UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2...

41
Fast inference with spiking networks UNIVERSITΓ„T HEIDELBERG Electronic Vision(s) Kirchhoff Institute for Physics University of Heidelberg Mihai A. Petrovici Computantional Neuroscience Group Department of Physiology University of Bern

Transcript of UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2...

Page 1: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Fast inference with

spiking networks

UNIVERSITΓ„T HEIDELBERG

Electronic Vision(s)

Kirchhoff Institute for Physics

University of Heidelberg

Mihai A. Petrovici

Computantional Neuroscience Group

Department of Physiology

University of Bern

Page 2: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Probabilistic

computation

with spikes

Page 3: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Bishop (2006)

get an estimate of the distribution of the sought function (expected value and uncertainty)

Probabilistic (Bayesian) computing: motivation

Page 4: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Rabbit/duck ambiguity

Necker cube

Knill-Kersten illusion

Probabilistic (Bayesian) computing: experimental evidence

Page 5: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Berkes et al. (2011)

Starkweather et al. (2017)

Probabilistic (Bayesian) computing: experimental evidence

Page 6: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Deep generative models

Salakhutdinov & Hinton (2009)

Probabilistic (Bayesian) computing in machine learning

Neuromorphic hardware

Schemmel et al. (2010)

Page 7: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

A system that performs probabilistic inference has to

represent probability distributions 𝑝(𝑧1, 𝑧2, … )

calculate posterior (conditional) distributions 𝑝 𝑧1, 𝑧2, … π‘§π‘˜, π‘§π‘˜+1, … )

evaluate marginal distributions 𝑝 𝑧1, 𝑧2 = 𝑝(𝑧1, 𝑧2, 𝑧3, … ) 𝑧3,𝑧4,…

Requirements for probabilistic inference

Page 8: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

𝑝 𝒛 =1

𝑍exp

1

2𝒛𝑇𝑾𝒛+ 𝒛𝑇𝒃

analytic / parametric

full state space

sampling

Representation of probability distributions

Page 9: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

temporal aspects:

increasingly correct representation

anytime computing

computational complexity aspects:

computation of contitionals is simple

marginalization is free

Sampling vs. parametric representation

Page 10: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

BΓΌsing et al. (2011), Petrovici & Bill et al. (2016)

Spike-based encoding of an ensemble state

π‘§π‘˜ = 1 neuron has spiked in [𝑑 βˆ’ 𝜏, 𝑑)

spike pattern encodes states 𝒛(𝑑)

Page 11: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Boltzmann distribution over π‘§π‘˜ ∈ 0, 1

𝑝 𝒛 =1

𝑍exp

1

2𝒛𝑇𝑾𝒛+ 𝒛𝑇𝒃

mediated by synaptic weights:

π‘’π‘˜ = π‘Šπ‘˜π‘–π‘§π‘– + π‘π‘˜

𝐾

𝑖=1

Neural computability condition

(which is equivalent to a logistic activation function 𝑝 π‘§π‘˜ = 1 𝒛\π‘˜) =1

1+exp(βˆ’π‘’π‘˜) ).

π‘’π‘˜ = log𝑝 π‘§π‘˜ = 1 𝒛\π‘˜)

𝑝 π‘§π‘˜ = 0 𝒛\π‘˜)

Emulation of Boltzmann machines

BΓΌsing et al. (2011), Petrovici & Bill et al. (2016)

π‘§π‘˜ = 1 neuron has spiked in [𝑑 βˆ’ 𝜏, 𝑑)

spike pattern encodes states 𝒛(𝑑)

Page 12: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

abstract neural sampling model, BΓΌsing et al. (2011)

Emulation of Boltzmann machines

Neural computability condition

(which is equivalent to a logistic activation function 𝑝 π‘§π‘˜ = 1 𝒛\π‘˜) =1

1+exp(βˆ’π‘’π‘˜) ).

π‘’π‘˜ = log𝑝 π‘§π‘˜ = 1 𝒛\π‘˜)

𝑝 π‘§π‘˜ = 0 𝒛\π‘˜)

Page 13: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

β‡’ 𝑝spike β‰ˆ erf 𝛼 β‹… 𝑒eff βˆ’ 𝑒0

β‰ˆ 𝜎 𝛼 β‹… 𝑒eff βˆ’ 𝑒0

𝑒thresh

logistic fit for

parameter transformation

(predicted)

free membrane potential distribution

logistic function

Idea: Stochasticity by Poisson background

unfortunately, neurons are a bit more complicated…

Page 14: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

noise source: Poisson spike trains

high background firing rates

relatively low synaptic weights

membrane as Ornstein-Uhlenbeck process

𝑑𝑒 𝑑 = Θ β‹… πœ‡ βˆ’ 𝑒 𝑑 𝑑𝑑 + 𝜎 π‘‘π‘Š(𝑑)

Ricciardi & Sacerdote (1979)

Θ =1

𝜏syn

πœ‡ =𝐼ext + 𝑔l 𝐸l + πœˆπ‘–π‘€π‘–πΈπ‘–

rev 𝜏syn 𝑛𝑖=1

𝑔tot

𝜎2 = πœˆπ‘– 𝑀𝑖 𝐸𝑖

rev βˆ’ πœ‡ 2𝜏syn 𝑛𝑖=1

2 𝑔tot 2

for COBA LIF:

The diffusion approximation

Page 15: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Brunel & Sergi (1998)

FPT π‘Ž, 0 ≔ inf 𝑑 β‰₯ 0: 𝑉𝑑 = π‘Ž|𝑉0 = 0

=πœ‹

𝜌𝜎2 1 + erf

𝜌

𝜎2π‘₯ exp

𝜌π‘₯2

𝜎2𝑑π‘₯

π‘Ž

0

Thomas (1975)

𝑇 = 𝜏 πœ‹ 1 + erf π‘₯ exp π‘₯2 𝑑π‘₯

πœ—eff βˆ’πœ‡/𝜎

πœŒβˆ’πœ‡/𝜎

assumption: 𝜏syn β‰ͺ 𝜏m

this allows expansion in 𝜏syn

𝜏m :

πœˆπ‘˜ =1

𝜏ref + FPT(π‘‰π‘‘β„Ž, 𝑉0)

First-passage-time calculations

however, remember that 𝜏ref β‰ˆ 𝜏syn !

membrane does not forget !

Page 16: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Moreno-Bote & Parga (2004)

assumption: 𝜏syn ≫ 𝜏m

then, the synaptic input appears quasistatic to the membrane

𝜈 = 𝜏m

𝜚 βˆ’ 𝑒

πœ— βˆ’ 𝑒

βˆ’1

𝜈 = 𝜈 𝑒 𝑝 𝑒 𝑑𝑒

∞

πœ—

however, remember that 𝜏ref β‰ˆ 𝜏syn !

adiabatic approximation does not hold !

The adiabatic approximation

Page 17: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

𝑃𝑛 = 1 βˆ’ 𝑃𝑖

π‘›βˆ’1

𝑖=1

β‹… π‘‘π‘‰π‘›βˆ’1 𝑝 π‘‰π‘›βˆ’1|π‘‰π‘›βˆ’1 > 𝑉thr 𝑑𝑉𝑛

𝑉thr

βˆ’βˆž

𝑝 𝑉𝑛|π‘‰π‘›βˆ’1

∞

𝑉thr

𝑇𝑛 = π‘‘π‘‰π‘›βˆ’1 𝑝 π‘‰π‘›βˆ’1|π‘‰π‘›βˆ’1 > 𝑉thr 𝑑𝑉𝑛

𝑉thr

βˆ’βˆž

𝑝 𝑉𝑛|π‘‰π‘›βˆ’1 𝐹𝑃𝑇(𝑉thr , 𝑉𝑛)

∞

𝑉thr

𝑝 π‘§π‘˜ = 1 =π‘‘π‘˜, refractory

𝑑total =

𝑃𝑛 𝑛 𝜏ref 𝑛

𝑃𝑛 β‹… 𝑛 𝜏ref + πœπ‘˜π‘π‘›βˆ’1

π‘˜=1 + 𝑇𝑛𝑛

πœπ‘˜π‘ = π‘‘π‘’π‘˜ 𝜏eff ln

𝜚 βˆ’ π‘’π‘˜πœ— βˆ’ π‘’π‘˜

𝑝 π‘’π‘˜|π‘’π‘˜ > πœ—, π‘’π‘˜βˆ’1

∞

πœ—

HCS !

Petrovici & Bill et al. (2016)

The membrane autocorrelation propagation

Page 18: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Petrovici & Bill et al. (2016)

(Fully visible) LIF-based Boltzmann machines

Page 19: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Probst & Petrovici et al. (2015)

Beyond Boltzmann: Spiking Bayesian networks

Page 20: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Training of RBMs/DBMs on MNIST:

- maximum likelihood learning

Δ𝑀𝑖𝑗 ∝ 𝑧𝑖𝑧𝑗 data βˆ’ 𝑧𝑖𝑧𝑗 model

Δ𝑏𝑖 ∝ 𝑧𝑖 data βˆ’ 𝑧𝑖 model

- coupled adaptive tempering

96.9 % correct classification

with less than 2000 neurons

Deep spiking discriminative architectures

Leng & Petrovici et al. (2016)

Page 21: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Deep pong

Roth, Zenk (2017)

Page 22: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Training of RBMs/DBMs on MNIST:

- maximum likelihood learning

Δ𝑀𝑖𝑗 ∝ 𝑧𝑖𝑧𝑗 data βˆ’ 𝑧𝑖𝑧𝑗 model

Δ𝑏𝑖 ∝ 𝑧𝑖 data βˆ’ 𝑧𝑖 model

- coupled adaptive tempering

96.9 % correct classification

with less than 2000 neurons

Deep spiking generative architectures

Leng & Petrovici et al. (2016)

Page 23: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Short-term plasticity enables superior mixing

Leng & Petrovici et al. (2016)

STP model: Tsodyks & Markram (1997)

Gibbs

LIF

Page 24: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

… so where does the noise come from?

1st approximation: independent Poisson sources

unrealistic in both biological & artificial systems

better: common pool of presynaptic partners

correlated inputs

deviation from target distribution

Page 25: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Embedded stochastic inference machines

more realistic: sea of noise

Jordan et al. (2015)

Page 26: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Noiseless stochastic computation

ongoing work with Dominik Dold and Ilja Bytschok

Page 27: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Physical emulation

of spiking networks

Page 28: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Diesmann (2012)

simulation speed 1520:1

compared to biological real-time

synaptic plasticity

learning

development

evolution

nature

seconds

days

years

> millennia

simulation

hours

years

millennia

> millions of years

Simulation: size & time

Page 29: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

1.000.000 times more energy-efficient

10.000 times less energy-efficient

BrainScaleS

Simulation & emulation: energy scaling

Page 30: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Hodgkin-Huxley-Model Electrophysiology

πΆπ‘šπ‘’ = 𝑔𝐿 𝑒 βˆ’ 𝐸𝐿 + 𝑔syn (𝑒 βˆ’ 𝐸syn)

𝑔K 𝑛4 𝑒 βˆ’ 𝐸K +

𝑔Na π‘š3β„Ž 𝑒 βˆ’ 𝐸Na

Adaptive Exponential I&F Model

πΆπ‘šπ‘’ = 𝑔𝐿 𝑒 βˆ’ 𝐸𝐿 + 𝑔syn 𝑒 βˆ’ 𝐸syn +

𝑔𝐿Δ𝑇 expVβˆ’V𝑇

Ξ”π‘‡βˆ’π‘€

πœπ‘€π‘€ = π‘Ž 𝑉 βˆ’ 𝐸𝐿 βˆ’ 𝑀

Analog neuromorphic hardware

HICANN chip

Schemmel et al. (2010)

Page 31: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

mixed-signal VLSI:

membrane analog

spikes digital

inherent speedup:

103 – 105

HICANN chip

Schemmel et al. (2010)

Analog neuromorphic hardware

Adaptive Exponential I&F Model

πΆπ‘šπ‘’ = 𝑔𝐿 𝑒 βˆ’ 𝐸𝐿 + 𝑔syn 𝑒 βˆ’ 𝐸syn +

𝑔𝐿Δ𝑇 expVβˆ’V𝑇

Ξ”π‘‡βˆ’π‘€

πœπ‘€π‘€ = π‘Ž 𝑉 βˆ’ 𝐸𝐿 βˆ’ 𝑀

Page 32: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Waferscale integration BrainScaleS system

Schemmel et al. (2010)

Page 33: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

4 million AdEx neurons, 1 billion conductance-based synapses, under construction

The Hybrid Modeling Facility in Heidelberg

Page 34: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Hardware is not software…

Page 35: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Petrovici & StΓΆckel et al. (2015), Petrovici et al. (2017)

LIF sampling on accelerated hardware

bio time: 100 s

software simulation: 1 s

hardware emulation: 10 ms

Page 36: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Petrovici & SchrΓΆder et al. (2017)

Robustness from structure

Page 37: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Outlook / Work in

progress

Page 38: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

spiking networks

modeling

magnetic systems

𝑝 𝑧 =1

𝑍exp

1

2π‘§π‘‡π‘Šπ‘§ + 𝑧𝑇𝑏

𝑝 𝜎 =1

𝑍exp

1

2πœŽπ‘‡π½ 𝜎 + πœŽπ‘‡π‘

ongoing work with Andreas Baumbach

Ensemble dynamics

Page 39: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Carleo & Troyer (2017)

Quantum many-body problems

Δ𝑀 βˆπœ•

πœ•π‘€

Ψ𝑀 𝐻|Ψ𝑀

Ψ𝑀 Ψ𝑀

Page 40: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

Learning rules

β€’ maximum likelihood learning

Δ𝑀𝑖𝑗 ∝ 𝑧𝑖𝑧𝑗 data βˆ’ 𝑧𝑖𝑧𝑗 model

Δ𝑏𝑖 ∝ 𝑧𝑖 data βˆ’ 𝑧𝑖 model

β€’ backprop

Δ𝑀𝑖𝑗 βˆπœ•πΈ

πœ•π‘œπ‘—

πœ•π‘œπ‘—πœ•net𝑗

πœ•netπ‘—πœ•π‘€π‘–π‘—

vs.

target

ongoing work with Joao Sacramento and Walter Senn

Page 41: UNIVERSITΓ„T HEIDELBERG - EPFLΒ Β· Boltzmann distribution over 𝑧 ∈0,1 L𝒛= 1 exp 1 2 𝒛𝑇𝑾𝒛+𝒛𝑇𝒃 mediated by synaptic weights: Q = 𝑧 + =1 Neural computability

References

β€’ Bishop, C. M. (2006). Pattern recognition. Machine Learning, 128, 1-58.

β€’ Starkweather, C. K., Babayan, B. M., Uchida, N., & Gershman, S. J. (2017). Dopamine reward prediction errors reflect hidden-state inference across time. Nature Neuroscience,

20(4), 581-589.

β€’ Berkes, P., OrbΓ‘n, G., Lengyel, M., & Fiser, J. (2011). Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science, 331(6013), 83-87.

β€’ Salakhutdinov, R., & Hinton, G. (2009, April). Deep boltzmann machines. In Artificial Intelligence and Statistics (pp. 448-455).

β€’ Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., & Millner, S. (2010, May). A wafer-scale neuromorphic hardware system for large-scale neural modeling. In Circuits and

systems (ISCAS), proceedings of 2010 IEEE international symposium on (pp. 1947-1950). IEEE.

β€’ Buesing, L., Bill, J., Nessler, B., & Maass, W. (2011). Neural dynamics as sampling: a model for stochastic computation in recurrent networks of spiking neurons. PLoS Comput Biol,

7(11), e1002211.

β€’ Petrovici, M. A., Bytschok, I., Bill, J., Schemmel, J., & Meier, K. (2015). The high-conductance state enables neural sampling in networks of LIF neurons. BMC Neuroscience, 16(1), O2.

β€’ Petrovici, M. A., Bill, J., Bytschok, I., Schemmel, J., & Meier, K. (2016). Stochastic inference with spiking neurons in the high-conductance state. Physical Review E, 94(4), 042312.

β€’ Ricciardi, L. M., & Sacerdote, L. (1979). The Ornstein-Uhlenbeck process as a model for neuronal activity. Biological cybernetics, 35(1), 1-9.

β€’ Brunel, N., & Sergi, S. (1998). Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics. Journal of theoretical Biology, 195(1), 87-95.

β€’ Moreno-Bote, R., & Parga, N. (2006). Auto-and crosscorrelograms for the spike response of leaky integrate-and-fire neurons with slow synapses. Physical review letters, 96(2),

028101.

β€’ Probst, D., Petrovici, M. A., Bytschok, I., Bill, J., Pecevski, D., Schemmel, J., & Meier, K. (2015). Probabilistic inference in discrete spaces can be implemented into networks of LIF

neurons. Frontiers in computational neuroscience, 9.

β€’ Leng, L., Petrovici, M. A., Martel, R., Bytschok, I., Breitwieser, O., Bill, J., ... & Meier, K. (2016). Spiking neural networks as superior generative and discriminative models. Cosyne

Abstracts, Salt Lake City USA.

β€’ Jordan, J., Tetzlaff, T., Petrovici, M., Breitwieser, O., Bytschok, I., Bill, J., ... & Diesmann, M. (2015). Deterministic neural networks as sources of uncorrelated noise for probabilistic

computations. BMC Neuroscience, 16(Suppl 1), P62.

β€’ Diesmann, M. (2013). The road to brain-scale simulations on K. Biosupercomput. Newslett, 8(8).

β€’ Petrovici, M. A.*, StΓΆckel*, D., Bytschok, I., Bill, J., Pfeil, T., Schemmel, J. & Meier, K. (2015). Fast sampling with neuromorphic hardware. Advances in Neural Information Processing

Systems (NIPS).

β€’ Petrovici, M. A., Schroeder, A., Breitwieser, O., GrΓΌbl, A., Schemmel, J., & Meier, K. (2017). Robustness from structure: Inference with hierarchical spiking networks on analog

neuromorphic hardware. arXiv preprint arXiv:1703.04145. (To appear in Proceedings of the ISCAS 2017.)

β€’ Petrovici, M. A., Schmitt, S., KlΓ€hn, J., StΓΆckel, D., Schroeder, A., Bellec, G., ... & GΓΌttler, M. (2017). Pattern representation and recognition with accelerated analog neuromorphic

systems. arXiv preprint arXiv:1703.06043. (To appear in Proceedings of the IJCNN 2017.)

β€’ Carleo, G., & Troyer, M. (2017). Solving the quantum many-body problem with artificial neural networks. Science, 355(6325), 602-606.