is the case for this document, please contact [email protected] providing details and we will remove access to the work immediately and investigate. Download date: 18. May. 2021

Transcript of University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm)...

Page 1: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

University of Birmingham

Investigating the limits of resin-based lutingcomposite photopolymerization through variousthicknesses of indirect restorative materialsHardy, C. M. F.; Bebelman, S.; Leloup, G.; Hadis, M. A.; Palin, W. M.; Leprince, J. G.

DOI:10.1016/j.dental.2018.05.009

License:Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document VersionPeer reviewed version

Citation for published version (Harvard):Hardy, CMF, Bebelman, S, Leloup, G, Hadis, MA, Palin, WM & Leprince, JG 2018, 'Investigating the limits ofresin-based luting composite photopolymerization through various thicknesses of indirect restorative materials',Dental Materials, vol. 34, no. 9, pp. 1278-1288. https://doi.org/10.1016/j.dental.2018.05.009

Link to publication on Research at Birmingham portal

General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or thecopyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposespermitted by law.

•Users may freely distribute the URL that is used to identify this publication.•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of privatestudy or non-commercial research.•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has beenuploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact [email protected] providing details and we will remove access tothe work immediately and investigate.

Download date: 18. May. 2021

Page 2: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

Investigatingthelimitsofresin-basedlutingcompositephotopolymerizationthroughvariousthicknessesofindirectrestorativematerials

C.M.F.Hardya,b,c,⁎

[email protected]

S.Bebelmanc

G.Leloupa,b,c,d

M.A.Hadise

W.M.Paline

J.G.Leprincea,b,c,d

aSchoolofDentalMedicineandStomatology,Universitecatholique (Pleasechangeallthe"a"lineto"SchoolofDentalMedicineandStomatology,atCliniquesUniversitairesSaint-Luc,UniversitecatholiquedeLouvain,Belgium")deLouvain,Belgium

bAdvancedDrugDeliveryandBiomaterials(ADDB),LouvainDrugResearchInstitute(LDRI),UniversitécatholiquedeLouvain,Brussels,Belgium

cBio-andSoft-Matter(BSMA),InstituteofCondensedMatterandNanoscience(IMCN),UniversitécatholiquedeLouvain,Louvain-la-Neuve,Belgium

dCRIBIO(CenterforResearchandEngineeringonBiomaterials),Brussels,Belgium

eBiomaterialsUnit,UniversityofBirmingham,CollegeofMedicalandDentalSciences,InstituteofClinicalSciences,SchoolofDentistry,5MillPoolWay,BirminghamB57EG,UK

⁎Correspondingauthorat:SchoolofDentalMedicineandStomatology,UniversitecatholiquedeLouvain,Belgium.

Abstract

Objective

sTodeterminethelimitationsofusinglight-curableresin-basedlutingcomposites(RBLCs)tobondindirectceramic/resin-compositerestorationsbymeasuringlighttransmittancethroughindirectrestorativematerials

andtheresultingdegreeofconversion(DC)oftheluting-compositesplacedunderneath.

Methods

Various thicknesses (0–4mm) and shades of LAVAZirconia and LAVAUltimatewere prepared and used as light curing filters. A commercial, light curable RBLC, RelyX Veneer (control)was comparedwith four

experimentalRBLCsofthefollowingcomposition:TEGDMA/BisGMA(50/50or30/70wt%,respectively);camphorquinone/amine(0.2/0.8wt%)orLucirin-TPO(0.42wt%);microfillers(55wt%)andnanofillers(10wt%).RBLCs

coveredwiththeLAVAfilterwerelight-curedfor40s,eitherwiththedual-peakBluephaseG2oranexperimentaldeviceemittingeitherintheblueorvioletvisibleband.ThesampleswereanalyzedbyRamanspectroscopyto

determineDC.Lighttransmittancethroughthefilterswasmeasuredusingacommonspectroscopytechnique.

Results

All the factorsstudiedsignificantly influencedDC (p<<0.05).RBLCswith increasedTEGDMAcontentexhibitedhigherDC.Only smalldifferenceswereobservedcomparingDCwithout filtersand filters≤1mm

(p>>0.05).Forthicknesses≥2mm,significantreductions inDCwereobserved(p<0.05).Transmittancevaluesrevealedhigher filterabsorptionat400nmthan470nm.Aminimal threshold of irradiancemeasured

throughthefiltersthatmaintainedoptimalDCfollowing40sirradiationwasidentifiedforeachRBLCformulation,andrangedbetween250–500mW/cm2.

Significance

ThisworkconfirmedthatoptimalphotopolymerizationofRBLCsthroughindirectrestorativematerials(≤4mm)andirradiationtimeof40sispossible,butonlyinsomespecificconditions.Thedeterminationofsuch

conditionsislikelytobekeytoclinicalsuccess,andallthefactorsneedtobeoptimizedaccordingly.

Page 3: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

1IntroductionClinicalstudiesdescribehighperformanceofbondedceramicrestorations(esthetics,goodsurvivalrate),notonlytorestoreanteriorteeth[1–4],butalsoforextensiveposteriorrestorations[5–7].Forbothindications,the

bondingqualityisessentialtoprovideclinicaleffectiveness,especiallyforpartialrestorations.Weaknessesinthebondinginterfacemayleadtoearlyclinicalfailures;mainlylossorfractureoftherestoration,butalsopossiblyfavorthe

occurrenceofotherissuessuchassecondarycaries,post-operativesensitivityormarginaldiscolourationduetomarginalleakage[8].

Traditionally,adual-cureresin-basedlutingcomposite(RBLC)ispreferredfortheplacementofindirectrestorations,toensureeffectivepolymerizationeventhroughthickand/oropaquerestorations.Thedual-curechemistry

supposedlycombinestheassuranceof‘dark’chemicalcuringwithsomeofthenumerousadvantagesprovidedbypurelylight-curablesystems.Thelatternotablyincludeimprovedhandlingaspects,suchasasinglepastewithoutthe

needformixing,bettercontrolofworkingtime,fastersetting,easierexcessremovalorimprovementoftheinterfacecolourstability[9].Despitetheseadvantages,veryfewworksinvestigatedtheuseofpurelylight-curablecomposites

toluteindirectrestorations[10,11].Onereportedthepossibilitytoreachan“adequate”polymerizationofaconventionalresincomposite(describedas80%ofthemaximummaterialmicrohardness)whenlightcuredthrough7.5mm

thick‘endocrowns’[11].Anotherrevealedhigherbondstrengthvalueswhenlightcurableresincompositeswereusedtolute4mmthickinlayscomparedwiththeuseofadual-cureresincomposite[10].Suchobservationsmaybe

explainedby twomajor elements: firstly, light curable resin compositesusually containmore fillers thandual cure resin cements [12], hencehigher intrinsicmechanical properties [10]. Secondly, photopolymerization processes

probablygenerateahigherconcentrationoffreeradicals,whichcanbeprofitableduringtheautoaccelerationstepindimethacrylateresins.Duringsuchstep,anynewgrowthcentrecreatedindeedleadstoefficientchainpropagation

sincethelowmobilityofthebuildingpolymerchainsreducesthelikelihoodofbimoleculartermination[13].Thisreinforcesthepotentialinterestofutilizingsolelylight-curablechemistriesnotonlytoluteveneers[14]orthininlays,

butalso thickerposterior restorations, suchasendocrowns [10,11].The importanceof effectivephotopolymerization in light-curableRBLCs, andeven those systems that includeautopolymerization chemistries, is highlighted in

numerousworks[15–18].Forexample,apreviousstudyhasreportedathree-folddecreaseinmicrohardnessofdual-cureRBLCswhenlightcuredthroughthick(4mm),comparedwiththinner(2mmorless),ornouseofindirect

ceramicfilters[15].Asimilarobservationwasmadewhenmeasuringthedegreeofconversionofadual-cureRBLC,withatwo-tofour-folddecreaseofconversionthroughopaque2mmceramicfilters[17].Theautopolymerization

step in a dual-cured system seems therefore insufficient to ensure optimal polymerization of luting composites.Hence, undercuring of dual-curematerials beneath thick indirect restorations remains a risk,which is potentially

worsenedwithsystemsthatuselight-curablechemistriesalone.Effectivepolymerizationofthelatter,isindeednecessarytoensureoptimalphysico-mechanicalproperties[13,19]andcolourstability[20,21],therebyreducingtherisk

ofinterfacialfailure.

Light transmittance through a tooth-coloured indirect restoration is significantly affected bymaterial type. Veneers are commonly fabricatedwith feldspathic glass (porcelain), which exhibit relatively high translucency,

however,moreopaquematerialsexist,especiallythosefabricatedusingmoremodernCAD/CAMprocesses,includingresin-basedcomposites,particlereinforcedceramiccomposites(e.g.lithiumdisilicatesandleucite-basedceramics)

andpolycrystallineceramics(e.g.aluminaandzirconia),thelatterofwhichareexpectedtobetheleasttranslucent(notwithstandingmodernattemptstoincreasetranslucencyofmonolithicpolycrystallinecrownsbyadjustingthe

phasestabilisationdopant,grainsize,andsoforth).Therefore,iflighttransportislimitedbytheopacityoftheindirectmaterial,otherinherentmaterialchemistriesthatcircumventtheneedforeffectivepolymerizationusinghigher

irradianceiscertainlyworthyofconsideration.

Theinterestofusingalternativephotoinitiatorsystemstotheclassicalcombinationofcamphorquinone/amine(CQ),suchasType1acylphosphineoxides,hasbeenextensivelydescribedfordirectrestorativeresincomposites.

Notably,higherfinalDCandhighermechanicalpropertieshavebeenreportedusingcuringtimesshorterthan3s[22–26].Thiswasexplainedbyhighermolarabsorptivityandquantumyieldefficiency[27,28],whicharepotentially

keyaspectsasregardslight-curingthroughindirectmaterials.Indeed,lowtransmittanceisiexpectedthroughthickindirectmateriallayers,whichexplainstherelativelylongirradiationtimesthatwereusedwhenlutingwithlight-

activated(non-dualcure)resin-composites(from40s[10]toseveralcyclesof90s[11]).

Consequently,theaimofthisworkwastodeterminethelimitsofRBLCphotopolymerizationbymeasuringlighttransmittancethroughvariousthicknessesofindirectrestorativematerialsandtheresultingdegreeofconversion

(DC)oftheresincementsplacedunderneath.ExperimentalRBLCsofvariousmonomerratiosandphotoinitiatorcontent,aswellasfiltersofdifferentmaterialsandshadeswereconsidered.

2MaterialsandMmethodsThethicknessoflargeindirectrestorationssuchasoverlaysorendocrownsisinhomogeneous(Fig.1A,B).Inordertoexperimentallymodelsuchvariabilityofthicknessinareproduciblemanner,variousCAD/CAMblockswere

usedtoprepare10mmdiameterdisc-shapedfiltersof4differentthicknesses:0.5,1,2and4mm(±0.01mm).

Page 4: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

TheCAD/CAMblocksweremadeofeitherapolycrystalline,yttria-stabilisedzirconiaceramic,LAVA-Zr(shadesA3anduncoloured−–Zr-A3andZr-U)oraresincompositeblockwithdispersedfillers,LAVAUltimate(shadesA3

andMC2–Ult-A3andUlt-MC2––Ult-A3andUlt-MC2–thelatterreportedasmoreopaque)(3M-ESPE,StPaul,MN,USA).FiveRBLCswerelight-curedthroughthesefilters:fourexperimentalformulationsandRelyXVeneer(3M-ESPE,St

Paul,MN,USA), a commercially-available light-curable RBLC used as control. Experimental formulationswere prepared tomimic the commercialmaterial (Table 1). The experimental formulations contained two proportions of

conventionalmonomersTEGDMAandBisGMAinratiosof50/50and30/70wt%,respectively.Eachresinblendcontainedeithercamphorquinone/amine(0.2/0.8wt%−–CQ)orLucirin-TPO(0.42wt%−–Lu-TPO)asthephotoinitiator.

Thedifferentcomponentswereweighedusinganelectronicanalyticalbalance(ANDFR-300-MKII,A&DINSTRUMENTSLIMITE,Abingdon,U.K.−–accuracy±100μg)andplacedsequentiallyinopaqueplasticpottopreventlight

exposure.Bariumglassmicrofillersandfumedsilicananofillerswereaddedinamountsof55/10wt%,respectively.Silanatedfillerswereused,bothforthenano-andmicro-scaleparticles.

Table1Compositionofresin-basedcompositecements.

alt-text:Table1 (Thistableisincomplete.Pleasecheckthedocumentattachedtoyourquerietocompleteit.)

Resin Fillers Monomers Photoinitiator

RelyXVeneer(3RelyXVeneer(3MESPE,StPaul,MN,USA)

Silanetreatedceramic(55–65wt%), Silanetreatedsilica(1–10wt%)andBisGMA10–20%oftotalweight

Titaniumdioxide<1wt%)

Silanetreatedsilica(1–10wt%)and TegDMA10–20%oftotalweight

Ethyl4-dimethylaminobenzoate(EDMAB)(<1wt%)

Reactedpolycaprolactonepolymer(1–10wt%) * BisGMA10-20%oftotalweightTegDMA10-20%oftotalweight*TitaniumDioxide<1wt%)Ethyl4-DimethylAminobenzoate(EDMAB)(<1wt%)Benzotriazol(<1%wt)DiphenyliodoniumHexafluorophosphate(<1wt%)*enzotriazol(<1wt%)

* Diphenyliodoniumhexafluorophosphate(<1wt%)

*

CQ50/50 Bariumglassfillerssilanated(G018-186/K6,d50=3±1μm,SchottAG,LandshutGermany)andmethacrylsilanetreatedfumedsilica(12nm,AEROSIL®R7200Aerosil7200,EvonikIndustries,Germany)inamountsof55/10wt%respectively.

50/50wt%ofBis-GMAandTegDMAresin(Sigma–Aldrich)

Camphorquinone(SigmaAldrich,CASNumber10334-26-6)asthephotoinitiatoranddimethylaminoethylmethacrylate(SigmaAldrich)asco-initiator,intheproportionsof0.2/0.8wt%

CQ30/70 70/30wt%ofBis-GMAandTegDMAresin(Sigma–Aldrich)

Fig.1ExampleofLavaUltimateE(3M-ESPE)overlayofvariablethickness(A),andthesameoverlayirradiatedwithBluePhaseG2(Ivoclar-Vivadent) (Pleaseadd(B));(C)experimentalsetuptopolymerizeRBLCthrougharestorativematerialfilter(thicknesses

rangingfrom0.5to4mm).

alt-text:Fig.1

Page 5: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

TPO50/50 50/50wt%ofBis-GMAandTegDMAresin(Sigma–Aldrich)

Lucirin-TPO(TPO,fromBASF)0.42wt%asthephotoinitiator

TPO70/30 70/30wt%ofBis-GMAandTegDMAresin(Sigma–Aldrich)

*aAccordingtomanufacturersinformations.

Bis-GMA:BisphenolAglycerolatedimethacrylate,CASNumber:1565-94-2.

TEGMA:TriethyleneGlycolDimethacrylate,CASNumber109-16-0.

Fillerswereincorporatedsequentiallyusingadualasymmetriccentrifuge(Speedmixer,FlackTek,USA)for30secondsat3500rpmforthenanofillers,andat2500rpmforthemicrofillers.Themixingprocedure(rpm,time,

etc.)waspreviouslyoptimizedinotherwork[25].

Lightsourceswereeitherthedual-peakBluephaseG2(BPG2,Ivoclar-Vivadent,Schaan,Liechtenstein;curingtipdiameter=10mm;“Highpower”)oralight-curingdevice(AURA,Lumencor,USA;curingtipdiameter=6mm)

emittingeitherintheblue(AURAblue;455–485nm)orintheviolet(AURAviolet;395–415nm);theirradianceforbothspectraloutputswascalibratedandsetataround1000mW/cm2.Theirradiancevaluesweremeasuredwiththe

ThorlabsOpticalPowerandEnergyMeterPM100USBat1020mW/cm2forAURAviolet,1030mW/cm2forAURAblueand1119mW/cm2fortheBPG2.Therelationshipbetweentheabsorptionspectraofthephotoinitiators(CQandLu-

TPO)andthecuringlightsemissionspectrawerecompared(Fig.2;[24]).

Light transmittancewasmeasuredthroughthevarious filtersusingaUV–visspectrometer (USB4000,OceanOptics,UK;n=3).The spectrometerwascoupled toa200μmoptical fibreandanopalineglassCC3cosine

corrector(3.9mmdiameterofcollectionarea,OceanOptics,UK)andcalibratedwithaNationalInstituteofStandardsandTechnology(NIST)traceablelightsource(MikropackDH2000/OceanOptics,UK).Followingcalibration,the

integrationtimewassetautomaticallywithaboxcarwidthof0andspectraaverageequals1.TheLAVAfilterswereinterposedcentrallybetweenthetipofthelightcuringunitandthecosinecorrector.Thelightdevicewasfixedina

standardizedposition,withthesurfaceofthetipparallelandincontactwiththefiltersurfaceandthefilterparallelandascloseaspossibletothecosinecorrector.Theabsoluteirradiancewascalculatedastheintegralbeneaththe

curve.

Thelighttransmittancewasmeasuredwithandwithoutapolyesterfilm,andthetransmittanceprofileshowedthattherewasnosignificantdifference(p<0,05).

TheRBLCwereplacedin1mmthick,5mmdiameterTeflonmolds,coveredoneachsidewithapolyesterfilm(≅0.1mmthick),compressedbetweentwoglassslidestoextrudeexcess,andcoveredbyaceramicfilterthroughwhich40slightirradiationwasperformedwiththelight-tipparallelandindirectcontact(Fig.1C).

Afterphotopolymerization,thesamples(n=3)werestored‘dry’,inthedarkatroomtemperatureforoneweek,beforebeinganalyzedbyRamanspectroscopy(DXRRamanMicroscope,ThermoScientific,Madison,WIUSA)to

Fig.2Emissionspectrumofinvestigatedcuringlights(presentedinrelativeirradiance,100%beingthemaximumspectralirradiance),comparedtothemolarabsorptivityofthetwophotoinitiatorsincludedintheinvestigatedmaterials,i.e.Lu-TPOandCQ.

Thedottedlinesrefertotheleft-Y-axis(Molarabsorptivity)andtheplainlinestotheright-Y-axis(Relativeirradiance).

alt-text:Fig.2

Page 6: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

determinethedegreeofconversion(DC,in%)[29]ontheupperRBLCsurface(n=3).Briefly,afrequencystabilizedsinglemodediodelaserexcitedthesamplesthrougha50x×microscopeobjective.Thespectrawereacquiredinthe

areaof1600cm−1,usinga50slit,a60sirradiation,5accumulations,andagratingof400lines/mm.ThecalculationofDCwasbasedonthedecreaseinintensityofthepeakcorrespondingtothemethacrylateC

Cgroupat1640cm−1 comparedwith anunpolymerized sample. The aromatic peak at 1610 cm−1was used as the internal standard [30].Given the small thickness of theRBLC layer (around 25 μm [31]), itwas assumed that

theDCmeasurementattheupperRBLCsurfaceofthe1mmthicksampleswasrepresentativeoftheconversionofthewholeRBLClayer.

StatisticalanalyseswereperformedwiththeJMPPro12software(SAS).One-wayANOVAwereperformedfollowedbymultiplecomparisonswithalevelofsignificanceofp=0.05;whennormaldistributionofthedatacould

notbeverified,thenon-parametricWilcoxontestwasused;whennormalitywasverified,HSDTukey’stestwasused.

3ResultsAninverselogarithmicrelationshipwasobservedbetweentransmittanceandfilterthickness.Afterlogarithmictransformationoftransmittance,linearcorrelationswithcorrelationscoefficientsbetween0.89and0.97were

observed(Fig.3).Fig.3alsoconfirmsthepreviousaffirmationthatthetransmittanceissignificantlylowerforAURAvioletthanforBPG2andAURAblue,especiallyforZr-A3.Lighttransmittanceforallthematerialsarerelatively

similarbetweenAURAblueandBPG2,althoughtransmittanceisgenerallyhigherforBPG2.

Lighttransmittancethroughtheceramicfilterswassignificantlyaffectedbythickness(p<0.0001),type,shade(p=0.0205forLAVA-Zr)aswellasbylighttype(p<0.0001),butnotforeithershadeofUltimate(p=0.4218)

(Wilcoxontest)(representativeexamplesinFig.3,fullresultsinTable2)

Table2Lighttransmittancedependingonfilterthickness,in%ofmaximumtransmittance(withoutinterpositionofanyfilter)*.

alt-text:Table2

Fig.3Transmittance(Lntransformation)asafunctionoffilterthickness,forthedifferentlights(AURAblueintwodifferentwavelengthsandBPG2).Forallfourtypesoffilters,linearcorrelationsweredrawn,andareassociatedwiththefollowing

correlationcoefficients:AURAviolet−–Ult-A3(R2=0.97),Ult-MC2(R2=0.96),Zr-A3(R2=0.91),Zr-U(R2=0.96);AURAblue−–Ult-A3(R2=0.98),Ult-MC2(R2=0.97),Zr-A3(R2=0.89),Zr-U(R2=0.92);BPG2––Ult-A3(R2=0.96),Ult-MC2(R2=0.93),

Zr-A3(R2=0.80),Zr-U(R2=0.90).Foralltransmittancedata,standarddeviationscanbefoundinTable2.

alt-text:Fig.3

Page 7: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

*Similarupper-caselettersandvariousshadesofgreyconnectinthesamerowresultswhicharenotsignificantlydifferent(basedonTuckey’stest,p=0.05).Lower-caselettersconnectinthesamecolumn(andforagivencuringlight)resultswhicharenotsignificantlydifferentatagivenfiltrethickness(basedonTukey’stestp=0.05).**Notransmittancevaluecouldbemeasured.

Overall,lighttransmittancedecreasedsignificantly(p<0.05)witheachadditionalceramicfilterthickness(Table2).Thetransmittancewasgenerallylowthroughall4mmthicknessfilters,i.e.between10.9and17.5%for

BPG2,between2.4and5.0%forAURAblue,andbetween0.42and1.93forAURAviolet(Fig.3andTable2).

Thecomparisonoflighttransmittancebetweentheceramicandresincompositeofsimilarshade(A3)revealedalowertransmittanceateachthicknessforeachmaterial,respectively(purpleandredcurves,respectively,inFig.

3;Table2)foreachofthecuringlights.

TheeffectoffiltershadewasmoreobviousforLAVA-Zr,withasignificantlylowertransmittancethroughZr-A3thanZr-Uateachthickness(purpleandorangecurves,respectively,inFig.3)andforallthreelights(Table2).For

LAVA-Ult,atendencyofhighertransmittancewasobservedforUlt-A3ascomparedtoUlt-MC2,butthedifferenceswerenotstatisticallysignificantinallconditions(redandgreencurves,respectively,inFig.3;Table2).

BPG2seemedtobeassociatedwithhigherpercentageoftransmittancethanAURAforeachthicknessandmaterialtype.ThesameobservationcouldbedoneforAURAblueascomparedtoAURAviolet,thelatteryieldingthe

lowesttransmittancevalues(Table2).

RegardingDC,thetypeofRBLC(p=0,0001,Wilcoxontest),photoinitiatorandmonomerscontents(p<0,0001), filtertype(p=0,0005), filtershade(p=0,0061 forLAVA-Zr)and light (p<0,0001) aswell as thickness

(p=0,0001)allsignificantlyinfluencedthevalues,exceptfortheshadeofUltimate(p=0.5349)(Wilcoxontest).

Page 8: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

InordertoidentifytherelationshipbetweenlighttransmittanceandRBLCconversion,DCwasplottedagainsttransmittance(Fig.4).Thereby,itispossibletoidentifythetransmittancethresholdnecessarytomaintainoptimal

DCafter40sirradiationforeachRBLCformulationandcuringlight.Forallconditions,DCcurvesinflectionwaslocatedbetween250and500mW/cm2.

ForexperimentalCQcompositions,BPG2andAURAbluearecomparableforCQ50/50,andBPG2wasslightlymoreefficientforCQ70/30(blueandredcurves,respectively,inFig.4).ForexperimentalLu-TPO-basedmaterials,

AURAvioletismoreefficientateachleveloftransmittancethanBPG2(greenandpurplecurves,respectively;Fig.4).Forthecommercialproduct,Rely-XVeneer,BPG2yieldsmuchhigherDCateachleveloftransmittance(orange

curveinFig.4).

WhencomparingcuringlightsefficiencyforeachRBLC(Fig.4),itappearsthatBPG2andAURAbluehaverelativelycomparableefficienciesinexperimentalCQ-basedmaterials,whileBPG2isclearlymoreefficientforthe

supposedlyCQ-basedRely-XVeneer.ForLu-TPO-basedmaterials,AURAvioletappearsasmoreefficientthanBPG2atlowirradiance.

Withoutanyfilter,theDCvaluesrangedbetween57.2and74.7%.DCofLu-TPO-RBLCwassignificantlyhigherthatCQ-basedoneatsimilarmonomerratio(p<0.05).DCof50/50TEGDMA/Bis-GMAwassignificantlyhigher

thanDCofthe70/30ratioforasimilarphotoinitiatorsystem.ThelowestDCwasobservedforthecommercialcontrolmaterialRely-XVeneer(Fig.4andTables3–5).

Table3DegreeofconversiondependingonfilterthicknessforBluephaseG2*.

alt-text:Table3

Fig.4Degreeofconversion(%)inrelationwiththemeasuredtransmittance(mW/cm22);smoothedsplinedcurveswithlambda=0.1).ComparisonofRBLCcompositionsforeachcuringlight.ForallDCdata,thestandarddeviationsareinTable3,4and5s3–5.

alt-text:Fig.4

Page 9: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

*Similarupper-caselettersandvariousshadesofgreyconnectinthesamerowresultswhicharenotsignificantlydifferent(basedonTuckey’stest,p=0.05).Lower-caselettersconnectinthesamecolumnresultswhicharenotsignificantlydifferentatagivenfiltrethickness(basedonTukey’stestp=0.05).

Annotations:A1. Pleasesuppressthislineinthemiddleofthebox

A1

Page 10: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

A2. Thisthicklineshouldnotbethere.Pleasechangewithtablesattachedtoyourquerie

Table4DegreeofconversiondependingonfilterthicknessforAURAblue(468nm+-10nm)*.

alt-text:Table4

*Similarupper-caselettersandvariousshadesofgreyconnectinthesamerowresultswhicharenotsignificantlydifferent(basedonTuckey’stest,p=0.05).Lower-caselettersconnectinthesamecolumnresultswhicharenotsignificantlydifferentatagivenfiltrethickness(basedonStudentttest,p=0.05).

Table5DegreeofconversiondependingonfilterthicknessforAURAviolet(400nm+-10nm).

alt-text:Table5

Page 11: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

Meandegreeofconversionforthelight-curingunitAura.400nm.expressedinpercents.Theresultsinasameraw,unconnectedwiththesameletteraresignificantlydifferent(p-value0.05),fromthetestKruskal-

Wallis.Minusculelettersshowsignificantlydifferencebetweendifferentresincomposition.withinasamematerial(p-value0.05.fromtheStudent’st-test).*0isnotameasuredvalue,becausetheDCwassolowthanwecouldnotmeasureit.

WhiletheeffectofmonomerratioisimportantontheabsoluteDCvalueatagivenfilterthickness,DCvalueswithincreasingfilterthicknessandagivenphotoinitiatorsystemdecreasesimilarlyfor50/50and70/30ratios

(Tables3–5).Notably,thedropscorrespondingtosignificantdifferencescanbeobservedatsimilarfilterthicknesses.

AlthoughDCwithoutfiltersandwiththinfilterswerehigherforLu-TPO-basedRBLC,thetrendreversedwhenusingthick(4mm)filterswithBPG2(Table3).WhenusingAURAhowever,whereirradiancewascomparable

betweenvioletandbluepeaks,suchdifferenceswerenotobserved,DCofLu-TPO-basedmaterialsremaininghigherat4mm,exceptforZr-A3(Tables4and5).

Regardingfiltertype,asobservedfortransmittance,thecomparisonofDCbetweenceramicandresincompositefilterswasachievedforsimilarshade(A3),withasignificantlylowerDCforZr-A3thanforUlt-A3(Tables3–5)

foreachofthethreecuringlights.

Inrelationtowhatwasobservedfortransmittance,theeffectoffiltershadeonDCwasmoreobviousforLAVA-Zr,withasignificantlylowerDCthroughZr-A3thanZr-Uandforallthreelights(Tables3–5).ForLava-UltDCwas

higherthroughUlt-A3thanthroughUlt-MC2(Tables3–5),althoughdifferenceswerenotstatisticallysignificant(p>0.05).

Regardingthesameshadeforthetwodifferentmaterials,asignificantdifferencewasobservedbetweenZr-A3andUlt-A3fortheDCobtainedthroughthicknesses>2mm.

With regard to thickness, the use of filters≤ 1mm resulted in few significant differences inDCwhen comparedwithRBLCswithout filters. For thicknesses≥ 2mm,more significant reductions in DCwere observed,

particularlyat4mm,dependingontheceramicfilter/light/photoinitiatorcombination.Ingeneral,thecriticaldecreaseinDCwasobservedbetween2and4mm.However,forsomecombinations,nosignificantdecreaseinDCwas

observed,evenfor4mm-thickfilters(p>0.05),i.e.Rely-XVeneer−AURAblue−Ult-A3,CQ70/30–AURAblue−Zr-U,CQ50/50–BPG2––AURAblue–Ult-A3,CQ70/30–AURAblue–Zr-U,CQ50/50–BPG2– (Pleasereplaceby:i.e.Rely-XVeneercured

byAURAbluethroughUlt-A3;CQ70/30curedbyAURAbluethroughZr-U;CQ50/50curedbyBPG2throughZr-U.)Zr-U(Tables3–5).

4DiscussionThecurrentworkconfirmed thatoptimalphotopolymerizationofRBLCs through indirect restorativematerials (≤4mm)and irradiation timeof40s is possible, but only for specific conditions.Thedeterminationof such

Page 12: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

conditionsislikelytobekeytoclinicalsuccess,andallthefactorsstudiedinthepresentwork(filtermaterialtype,thicknessandshade,monomercomposition,photoinitiatorcontent,etc.)significantlyimpactedbothtransmissionand

conversion.

ThefirstobviouslimitationofthisprocedurewastoachievesufficientlighttransmittanceforoptimalpolymerisationoftheRBLCthroughtheindirectrestoration.Thesignificantimpactofmaterialshadeontransmittance

observedhereconfirmedthefindingsofpreviousstudies,i.e.thatdarkershadesledtolowertransmittancebothinceramicsandresincomposites[17,32,33].Thisinturnresultedinlowerconversionorlowermechanicalpropertiesof

RBLC[16–18].

The inverse logarithmic relationshipbetweenmaterial thicknessand transmittancedescribed inotherworks [32]wasconfirmedhere (Fig.3), the slopebeing specific to each curing light/material combination.Themost

importantdecreaseintransmittanceobservedatshorterwavelengths(AURAviolet)withtheinvestigatedmaterialsisalsoinaccordancewithpreviouswork[34],andmayrepresentalimitationforthesesystems.However,thismaybe

materialspecificanddependoneachparticularfiller,resincompositionandratio.Nevertheless,theeffectsofincreasedvioletlighttransmittancethroughindirectmaterialsareworthyoffurtherinvestigation,especiallyforRBLCs

containingphotoinitiatorchemistriesthatabsorbasshorterwavelengthbands.

ThesecondobviouslimitationtolightcuringRBLCsthroughthicklayerswasunderstandingtheexactdefinitionof“sufficient”transmittance.Perhapsasensibleapproachwouldbealighttransmittancehighenough(fora

givenirradiationtime,here40s)inordertoreachaDCcomparabletothatobtainedwithoutanyfilter.Suchthresholdcouldbeidentifiedinthecurrentworkasrangingbetween250and500mW/cm2(Fig.4).Suchpresentationofthe

dataavoidsarduousline-by-lineanalysisofthedatatables(Tables3–5),whichoftenresultsinconclusionsthatareonlyrelevanttoeachcombinationoffiltertypes,shades,curinglights,etc.TheabilitytoachieveanoptimalDCpurely

bylightcuringdependsonthecombinationofirradianceandirradiationtime.Ithasbeendescribedbeforethatthereis“noapparentlowerlimittotheirradiancethatmaygiveeffectivepolymerization,atleastdownto25mW/cm2”

[35].Thiswasreportedfordirectrestorativecomposites,inthicklayers(2mm).InthecontextofRBLCs,wherelayersaround25μmareused[31],thisstatementbecomesevenmorerelevant.Asfortheupperlimitofirradiationtime,

itwouldbedeterminedasthetimeaclinicianiswillingtodevotetothelightcuringprocedure,orriskofover-heatingthepulp.Therefore,thequestionisnotwhetheralight-curableRBLCcanbecuredoptimallythroughthickindirect

restorations,butrather,inwhatirradiationtime(providedthataminimumirradiancereachesthematerial)?Forthepresentwork,thisparameterwassetat40s;otherworks(e.g.Ref.[36]indicatedthatmaximumthicknessforan

efficientlightcureduring20sthroughceramicfiltersis2mm.Therefore,itwouldbemoreappropriatetoconsidertransmittanceratherthanfiltermaterialtype,shadeorthickness,andtoadapttheirradiationtimetoprovidespecific

indicationsforeachlutingmaterial.Curingtimeexposureisthemostcriticalparameterforoptimizingdegreeofconversion.

Withinthecurrentcuringparameters(40sirradiationtime),DCvariedsignificantlywithmonomerratio,photoinitiatortypeandcuringlight.Consideringthemonomerratio,anincreasedlowmolecularweightmonomers

(TEGDMA) content led, as expected, to higher DC for RBLCs light cured under similar conditions [37,38]. This can be explained by their high molecular mobility, which enables additional propagation in the later stages of

polymerizationreaction,i.e.whenitbecomesdiffusion-controlled[37,38].DespitetheattempttoformulatetheexperimentalRBLCsinacomparablefashiontoourcontrolcommercialmaterial(Rely-XVeneer),itappearedthatthe

optimalDCofthelatterwasinallcasesinferiortotheexperimentalformulations.Reasonsforthismayincludetheeffectofproprietarycompounds,pigmentsandothercompoundsthatactascompetitiveabsorbers,and/oraless

favorablephotoinitiatorandco-monomercombination.Furthermore,althoughco-monomerratiohadanimpactontheabsoluteDCvalues,ithadnoinfluenceontheevolutionofDCvalueswithincreasingfilterthickness,whichpurely

dependsonlighttransmission.

Regarding the photoinitiator type, DC results confirmed previously described trends that for similar irradiance, resin composites or adhesives using Lu-TPO showed higher DC than their CQ counterparts (Fig. 4)

[20,22,24,26,39,40]. Similarly, Lu-TPO-based light cured systemswere associated firstwith a lower release of un-reactedmonomers, hencewith a lower cytotoxic potential [24], and secondwith superiormechanical properties

comparedtoCQ-counterparts[23].Highermechanicalpropertiesmayleadtoamoreeffective,durableandstablebondinginterface(tooth-RBLCandRBLC-indirectrestorativematerial)overtimewithareducedsolubility[24],which

remainstobeverified.

ThehigherDCcombinedwithhighermechanicalpropertiesofLu-TPO-basedcompositesweresaidtoresultinahighercross-linkingdensity,acharacteristicwhichwasalsosuggestedtoaccountforahighercolorstability

[20,41]andan improvedresistance tohydrolyticdegradation [20] comparedwithCQ-basedmaterials.This further supports thepotential ofusingLu-TPO-basedRBLCmaterials, to reduce the riskof interfacialdegradationand

discoloration.Suchdetrimentaleffectshavebeendescribedinagreaterproportionwhenusingdual-curedmaterialscomparedwithpurelylightcuredtypes[9].Otherfactorsexplainingthehighercolorstabilitymayalsorelatetothe

oxidationprocessoftheaminepresentintheCQinitiationsystem,whichcausesdiscolouration[21].Duringphotopolymerization,aminesmayalsoformby-productsthatcanalsocauseyelloworbrowndiscolouration[42].Theabsence

ofamineinthecatalystsystembasedonLu-TPOcouldbeassociatedwithreducedshadealterationafteraging.Insummary,theuseofLu-TPOasphotoinitiatorinRBLCshaspotentialtoimproveclinicaloutcomes,bothintermsof

bondingefficiency,bondingstabilityaswellascolorstability.Thelatterisparticularlyimportantincaseofthinveneers,sincethefinalcolouroftheserestorationsafterbondingtoteethwereclearlyshowntobeinfluencedbythe

shadeoftheunderlyingstructures,includingthelutingsystem[43].

Finally,thelightspectrumandspectralirradiancehasanimportantimpactintermsofcuringefficiency.DespitetheincreasedtransmittedirradianceofBPG2(Fig.3),whichisprobablyduetothehighercombinedirradiance

Page 13: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

ofthetwodifferentspectrumpresentintheBPG2light,DCvaluesandprofilesweresimilarforCQ-basedmaterials,andhigherforAURAvioletatlowerirradiances(Fig.4).Thiscouldbeexplainedbythefactthatwhilebluepeaks

betweenBPG2andAURAbluewererelativelycomparable, thevioletpeak inBPG2correspondstoonly20%of thetotal irradiance(Fig.2).Thisresults ina lowertransmittanceof the (∼410nm)violetspectrumatagivenBPG2

transmittancevalue.Moreover,theemissionpeakofAURAvioletwaslocatedatshorterwavelengths(∼405nm),providingamoreeffectiveoverlapwithLu-TPOabsorptionspectrumthanthevioletpeakoftheBPG2(Fig.2).Forthe

commercialproductRely-XVeneer,thehigherDCresultsassociatedwithBPG2comparedwithAURAblueateachleveloftransmittancewaslikelyaresultofthebroaderspectrumofthebluepeakoftheBPG2comparedtoAURAblue,

andconsequently,alargeroverlapwiththeabsorptionspectrumofCQ.AnotherlesslikelyexplanationwouldbethepresenceofanadditionalphotoinitiatingsysteminRely-XVeneerabsorbingatlowerwavelengths,whichwouldthen

benefitfromthevioletemissionoftheBPG2.

5SignificanceThecurrentinvestigationconfirmedthat,underspecificconditions,optimalphotopolymerizationofRBLCscouldbeachievedthroughindirectrestorativematerials(≤4mm)andanirradiationtimeof40s.Suchanapproach,

whichisassociatedwithbothclinicaladvantagesandfundamental improvements inmaterialproperties,maybeviable,however,multiplefactorssuchasmonomercomposition,photoinitiatorcontent, filtermaterialandthickness

(studiedhere),andprolongedcuringtime(> 40s)shouldbeoptimizedaccordingly.

TheLu-TPO-basedRBLCprovidedhigherconversioncomparedwiththetraditionalCQsystem,providedthatsufficientlyhighirradianceinthevioletwavelengthrangewasused.

Finally,theperformanceofsuchanapproachintermsofbondstrength,bondstability,andultimatelyclinicalefficiencyshouldbeverified.

References[1]M.Fradeani,M.RedemagniandM.Corrado,Porcelainlaminateveneers:6-to12-yearclinicalevaluation—aretrospectivestudy,TheInternationaljournalofperiodontics&restorativedentistryIntJPeriodonticsRestorativeDent25

2005,9–17.

[2]M.Kern,N.Passia,M.SasseandC.Yazigi,Ten-yearoutcomeofzirconiaceramiccantileverresin-bondedfixeddentalprosthesesandtheinfluenceofthereasonsformissingincisors,JDent65,2017,51–55.

[3]M.Kern,Fifteen-yearsurvivalofanteriorall-ceramiccantileverresin-bondedfixeddentalprostheses,JDent56,2017,133–135.

[4]M.Peumans,J.DeMunck,S.Fieuws,P.Lambrechts,G.VanherleandB.VanMeerbeek,Aprospectiveten-yearclinicaltrialofporcelainveneers,ThejournalofadhesivedentistryJAdhesDent6,2004,65–76.

[5]J.W.vanDijkenandL.Hasselrot,Aprospective15-yearevaluationofextensivedentin-enamel-bondedpressedceramiccoverages,DentMater26,2010,929–939.

[6]J.J.Archibald,G.C.Santos,Jr.andM.J.MoraesCoelhoSantos,Retrospectiveclinicalevaluationofceramiconlaysplacedbydentalstudents,JProsthetDent2017.

[7] (Ref7:JDentResVol97,Issue2,2018)M.B.Blatz,M.VonderheideandJ.Conejo,TheEffectofResinBondingonLong-TermSuccessofHigh-StrengthCeramicsJournalofdentalresearcheffectofresinbondingonlong-termsuccessofhigh-strengthceramics,JDentRes2017,https://doi.org/10.1177/0022034517729134.

[8]J.L.FerracaneandT.J.Hilton,Polymerizationstress?—isitclinicallymeaningful?,DentMater32,2016,1–10.

[9]E.Kilinc,S.A.Antonson,P.C.HardiganandA.Kesercioglu,Resincementcolorstabilityanditsinfluenceonthefinalshadeofall-ceramics,JDent39(Suppl1),2011,e30–e36.

[10]A.Kameyama,K.Bonroy,C.Elsen,A.K.Luhrs,Y.Suyama,M.Peumans,etal.,LutingofCAD/CAMceramicinlays:directcompositeversusdual-curelutingcement,Bio-medicalmaterialsandengineerimedMaterEng25,2015279–288.

[11]L.Gregor,S.Bouillaguet,I.Onisor,S.Ardu,I.KrejciandG.T.Rocca,Microhardnessoflight-anddual-polymerizablelutingresinspolymerizedthrough7.5-mm-thickendocrowns,JProsthetDent112,2014,942–948.

[12]N.Kramer,U.LohbauerandR.Frankenberger,Adhesivelutingofindirectrestorations,AmJDent13,2000,60D–76D.

[13]J.G.Leprince,W.M.Palin,M.A.Hadis,J.DevauxandG.Leloup,Progressindimethacrylate-baseddentalcompositetechnologyandcuringefficiency,DentMater29,2013,139–156.

[14]L.F.daCunha,L.O.Pedroche,C.C.GonzagaandA.Y.Furuse,Esthetic,occlusal,andperiodontalrehabilitationofanteriorteethwithminimumthicknessporcelainlaminateveneers,JProsthetDent112,2014,1315–1318.

Page 14: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

[15]C.J.Soares,N.R.daSilvaandR.B.Fonseca,Influenceofthefeldspathicceramicthicknessandshadeonthemicrohardnessofdualresincement,OperDent31,2006,384–389.

[16]N.IlieandR.Hickel,Correlationbetweenceramicstranslucencyandpolymerizationefficiencythroughceramics,DentMater24,2008,908–914.

[17]S.P.Passos,E.T.Kimpara,M.A.Bottino,G.C.Santos,Jr.andA.S.Rizkalla,Effectofceramicshadeonthedegreeofconversionofadual-cureresincementanalyzedbyFTIR,DentMater29,2013,317–323.

[18]X.Meng,K.YoshidaandM.Atsuta,Influenceofceramicthicknessonmechanicalpropertiesandpolymerstructureofdual-curedresinlutingagents,DentMater24,2008,594–599.

[19]J.G.Leprince,P.Leveque,B.Nysten,B.Gallez,J.DevauxandG.Leloup,Newinsightintothedepthofcure“depthofcure”ofdimethacrylate-baseddentalcomposites,DentMater28,2012,512–520.

[20]P.P.Albuquerque,A.D.Moreira,R.R.Moraes,L.M.CavalcanteandL.F.Schneider,Colorstability,conversion,watersorptionandsolubilityofdentalcompositesformulatedwithdifferentphotoinitiatorsystems,JDent41(Suppl3),2013,e67–e72.

[21]L.R.Archegas,A.Freire,S.Vieira,D.B.CaldasandE.M.Souza,Colourstabilityandopacityofresincementsandflowablecompositesforceramicveneerlutingafteracceleratedageing,JDent39,2011,804–810.

[22]J.G.Leprince,M.Hadis,A.C.Shortall,J.L.Ferracane,J.Devaux,G.Leloup,etal.,Photoinitiatortypeandapplicabilityofexposurereciprocitylawinfilledandunfilledphotoactiveresins,DentMater27,2011,157–164.

[23]W.M.Palin,M.A.Hadis,J.G.Leprince,G.Leloup,L.Boland,G.J.Fleming,etal.,ReducedpolymerizationstressofMAPO-containingresincompositeswithincreasedcuringspeed,degreeofconversionandmechanicalproperties,DentMater30,2014,507–516.

[24]L.D.Randolph,W.M.Palin,S.Bebelman,J.Devaux,B.Gallez,G.Leloup,etal.,Ultra-fastlight-curingresincompositewithincreasedconversionandreducedmonomerelution,DentMater30,2014,594–604.

[25]L.D.Randolph,W.M.Palin,D.C.Watts,M.Genet,J.Devaux,G.Leloup,etal.,Theeffectofultra-fastphotopolymerisationofexperimentalcompositesonshrinkagestress,networkformationandpulpaltemperaturerise,DentMater30,2014,1280–1289.

[26]L.F.Schneider,L.M.Cavalcante,S.A.Prahl,C.S.PfeiferandJ.L.Ferracane,Curingefficiencyofdentalresincompositesformulatedwithcamphorquinoneortrimethylbenzoyl-diphenyl-phosphineoxide,DentMater28,2012,392–397.

[27]M.G.Neumann,W.G.Miranda,Jr.,C.C.Schmitt,F.A.RueggebergandI.C.Correa,Molarextinctioncoefficientsandthephotonabsorptionefficiencyofdentalphotoinitiatorsandlightcuringunits,JDent33,2005,525–532.

[28]M.G.Neumann,C.C.Schmitt,G.C.FerreiraandI.C.Correa,Theinitiatingradicalyieldsandtheefficiencyofpolymerizationforvariousdentalphotoinitiatorsexcitedbydifferentlightcuringunits,DentMater22,2006,576–584.

[29]C.Pianelli,J.Devaux,S.BebelmanandG.Leloup,Themicro-Ramanspectroscopy,ausefultooltodeterminethedegreeofconversionoflight-activatedcompositeresins,JBiomedMaterRes48,1999,675–681.

[30]J.G.Leprince,W.M.Palin,J.Vanacker,J.Sabbagh,J.DevauxandG.Leloup,Physico-mechanicalcharacteristicsofcommerciallyavailablebulk-fillcomposites,JDent42,2014,993–1000.

[31]A.R.Kious,H.W.RobertsandW.W.Brackett,Filmthicknessesofrecentlyintroducedlutingcements,JProsthetDent101,2009,189–192.

[32]L.MusanjeandB.W.Darvell,Curing-lightattenuationinfilled-resinrestorativematerials,DentMater22,2006,804–817.

[33]R.T.Peixoto,V.M.Paulinelli,H.H.Sander,M.D.Lanza,L.A.CuryandL.T.Poletto,Lighttransmissionthroughporcelain,DentMater23,2007,1363–1368.

[34]J.E.Harlow,F.A.Rueggeberg,D.Labrie,B.SullivanandR.B.Price,Transmissionofvioletandbluelightthroughconventional(layered)andbulkcuredresin-basedcomposites,JDent53,2016,44–50.

[35]L.MusanjeandB.W.Darvell,Polymerizationofresincompositerestorativematerials:exposurereciprocity,DentMater19,2003,531–541.

[36]N.Ilie,Transmittedirradiancethroughceramics:effectonthemechanicalpropertiesofalutingresincement,ClinicaloralinvestigationsOralInvestig21,2017,1183–1190.

[37]L.D.Randolph,J.Steinhaus,B.Moginger,B.Gallez,J.Stansbury,W.M.Palin,etal.,Photopolymerizationofhighlyfilleddimethacrylate-basedcompositesusingTypeIorTypeIIphotoinitiatorsandvaryingco-monomerratios,DentMater32,2016,136–148.

Page 15: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

QueriesandAnswersQuery:“Yourarticleisregisteredasaregularitemandisbeingprocessedforinclusioninaregularissueofthejournal.IfthisisNOTcorrectandyourarticlebelongstoaSpecialIssue/Collectionpleasecontactm.renaud@elsevier.comimmediatelypriortoreturningyourcorrections.”Answer:ok

Query:Theauthornameshavebeentaggedasgivennamesandsurnames(surnamesarehighlightedintealcolor).Pleaseconfirmiftheyhavebeenidentifiedcorrectly.Answer:ok

Query:Pleasecheckthecorrespondingauthore-mailaddressandcorrectifnecessary.Answer:Correspondingauthorat:[email protected]

Query:Pleasecheckwhetherthedesignatedcorrespondingauthoriscorrect,andamendifnecessary.Answer:Correspondingauthorat:[email protected]

Query:Pleasechecktheaddressforthecorrespondingauthorandcorrectifnecessary.Answer:Correspondingauthorat:[email protected]

Query:Asperjournalspecificationmaximum10keywordsareallowed.Kindlyprovidekeywords.Answer:Degreeofcure;Degreeofconversion;Lighttransmittance;Lighttransmission;Polymerisationkinetics;Resinbasedlutingcomposite;Indirectrestorativematerials;Lucirin-TPO;Irradiationtime;Camphorquinone

Query:Pleasecheckthehierarchyofthesectionheadingsandcorrectifnecessary.Answer:Ok

Query:Thisopeningparenthesisdoesnothaveacorrespondingclosingparenthesis.Pleaseinserttheparenthesisintheappropriateposition.Answer:Pleaseclosetheparenthesisafter(e.g.Ref.36)

Query:PleaseprovidethevolumenumberandpagerangeinRefs.[6,7].Answer:Ref6:ThearticlewasstillinPressbutnowIcanhavethecompletereference:JProsthetDent2018,Volume119,Issue5,May2018,Pages743-748.e1

[38]L.G.Lovell,S.M.NewmanandC.N.Bowman,Theeffectsoflightintensity,temperature,andcomonomercompositiononthepolymerizationbehaviorofdimethacrylatedentalresins,JournalofdentalresearchDentRes781999,1469–1476.

[39]V.MileticandA.Santini,Micro-RamanspectroscopicanalysisofthedegreeofconversionofcompositeresinscontainingdifferentinitiatorscuredbypolywaveormonowaveLEDunits,JDent40,2012,106–113.

[40]P.Pongprueksa,V.Miletic,H.Janssens,K.L.VanLanduyt,J.DeMunck,L.Godderis,etal.,DegreeofconversionandmonomerelutionofCQ/amineandTPOadhesives,DentMater30,2014,695–701.

[41]D.Manojlovic,M.D.Dramicanin,M.Lezaja,P.Pongprueksa,B.VanMeerbeekandV.Miletic,Effectofresinandphotoinitiatoroncolor,translucencyandcolorstabilityofconventionalandlow-shrinkagemodelcomposites,DentMater32,2016,183–191.

[42]N.IlieandR.Hickel,CanCQbecompletelyreplacedbyalternativeinitiatorsindentaladhesives?,DentMaterJ27,2008,221–228.

[43]D.O.Dede,O.Sahin,O.S.Ozdemir,B.Yilmaz,E.CelikandA.Koroglu,Influenceofthecolorofcompositeresinfoundationandlutingcementonthefinalcoloroflithiumdisilicateceramicsystems,JProsthetDent117,2017,138–143.

Page 16: University of Birmingham Investigating the limits of resin ... · Various thicknesses (0–4 mm) and shades of LAVA Zirconia and LAVA Ultimate were prepared and used as light curing

Query:PleasechecktheeditmadeinRef.[7],andcorrectifnecessary.Answer:Ok

Query:Pleasenotethattwosetsoffigurecaptionwereprovided.Oneinthemanuscriptandoneinaseparatefilenamed"Figurecaptions.docx".Wehaveusedtheoneprovidedinthemanuscript.Kindlycheckandcorrectifnecessary.Answer:Thereferencetothe"B"ismissing:pleaseadd"(B)"atthesecondline,after"irradiatedwithBluePhaseG2(Ivoclar-Vivadent)"

Query:Thisclosingparenthesisdoesnothaveacorrespondingopeningparenthesis.Pleaseinserttheparenthesisintheappropriateposition.Answer:PleaseremovetheparenthesisaftermW/cm2,andthecorrespondingparenthesisare"("beforemW/cm2and")"after0,1

Query:PleasecheckthepresentationofalltheTablesandcorrectifnecessary.Answer:Thefirsttableisincomplete;Theothertablescouldtakelessspace(seethedocumentattachedTables.docxplease),andthereisalinenotneededinthemiddleofthetable3Attachments:Tables.docx