Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials...

157
Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications Cumulative Distribution Functions and Moments of Weighted Lattice Polynomials Jean-Luc Marichal University of Luxembourg

Transcript of Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials...

Page 1: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative Distribution Functions and Momentsof Weighted Lattice Polynomials

Jean-Luc Marichal

University of Luxembourg

Page 2: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Sketch of the Presentation

Part I : Weighted lattice polynomials

Definitions

Representation and characterization

Part II : Cumulative distribution functions of aggregationoperators

Weighted lattice polynomials

Applications

Page 3: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Sketch of the Presentation

Part I : Weighted lattice polynomials

Definitions

Representation and characterization

Part II : Cumulative distribution functions of aggregationoperators

Weighted lattice polynomials

Applications

Page 4: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Sketch of the Presentation

Part I : Weighted lattice polynomials

Definitions

Representation and characterization

Part II : Cumulative distribution functions of aggregationoperators

Weighted lattice polynomials

Applications

Page 5: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Part I : Weighted lattice polynomials

Page 6: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomials

Let L be a lattice with lattice operations ∧ and ∨

We assume that L is

bounded (with bottom 0 and top 1)

distributive

Definition (Birkhoff 1967)

An n-ary lattice polynomial is a well-formed expression involving nvariables x1, . . . , xn ∈ L linked by the lattice operations ∧ and ∨ inan arbitrary combination of parentheses

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

Page 7: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomials

Let L be a lattice with lattice operations ∧ and ∨

We assume that L is

bounded (with bottom 0 and top 1)

distributive

Definition (Birkhoff 1967)

An n-ary lattice polynomial is a well-formed expression involving nvariables x1, . . . , xn ∈ L linked by the lattice operations ∧ and ∨ inan arbitrary combination of parentheses

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

Page 8: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomials

Let L be a lattice with lattice operations ∧ and ∨

We assume that L is

bounded (with bottom 0 and top 1)

distributive

Definition (Birkhoff 1967)

An n-ary lattice polynomial is a well-formed expression involving nvariables x1, . . . , xn ∈ L linked by the lattice operations ∧ and ∨ inan arbitrary combination of parentheses

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

Page 9: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomials

Let L be a lattice with lattice operations ∧ and ∨

We assume that L is

bounded (with bottom 0 and top 1)

distributive

Definition (Birkhoff 1967)

An n-ary lattice polynomial is a well-formed expression involving nvariables x1, . . . , xn ∈ L linked by the lattice operations ∧ and ∨ inan arbitrary combination of parentheses

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

Page 10: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomials

Let L be a lattice with lattice operations ∧ and ∨

We assume that L is

bounded (with bottom 0 and top 1)

distributive

Definition (Birkhoff 1967)

An n-ary lattice polynomial is a well-formed expression involving nvariables x1, . . . , xn ∈ L linked by the lattice operations ∧ and ∨ inan arbitrary combination of parentheses

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

Page 11: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomial functions

Any lattice polynomial naturally defines a lattice polynomialfunction (l.p.f.) p : Ln → L.

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

If p and q represent the same function, we say that p and q areequivalent and we write p = q

Example.x1 ∨ (x1 ∧ x2) = x1

Page 12: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomial functions

Any lattice polynomial naturally defines a lattice polynomialfunction (l.p.f.) p : Ln → L.

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

If p and q represent the same function, we say that p and q areequivalent and we write p = q

Example.x1 ∨ (x1 ∧ x2) = x1

Page 13: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomial functions

Any lattice polynomial naturally defines a lattice polynomialfunction (l.p.f.) p : Ln → L.

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

If p and q represent the same function, we say that p and q areequivalent and we write p = q

Example.x1 ∨ (x1 ∧ x2) = x1

Page 14: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Lattice polynomial functions

Any lattice polynomial naturally defines a lattice polynomialfunction (l.p.f.) p : Ln → L.

Example.p(x1, x2, x3) = (x1 ∧ x2) ∨ x3

If p and q represent the same function, we say that p and q areequivalent and we write p = q

Example.x1 ∨ (x1 ∧ x2) = x1

Page 15: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of l.p.f.’s

Notation. [n] := {1, . . . , n}.

Proposition (Birkhoff 1967)

Let p : Ln → L be any l.p.f.Then there are nonconstant set functions v ,w : 2[n] → {0, 1}, withv(∅) = 0 and w(∅) = 1, such that

p(x) =∨

S⊆[n]v(S)=1

∧i∈S

xi =∧

S⊆[n]w(S)=0

∨i∈S

xi .

Example.(x1 ∧ x2) ∨ x3 = (x1 ∨ x3) ∧ (x2 ∨ x3)

v({3}) = v({1, 2}) = 1

w({1, 3}) = w({2, 3}) = 0

Page 16: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of l.p.f.’s

Notation. [n] := {1, . . . , n}.

Proposition (Birkhoff 1967)

Let p : Ln → L be any l.p.f.Then there are nonconstant set functions v ,w : 2[n] → {0, 1}, withv(∅) = 0 and w(∅) = 1, such that

p(x) =∨

S⊆[n]v(S)=1

∧i∈S

xi =∧

S⊆[n]w(S)=0

∨i∈S

xi .

Example.(x1 ∧ x2) ∨ x3 = (x1 ∨ x3) ∧ (x2 ∨ x3)

v({3}) = v({1, 2}) = 1

w({1, 3}) = w({2, 3}) = 0

Page 17: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of l.p.f.’s

Notation. [n] := {1, . . . , n}.

Proposition (Birkhoff 1967)

Let p : Ln → L be any l.p.f.Then there are nonconstant set functions v ,w : 2[n] → {0, 1}, withv(∅) = 0 and w(∅) = 1, such that

p(x) =∨

S⊆[n]v(S)=1

∧i∈S

xi =∧

S⊆[n]w(S)=0

∨i∈S

xi .

Example.(x1 ∧ x2) ∨ x3 = (x1 ∨ x3) ∧ (x2 ∨ x3)

v({3}) = v({1, 2}) = 1

w({1, 3}) = w({2, 3}) = 0

Page 18: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of l.p.f.’s

Notation. [n] := {1, . . . , n}.

Proposition (Birkhoff 1967)

Let p : Ln → L be any l.p.f.Then there are nonconstant set functions v ,w : 2[n] → {0, 1}, withv(∅) = 0 and w(∅) = 1, such that

p(x) =∨

S⊆[n]v(S)=1

∧i∈S

xi =∧

S⊆[n]w(S)=0

∨i∈S

xi .

Example.(x1 ∧ x2) ∨ x3 = (x1 ∨ x3) ∧ (x2 ∨ x3)

v({3}) = v({1, 2}) = 1

w({1, 3}) = w({2, 3}) = 0

Page 19: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The set functions v and w , which generate p, are not unique :

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2)

Notation. 1S := characteristic vector of S ⊆ [n] in {0, 1}n.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate thel.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate thel.p.f. p, only one is antitone :

w(S) = p(1[n]\S)

Page 20: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The set functions v and w , which generate p, are not unique :

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2)

Notation. 1S := characteristic vector of S ⊆ [n] in {0, 1}n.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate thel.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate thel.p.f. p, only one is antitone :

w(S) = p(1[n]\S)

Page 21: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The set functions v and w , which generate p, are not unique :

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2)

Notation. 1S := characteristic vector of S ⊆ [n] in {0, 1}n.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate thel.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate thel.p.f. p, only one is antitone :

w(S) = p(1[n]\S)

Page 22: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The set functions v and w , which generate p, are not unique :

x1 ∨ (x1 ∧ x2) = x1 = x1 ∧ (x1 ∨ x2)

Notation. 1S := characteristic vector of S ⊆ [n] in {0, 1}n.

Proposition (Marichal 2002)

From among all the set functions v that disjunctively generate thel.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate thel.p.f. p, only one is antitone :

w(S) = p(1[n]\S)

Page 23: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Consequently, any n-ary l.p.f. can always be written as

p(x) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Example. p(x) = (x1 ∧ x2) ∨ x3

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 1{2} 0 1{3} 1 1{1, 2} 1 1{1, 3} 1 0{2, 3} 1 0{1, 2, 3} 1 0

p(x) = x3 ∨ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

p(x) = (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Page 24: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Consequently, any n-ary l.p.f. can always be written as

p(x) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Example. p(x) = (x1 ∧ x2) ∨ x3

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 1{2} 0 1{3} 1 1{1, 2} 1 1{1, 3} 1 0{2, 3} 1 0{1, 2, 3} 1 0

p(x) = x3 ∨ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

p(x) = (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Page 25: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Consequently, any n-ary l.p.f. can always be written as

p(x) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Example. p(x) = (x1 ∧ x2) ∨ x3

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 1{2} 0 1{3} 1 1{1, 2} 1 1{1, 3} 1 0{2, 3} 1 0{1, 2, 3} 1 0

p(x) = x3 ∨ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

p(x) = (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Page 26: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Consequently, any n-ary l.p.f. can always be written as

p(x) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Example. p(x) = (x1 ∧ x2) ∨ x3

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 1{2} 0 1{3} 1 1{1, 2} 1 1{1, 3} 1 0{2, 3} 1 0{1, 2, 3} 1 0

p(x) = x3 ∨ (x1 ∧ x2) ∨ (x1 ∧ x3) ∨ (x2 ∧ x3) ∨ (x1 ∧ x2 ∧ x3)

p(x) = (x1 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Page 27: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular cases : order statistics

Denote by x(1), . . . , x(n) the order statistics resulting fromreordering x1, . . . , xn in the nondecreasing order : x(1) 6 · · · 6 x(n).

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. ⇐⇒ p is an order statistic

Notation. Denote by osk : Ln → L the kth order statistic function.

osk(x) := x(k)

Then we have

osk(1S) = 1 ⇐⇒ |S | > n − k + 1

osk(1[n]\S) = 0 ⇐⇒ |S | > k

Page 28: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular cases : order statistics

Denote by x(1), . . . , x(n) the order statistics resulting fromreordering x1, . . . , xn in the nondecreasing order : x(1) 6 · · · 6 x(n).

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. ⇐⇒ p is an order statistic

Notation. Denote by osk : Ln → L the kth order statistic function.

osk(x) := x(k)

Then we have

osk(1S) = 1 ⇐⇒ |S | > n − k + 1

osk(1[n]\S) = 0 ⇐⇒ |S | > k

Page 29: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular cases : order statistics

Denote by x(1), . . . , x(n) the order statistics resulting fromreordering x1, . . . , xn in the nondecreasing order : x(1) 6 · · · 6 x(n).

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. ⇐⇒ p is an order statistic

Notation. Denote by osk : Ln → L the kth order statistic function.

osk(x) := x(k)

Then we have

osk(1S) = 1 ⇐⇒ |S | > n − k + 1

osk(1[n]\S) = 0 ⇐⇒ |S | > k

Page 30: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular cases : order statistics

Denote by x(1), . . . , x(n) the order statistics resulting fromreordering x1, . . . , xn in the nondecreasing order : x(1) 6 · · · 6 x(n).

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. ⇐⇒ p is an order statistic

Notation. Denote by osk : Ln → L the kth order statistic function.

osk(x) := x(k)

Then we have

osk(1S) = 1 ⇐⇒ |S | > n − k + 1

osk(1[n]\S) = 0 ⇐⇒ |S | > k

Page 31: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular cases : order statistics

Denote by x(1), . . . , x(n) the order statistics resulting fromreordering x1, . . . , xn in the nondecreasing order : x(1) 6 · · · 6 x(n).

Proposition (Ovchinnikov 1996, Marichal 2002)

p is a symmetric l.p.f. ⇐⇒ p is an order statistic

Notation. Denote by osk : Ln → L the kth order statistic function.

osk(x) := x(k)

Then we have

osk(1S) = 1 ⇐⇒ |S | > n − k + 1

osk(1[n]\S) = 0 ⇐⇒ |S | > k

Page 32: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Weighted lattice polynomials

We can generalize the concept of l.p.f. by regarding some variablesas parameters.

Example. For c ∈ L, we consider

p(x1, x2) = (c ∨ x1) ∧ x2

Definition

p : Ln → L is an n-ary weighted lattice polynomial function (w.l.p.f.)if there exist parameters c1, . . . , cm ∈ L and a l.p.f. q : Ln+m → Lsuch that

p(x1, . . . , xn) = q(x1, . . . , xn, c1, . . . , cm)

Page 33: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Weighted lattice polynomials

We can generalize the concept of l.p.f. by regarding some variablesas parameters.

Example. For c ∈ L, we consider

p(x1, x2) = (c ∨ x1) ∧ x2

Definition

p : Ln → L is an n-ary weighted lattice polynomial function (w.l.p.f.)if there exist parameters c1, . . . , cm ∈ L and a l.p.f. q : Ln+m → Lsuch that

p(x1, . . . , xn) = q(x1, . . . , xn, c1, . . . , cm)

Page 34: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Weighted lattice polynomials

We can generalize the concept of l.p.f. by regarding some variablesas parameters.

Example. For c ∈ L, we consider

p(x1, x2) = (c ∨ x1) ∧ x2

Definition

p : Ln → L is an n-ary weighted lattice polynomial function (w.l.p.f.)if there exist parameters c1, . . . , cm ∈ L and a l.p.f. q : Ln+m → Lsuch that

p(x1, . . . , xn) = q(x1, . . . , xn, c1, . . . , cm)

Page 35: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Weighted lattice polynomials

We can generalize the concept of l.p.f. by regarding some variablesas parameters.

Example. For c ∈ L, we consider

p(x1, x2) = (c ∨ x1) ∧ x2

Definition

p : Ln → L is an n-ary weighted lattice polynomial function (w.l.p.f.)if there exist parameters c1, . . . , cm ∈ L and a l.p.f. q : Ln+m → Lsuch that

p(x1, . . . , xn) = q(x1, . . . , xn, c1, . . . , cm)

Page 36: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Lausch & Nobauer 1973)

Let p : Ln → L be any w.l.p.f.Then there are set functions v ,w : 2[n] → L such that

p(x) =∨

S⊆[n]

[v(S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[w(S) ∨

∨i∈S

xi

].

Remarks.

p is a l.p.f. if v and w range in {0, 1}, with v(∅) = 0 andw(∅) = 1.

Any w.l.p.f. is entirely determined by 2n parameters, even ifmore parameters have been considered to construct it.

Page 37: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Lausch & Nobauer 1973)

Let p : Ln → L be any w.l.p.f.Then there are set functions v ,w : 2[n] → L such that

p(x) =∨

S⊆[n]

[v(S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[w(S) ∨

∨i∈S

xi

].

Remarks.

p is a l.p.f. if v and w range in {0, 1}, with v(∅) = 0 andw(∅) = 1.

Any w.l.p.f. is entirely determined by 2n parameters, even ifmore parameters have been considered to construct it.

Page 38: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Lausch & Nobauer 1973)

Let p : Ln → L be any w.l.p.f.Then there are set functions v ,w : 2[n] → L such that

p(x) =∨

S⊆[n]

[v(S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[w(S) ∨

∨i∈S

xi

].

Remarks.

p is a l.p.f. if v and w range in {0, 1}, with v(∅) = 0 andw(∅) = 1.

Any w.l.p.f. is entirely determined by 2n parameters, even ifmore parameters have been considered to construct it.

Page 39: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Lausch & Nobauer 1973)

Let p : Ln → L be any w.l.p.f.Then there are set functions v ,w : 2[n] → L such that

p(x) =∨

S⊆[n]

[v(S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[w(S) ∨

∨i∈S

xi

].

Remarks.

p is a l.p.f. if v and w range in {0, 1}, with v(∅) = 0 andw(∅) = 1.

Any w.l.p.f. is entirely determined by 2n parameters, even ifmore parameters have been considered to construct it.

Page 40: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Lausch & Nobauer 1973)

Let p : Ln → L be any w.l.p.f.Then there are set functions v ,w : 2[n] → L such that

p(x) =∨

S⊆[n]

[v(S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[w(S) ∨

∨i∈S

xi

].

Remarks.

p is a l.p.f. if v and w range in {0, 1}, with v(∅) = 0 andw(∅) = 1.

Any w.l.p.f. is entirely determined by 2n parameters, even ifmore parameters have been considered to construct it.

Page 41: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate thew.l.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate thew.l.p.f. p, only one is antitone :

w(S) = p(1[n]\S)

Page 42: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Proposition (Marichal 2006)

From among all the set functions v that disjunctively generate thew.l.p.f. p, only one is isotone :

v(S) = p(1S)

From among all the set functions w that conjunctively generate thew.l.p.f. p, only one is antitone :

w(S) = p(1[n]\S)

Page 43: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 44: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 45: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 46: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 47: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 48: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 49: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 50: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 51: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Disjunctive and conjunctive forms of w.l.p.f.’s

Consequently, any n-ary w.l.p.f. can always be written as

p(x) =∨

S⊆[n]

[p(1S) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(1[n]\S) ∨

∨i∈S

xi

]

Example. p(x) = (c ∨ x1) ∧ x2

S p(1S ) p(1[n]\S )

∅ 0 1{1} 0 c{2} c 0{1, 2} 1 0

p(x) = (0 ∧ 1) ∨ (0 ∧ x1) ∨ (c ∧ x2) ∨ (1 ∧ x1 ∧ x2)

= (c ∧ x2) ∨ (x1 ∧ x2)

p(x) = (1 ∨ 0) ∧ (c ∨ x1) ∧ (0 ∨ x2) ∧ (0 ∨ x1 ∨ x2)

= (c ∨ x1) ∧ x2

Page 52: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in theframework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set functionµ : 2[n] → L such that µ(∅) = 0 and µ([n]) = 1.

The Sugeno integral of a function x : [n] → L with respect to µ isdefined by

Sµ(x) :=∨

S⊆[n]

[µ(S) ∧

∧i∈S

xi

]

Remark. A function f : Ln → L is an n-ary Sugeno integral if andonly if f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 53: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in theframework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set functionµ : 2[n] → L such that µ(∅) = 0 and µ([n]) = 1.

The Sugeno integral of a function x : [n] → L with respect to µ isdefined by

Sµ(x) :=∨

S⊆[n]

[µ(S) ∧

∧i∈S

xi

]

Remark. A function f : Ln → L is an n-ary Sugeno integral if andonly if f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 54: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in theframework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set functionµ : 2[n] → L such that µ(∅) = 0 and µ([n]) = 1.

The Sugeno integral of a function x : [n] → L with respect to µ isdefined by

Sµ(x) :=∨

S⊆[n]

[µ(S) ∧

∧i∈S

xi

]

Remark. A function f : Ln → L is an n-ary Sugeno integral if andonly if f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 55: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in theframework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set functionµ : 2[n] → L such that µ(∅) = 0 and µ([n]) = 1.

The Sugeno integral of a function x : [n] → L with respect to µ isdefined by

Sµ(x) :=∨

S⊆[n]

[µ(S) ∧

∧i∈S

xi

]

Remark. A function f : Ln → L is an n-ary Sugeno integral if andonly if f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 56: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in theframework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set functionµ : 2[n] → L such that µ(∅) = 0 and µ([n]) = 1.

The Sugeno integral of a function x : [n] → L with respect to µ isdefined by

Sµ(x) :=∨

S⊆[n]

[µ(S) ∧

∧i∈S

xi

]

Remark. A function f : Ln → L is an n-ary Sugeno integral if andonly if f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 57: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Let us generalize the concept of discrete Sugeno integral in theframework of bounded distributive lattices.

Definition (Sugeno 1974)

An L-valued fuzzy measure on [n] is an isotone set functionµ : 2[n] → L such that µ(∅) = 0 and µ([n]) = 1.

The Sugeno integral of a function x : [n] → L with respect to µ isdefined by

Sµ(x) :=∨

S⊆[n]

[µ(S) ∧

∧i∈S

xi

]

Remark. A function f : Ln → L is an n-ary Sugeno integral if andonly if f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 58: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Notation. The median function is the function os2 : L3 → L.

Proposition (Marichal 2006)

For any w.l.p.f. p : Ln → L, there is a fuzzy measure µ : 2[n] → Lsuch that

p(x) = median[p(1∅),Sµ(x), p(1[n])

]Corollary (Marichal 2006)

Consider a function f : Ln → L.The following assertions are equivalent :

f is a Sugeno integral

f is an idempotent w.l.p.f., that is such that f (x , . . . , x) = x

f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 59: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Notation. The median function is the function os2 : L3 → L.

Proposition (Marichal 2006)

For any w.l.p.f. p : Ln → L, there is a fuzzy measure µ : 2[n] → Lsuch that

p(x) = median[p(1∅),Sµ(x), p(1[n])

]Corollary (Marichal 2006)

Consider a function f : Ln → L.The following assertions are equivalent :

f is a Sugeno integral

f is an idempotent w.l.p.f., that is such that f (x , . . . , x) = x

f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 60: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Particular case : the Sugeno integral

Notation. The median function is the function os2 : L3 → L.

Proposition (Marichal 2006)

For any w.l.p.f. p : Ln → L, there is a fuzzy measure µ : 2[n] → Lsuch that

p(x) = median[p(1∅),Sµ(x), p(1[n])

]Corollary (Marichal 2006)

Consider a function f : Ln → L.The following assertions are equivalent :

f is a Sugeno integral

f is an idempotent w.l.p.f., that is such that f (x , . . . , x) = x

f is a w.l.p.f. fulfilling f (1∅) = 0 and f (1[n]) = 1.

Page 61: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Inclusion properties

Sugeno integrals

Lattice polynomials

Order statistics

Weighted lattice polynomials

Page 62: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

Let f : Ln → L and k ∈ [n] and define f 0k , f 1

k : Ln → L as

f 0k (x) := f (x1, . . . , xk−1, 0, xk+1, . . . , xn)

f 1k (x) := f (x1, . . . , xk−1, 1, xk+1, . . . , xn)

Remark. If f is a w.l.p.f., so are f 0k and f 1

k

Consider the following system of n functional equations, called themedian based decomposition formula

f (x) = median[f 0k (x), xk , f 1

k (x)]

(k = 1, . . . , n)

Page 63: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

Let f : Ln → L and k ∈ [n] and define f 0k , f 1

k : Ln → L as

f 0k (x) := f (x1, . . . , xk−1, 0, xk+1, . . . , xn)

f 1k (x) := f (x1, . . . , xk−1, 1, xk+1, . . . , xn)

Remark. If f is a w.l.p.f., so are f 0k and f 1

k

Consider the following system of n functional equations, called themedian based decomposition formula

f (x) = median[f 0k (x), xk , f 1

k (x)]

(k = 1, . . . , n)

Page 64: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

Let f : Ln → L and k ∈ [n] and define f 0k , f 1

k : Ln → L as

f 0k (x) := f (x1, . . . , xk−1, 0, xk+1, . . . , xn)

f 1k (x) := f (x1, . . . , xk−1, 1, xk+1, . . . , xn)

Remark. If f is a w.l.p.f., so are f 0k and f 1

k

Consider the following system of n functional equations, called themedian based decomposition formula

f (x) = median[f 0k (x), xk , f 1

k (x)]

(k = 1, . . . , n)

Page 65: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

Let f : Ln → L and k ∈ [n] and define f 0k , f 1

k : Ln → L as

f 0k (x) := f (x1, . . . , xk−1, 0, xk+1, . . . , xn)

f 1k (x) := f (x1, . . . , xk−1, 1, xk+1, . . . , xn)

Remark. If f is a w.l.p.f., so are f 0k and f 1

k

Consider the following system of n functional equations, called themedian based decomposition formula

f (x) = median[f 0k (x), xk , f 1

k (x)]

(k = 1, . . . , n)

Page 66: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

Any solution of the median based decomposition formula

f (x) = median[f 0k (x), xk , f 1

k (x)]

(k = 1, . . . , n)

is an n-ary w.l.p.f.

Example. For n = 2 we have

f (x1, x2) = median[f (x1, 0), x2, f (x1, 1)

]with

f (x1, 0) = median[f (0, 0), x1, f (1, 0)

](w.l.p.f.)

f (x1, 1) = median[f (0, 1), x1, f (1, 1)

](w.l.p.f.)

Page 67: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

Any solution of the median based decomposition formula

f (x) = median[f 0k (x), xk , f 1

k (x)]

(k = 1, . . . , n)

is an n-ary w.l.p.f.

Example. For n = 2 we have

f (x1, x2) = median[f (x1, 0), x2, f (x1, 1)

]with

f (x1, 0) = median[f (0, 0), x1, f (1, 0)

](w.l.p.f.)

f (x1, 1) = median[f (0, 1), x1, f (1, 1)

](w.l.p.f.)

Page 68: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

Any solution of the median based decomposition formula

f (x) = median[f 0k (x), xk , f 1

k (x)]

(k = 1, . . . , n)

is an n-ary w.l.p.f.

Example. For n = 2 we have

f (x1, x2) = median[f (x1, 0), x2, f (x1, 1)

]with

f (x1, 0) = median[f (0, 0), x1, f (1, 0)

](w.l.p.f.)

f (x1, 1) = median[f (0, 1), x1, f (1, 1)

](w.l.p.f.)

Page 69: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

The median based decomposition formula characterizes thew.l.p.f.’s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactlythe n-ary w.l.p.f.’s

Page 70: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

The median based decomposition formula

The median based decomposition formula characterizes thew.l.p.f.’s

Theorem (Marichal 2006)

The solutions of the median based decomposition formula are exactlythe n-ary w.l.p.f.’s

Page 71: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Part II : Cumulative distribution functions ofaggregation operators

Page 72: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

Consider

an aggregation operator A : Rn → Rn independent random variables X1, . . . ,Xn, with cumulativedistribution functions F1(x), . . . ,Fn(x)

X1...

Xn

−→ YA = A(X1, . . . ,Xn)

Problem. We are searching for the cumulative distributionfunction (c.d.f.) of YA :

FA(y) := Pr[YA 6 y ]

Page 73: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

Consider

an aggregation operator A : Rn → Rn independent random variables X1, . . . ,Xn, with cumulativedistribution functions F1(x), . . . ,Fn(x)

X1...

Xn

−→ YA = A(X1, . . . ,Xn)

Problem. We are searching for the cumulative distributionfunction (c.d.f.) of YA :

FA(y) := Pr[YA 6 y ]

Page 74: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

Consider

an aggregation operator A : Rn → Rn independent random variables X1, . . . ,Xn, with cumulativedistribution functions F1(x), . . . ,Fn(x)

X1...

Xn

−→ YA = A(X1, . . . ,Xn)

Problem. We are searching for the cumulative distributionfunction (c.d.f.) of YA :

FA(y) := Pr[YA 6 y ]

Page 75: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

Consider

an aggregation operator A : Rn → Rn independent random variables X1, . . . ,Xn, with cumulativedistribution functions F1(x), . . . ,Fn(x)

X1...

Xn

−→ YA = A(X1, . . . ,Xn)

Problem. We are searching for the cumulative distributionfunction (c.d.f.) of YA :

FA(y) := Pr[YA 6 y ]

Page 76: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

Consider

an aggregation operator A : Rn → Rn independent random variables X1, . . . ,Xn, with cumulativedistribution functions F1(x), . . . ,Fn(x)

X1...

Xn

−→ YA = A(X1, . . . ,Xn)

Problem. We are searching for the cumulative distributionfunction (c.d.f.) of YA :

FA(y) := Pr[YA 6 y ]

Page 77: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

From the c.d.f. of YA, we can calculate the expectation

E[g(YA)

]=

∫ ∞

−∞g(y) dFA(y)

for any measurable function g .

Some useful examples :

g(x) E[g(YA)

]x expected value of YA

x r raw moments of YA[x − E(YA)

]rcentral moments of YA

etx moment-generating function of YA

Page 78: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

From the c.d.f. of YA, we can calculate the expectation

E[g(YA)

]=

∫ ∞

−∞g(y) dFA(y)

for any measurable function g .

Some useful examples :

g(x) E[g(YA)

]x expected value of YA

x r raw moments of YA[x − E(YA)

]rcentral moments of YA

etx moment-generating function of YA

Page 79: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

If FA(y) is absolutely continuous, then YA has a probability densityfunction (p.d.f.)

fA(y) :=d

dyFA(y)

In this case

E[g(YA)

]=

∫ ∞

−∞g(y) fA(y) dy

Page 80: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Cumulative distribution functions of aggregation operators

If FA(y) is absolutely continuous, then YA has a probability densityfunction (p.d.f.)

fA(y) :=d

dyFA(y)

In this case

E[g(YA)

]=

∫ ∞

−∞g(y) fA(y) dy

Page 81: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : the arithmetic mean

AM(x1, . . . , xn) =1

n

n∑i=1

xi

FAM(y) is given by the convolution product of F1, . . . ,Fn

FAM(y) = (F1 ∗ · · · ∗ Fn)(ny)

For uniform random variables X1, . . . ,Xn on [0, 1], we have

FAM(y) =1

n!

n∑k=0

(−1)k(

n

k

)(ny − k)n+ (y ∈ [0, 1])

(Feller, 1971)

Page 82: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : the arithmetic mean

AM(x1, . . . , xn) =1

n

n∑i=1

xi

FAM(y) is given by the convolution product of F1, . . . ,Fn

FAM(y) = (F1 ∗ · · · ∗ Fn)(ny)

For uniform random variables X1, . . . ,Xn on [0, 1], we have

FAM(y) =1

n!

n∑k=0

(−1)k(

n

k

)(ny − k)n+ (y ∈ [0, 1])

(Feller, 1971)

Page 83: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : the arithmetic mean

AM(x1, . . . , xn) =1

n

n∑i=1

xi

FAM(y) is given by the convolution product of F1, . . . ,Fn

FAM(y) = (F1 ∗ · · · ∗ Fn)(ny)

For uniform random variables X1, . . . ,Xn on [0, 1], we have

FAM(y) =1

n!

n∑k=0

(−1)k(

n

k

)(ny − k)n+ (y ∈ [0, 1])

(Feller, 1971)

Page 84: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : the arithmetic mean

AM(x1, . . . , xn) =1

n

n∑i=1

xi

FAM(y) is given by the convolution product of F1, . . . ,Fn

FAM(y) = (F1 ∗ · · · ∗ Fn)(ny)

For uniform random variables X1, . . . ,Xn on [0, 1], we have

FAM(y) =1

n!

n∑k=0

(−1)k(

n

k

)(ny − k)n+ (y ∈ [0, 1])

(Feller, 1971)

Page 85: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : the arithmetic mean

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of FAM(y) Graph of fAM(y)

Page 86: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 87: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 88: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 89: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 90: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 91: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 92: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 93: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

TL(x1, . . . , xn) = max[0,

n∑i=1

xi − (n − 1)]

FTL(y) = Pr

[max

[0,

∑i Xi − (n − 1)

]6 y

]= Pr

[0 6 y and

∑i Xi − (n − 1) 6 y

]= Pr[0 6 y ] Pr

[ ∑i Xi 6 y + n − 1

]= H0(y) FAM

( y+n−1n

)where Hc(y) is the Heaviside function

Hc(y) = 1[c,+∞[(y)

Page 94: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of FTL(y)

Remark.FTL

(y) is discontinuous⇒ The p.d.f. does not exist

Page 95: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : Lukasiewicz t-norm

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of FTL(y)

Remark.FTL

(y) is discontinuous⇒ The p.d.f. does not exist

Page 96: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : order statistics on R

osk(x1, . . . , xn) = x(k)

Fosk (y) =∑

S⊆[n]|S |>k

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

(see e.g. David & Nagaraja 2003)

Examples.

Fos1(y) = 1−n∏

i=1

[1− Fi (y)

]Fosn(y) =

n∏i=1

Fi (y)

Page 97: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : order statistics on R

osk(x1, . . . , xn) = x(k)

Fosk (y) =∑

S⊆[n]|S |>k

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

(see e.g. David & Nagaraja 2003)

Examples.

Fos1(y) = 1−n∏

i=1

[1− Fi (y)

]Fosn(y) =

n∏i=1

Fi (y)

Page 98: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : order statistics on R

osk(x1, . . . , xn) = x(k)

Fosk (y) =∑

S⊆[n]|S |>k

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

(see e.g. David & Nagaraja 2003)

Examples.

Fos1(y) = 1−n∏

i=1

[1− Fi (y)

]Fosn(y) =

n∏i=1

Fi (y)

Page 99: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : order statistics on R

osk(x1, . . . , xn) = x(k)

Fosk (y) =∑

S⊆[n]|S |>k

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

(see e.g. David & Nagaraja 2003)

Examples.

Fos1(y) = 1−n∏

i=1

[1− Fi (y)

]Fosn(y) =

n∏i=1

Fi (y)

Page 100: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : order statistics on R

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of Fos1(y) Graph of fos1(y)

Page 101: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Example : order statistics on R

Case of n = 3 uniform random variables X1,X2,X3 on [0, 1]

Graph of Fos2(y) Graph of fos2(y)

Page 102: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Let p : Ln → L be a l.p.f. on L = [0, 1]It can be extended to an aggregation function from Rn to R.

p(x1, . . . , xn) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Note. ∧ = min, ∨ = max

Fp(y) = 1−∑

S⊆[n]p(1S )=1

∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

p(1[n]\S )=0

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

Page 103: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Let p : Ln → L be a l.p.f. on L = [0, 1]It can be extended to an aggregation function from Rn to R.

p(x1, . . . , xn) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Note. ∧ = min, ∨ = max

Fp(y) = 1−∑

S⊆[n]p(1S )=1

∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

p(1[n]\S )=0

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

Page 104: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Let p : Ln → L be a l.p.f. on L = [0, 1]It can be extended to an aggregation function from Rn to R.

p(x1, . . . , xn) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Note. ∧ = min, ∨ = max

Fp(y) = 1−∑

S⊆[n]p(1S )=1

∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

p(1[n]\S )=0

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

Page 105: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Let p : Ln → L be a l.p.f. on L = [0, 1]It can be extended to an aggregation function from Rn to R.

p(x1, . . . , xn) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Note. ∧ = min, ∨ = max

Fp(y) = 1−∑

S⊆[n]p(1S )=1

∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

p(1[n]\S )=0

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

Page 106: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Let p : Ln → L be a l.p.f. on L = [0, 1]It can be extended to an aggregation function from Rn to R.

p(x1, . . . , xn) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Note. ∧ = min, ∨ = max

Fp(y) = 1−∑

S⊆[n]p(1S )=1

∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

p(1[n]\S )=0

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

Page 107: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Let p : Ln → L be a l.p.f. on L = [0, 1]It can be extended to an aggregation function from Rn to R.

p(x1, . . . , xn) =∨

S⊆[n]p(1S )=1

∧i∈S

xi =∧

S⊆[n]p(1[n]\S )=0

∨i∈S

xi

Note. ∧ = min, ∨ = max

Fp(y) = 1−∑

S⊆[n]p(1S )=1

∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

p(1[n]\S )=0

∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

Page 108: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Example. p(x) = (x1 ∧ x2) ∨ x3

Uniform random variables X1,X2,X3 on [0, 1]

Graph of Fp(y) Graph of fp(y)

Page 109: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Consider

vp : 2[n] → R, defined by vp(S) := p(1S)

v∗p : 2[n] → R, defined by v∗p (S) = 1− vp([n] \ S)

mv : 2[n] → R, the Mobius transform of v , defined by

mv (S) :=∑T⊆S

(−1)|S |−|T | v(T )

Alternate expressions of Fp(y)

Fp(y) = 1−∑

S⊆[n]

mvp(S)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

mv∗p (S)∏i∈S

Fi (y)

Page 110: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Consider

vp : 2[n] → R, defined by vp(S) := p(1S)

v∗p : 2[n] → R, defined by v∗p (S) = 1− vp([n] \ S)

mv : 2[n] → R, the Mobius transform of v , defined by

mv (S) :=∑T⊆S

(−1)|S |−|T | v(T )

Alternate expressions of Fp(y)

Fp(y) = 1−∑

S⊆[n]

mvp(S)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

mv∗p (S)∏i∈S

Fi (y)

Page 111: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Consider

vp : 2[n] → R, defined by vp(S) := p(1S)

v∗p : 2[n] → R, defined by v∗p (S) = 1− vp([n] \ S)

mv : 2[n] → R, the Mobius transform of v , defined by

mv (S) :=∑T⊆S

(−1)|S |−|T | v(T )

Alternate expressions of Fp(y)

Fp(y) = 1−∑

S⊆[n]

mvp(S)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

mv∗p (S)∏i∈S

Fi (y)

Page 112: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Consider

vp : 2[n] → R, defined by vp(S) := p(1S)

v∗p : 2[n] → R, defined by v∗p (S) = 1− vp([n] \ S)

mv : 2[n] → R, the Mobius transform of v , defined by

mv (S) :=∑T⊆S

(−1)|S |−|T | v(T )

Alternate expressions of Fp(y)

Fp(y) = 1−∑

S⊆[n]

mvp(S)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

mv∗p (S)∏i∈S

Fi (y)

Page 113: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : lattice polynomial functions on R

Consider

vp : 2[n] → R, defined by vp(S) := p(1S)

v∗p : 2[n] → R, defined by v∗p (S) = 1− vp([n] \ S)

mv : 2[n] → R, the Mobius transform of v , defined by

mv (S) :=∑T⊆S

(−1)|S |−|T | v(T )

Alternate expressions of Fp(y)

Fp(y) = 1−∑

S⊆[n]

mvp(S)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

mv∗p (S)∏i∈S

Fi (y)

Page 114: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Let p : Rn → R be a w.l.p.f. on R = [−∞,+∞]

Notation. eS := characteristic vector of S in {−∞,+∞}n

p(x) =∨

S⊆[n]

[p(eS) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(e[n]\S) ∨

∨i∈S

xi

]

Fp(y) = 1−∑

S⊆[n]

[1− Hp(eS )(y)

] ∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

Hp(e[n]\S )(y)∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

+ alternate expressions (cf. Mobius transform)

Page 115: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Let p : Rn → R be a w.l.p.f. on R = [−∞,+∞]

Notation. eS := characteristic vector of S in {−∞,+∞}n

p(x) =∨

S⊆[n]

[p(eS) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(e[n]\S) ∨

∨i∈S

xi

]

Fp(y) = 1−∑

S⊆[n]

[1− Hp(eS )(y)

] ∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

Hp(e[n]\S )(y)∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

+ alternate expressions (cf. Mobius transform)

Page 116: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Let p : Rn → R be a w.l.p.f. on R = [−∞,+∞]

Notation. eS := characteristic vector of S in {−∞,+∞}n

p(x) =∨

S⊆[n]

[p(eS) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(e[n]\S) ∨

∨i∈S

xi

]

Fp(y) = 1−∑

S⊆[n]

[1− Hp(eS )(y)

] ∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

Hp(e[n]\S )(y)∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

+ alternate expressions (cf. Mobius transform)

Page 117: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Let p : Rn → R be a w.l.p.f. on R = [−∞,+∞]

Notation. eS := characteristic vector of S in {−∞,+∞}n

p(x) =∨

S⊆[n]

[p(eS) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(e[n]\S) ∨

∨i∈S

xi

]

Fp(y) = 1−∑

S⊆[n]

[1− Hp(eS )(y)

] ∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

Hp(e[n]\S )(y)∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

+ alternate expressions (cf. Mobius transform)

Page 118: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Let p : Rn → R be a w.l.p.f. on R = [−∞,+∞]

Notation. eS := characteristic vector of S in {−∞,+∞}n

p(x) =∨

S⊆[n]

[p(eS) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(e[n]\S) ∨

∨i∈S

xi

]

Fp(y) = 1−∑

S⊆[n]

[1− Hp(eS )(y)

] ∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

Hp(e[n]\S )(y)∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

+ alternate expressions (cf. Mobius transform)

Page 119: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Let p : Rn → R be a w.l.p.f. on R = [−∞,+∞]

Notation. eS := characteristic vector of S in {−∞,+∞}n

p(x) =∨

S⊆[n]

[p(eS) ∧

∧i∈S

xi

]=

∧S⊆[n]

[p(e[n]\S) ∨

∨i∈S

xi

]

Fp(y) = 1−∑

S⊆[n]

[1− Hp(eS )(y)

] ∏i∈[n]\S

Fi (y)∏i∈S

[1− Fi (y)

]Fp(y) =

∑S⊆[n]

Hp(e[n]\S )(y)∏i∈S

Fi (y)∏

i∈[n]\S

[1− Fi (y)

]

+ alternate expressions (cf. Mobius transform)

Page 120: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Example. p(x) = (c ∧ x1) ∨ x2

Uniform random variables X1,X2 on [0, 1]F (y) = median[0, y , 1]

S p(eS)

∅ −∞{1} c{2} +∞{1, 2} +∞

Fp(y) = F (y)�F (y)+Hc(y)[1−F (y)]

�Graph of Fp(y) for c = 1/2

Page 121: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Example. p(x) = (c ∧ x1) ∨ x2

Uniform random variables X1,X2 on [0, 1]F (y) = median[0, y , 1]

S p(eS)

∅ −∞{1} c{2} +∞{1, 2} +∞

Fp(y) = F (y)�F (y)+Hc(y)[1−F (y)]

�Graph of Fp(y) for c = 1/2

Page 122: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Example. p(x) = (c ∧ x1) ∨ x2

Uniform random variables X1,X2 on [0, 1]F (y) = median[0, y , 1]

S p(eS)

∅ −∞{1} c{2} +∞{1, 2} +∞

Fp(y) = F (y)�F (y)+Hc(y)[1−F (y)]

�Graph of Fp(y) for c = 1/2

Page 123: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Example. p(x) = (c ∧ x1) ∨ x2

Uniform random variables X1,X2 on [0, 1]F (y) = median[0, y , 1]

S p(eS)

∅ −∞{1} c{2} +∞{1, 2} +∞

Fp(y) = F (y)�F (y)+Hc(y)[1−F (y)]

�Graph of Fp(y) for c = 1/2

Page 124: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

New results : weighted lattice polynomial functions on R

Example. p(x) = (c ∧ x1) ∨ x2

Uniform random variables X1,X2 on [0, 1]F (y) = median[0, y , 1]

S p(eS)

∅ −∞{1} c{2} +∞{1, 2} +∞

Fp(y) = F (y)�F (y)+Hc(y)[1−F (y)]

�Graph of Fp(y) for c = 1/2

Page 125: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : computation of certain integrals

Example. Given a w.l.p.f. p : [0, 1]n → [0, 1] and a measurablefunction g : [0, 1] → R, compute∫

[0,1]ng[p(x)

]dx

Solution. The integral is given by E[g(Yp)

], where the variables

X1, . . . ,Xn are uniform on [0, 1]

E[g(Yp)

]= g(0) +

∑S⊆[n]

∫ p(eS )

0yn−|S |(1− y)|S | dg(y)

Page 126: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : computation of certain integrals

Example. Given a w.l.p.f. p : [0, 1]n → [0, 1] and a measurablefunction g : [0, 1] → R, compute∫

[0,1]ng[p(x)

]dx

Solution. The integral is given by E[g(Yp)

], where the variables

X1, . . . ,Xn are uniform on [0, 1]

E[g(Yp)

]= g(0) +

∑S⊆[n]

∫ p(eS )

0yn−|S |(1− y)|S | dg(y)

Page 127: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : computation of certain integrals

Example. Given a w.l.p.f. p : [0, 1]n → [0, 1] and a measurablefunction g : [0, 1] → R, compute∫

[0,1]ng[p(x)

]dx

Solution. The integral is given by E[g(Yp)

], where the variables

X1, . . . ,Xn are uniform on [0, 1]

E[g(Yp)

]= g(0) +

∑S⊆[n]

∫ p(eS )

0yn−|S |(1− y)|S | dg(y)

Page 128: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : computation of certain integrals

Example. Given a w.l.p.f. p : [0, 1]n → [0, 1] and a measurablefunction g : [0, 1] → R, compute∫

[0,1]ng[p(x)

]dx

Solution. The integral is given by E[g(Yp)

], where the variables

X1, . . . ,Xn are uniform on [0, 1]

E[g(Yp)

]= g(0) +

∑S⊆[n]

∫ p(eS )

0yn−|S |(1− y)|S | dg(y)

Page 129: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : computation of certain integrals

Sugeno integral∫[0,1]n

Sµ(x) dx =∑

S⊆[n]

∫ µ(S)

0yn−|S |(1− y)|S | dy

Example. ∫[0,1]2

[(c ∧ x1) ∨ x2

]dx =

1

2+

1

2c2 − 1

3c3

Note. Recall the expected value of the Choquet integral∫[0,1]n

Cµ(x) dx =∑

S⊆[n]

µ(S)

∫ 1

0yn−|S |(1− y)|S | dy

(Marichal 2004)

Page 130: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : computation of certain integrals

Sugeno integral∫[0,1]n

Sµ(x) dx =∑

S⊆[n]

∫ µ(S)

0yn−|S |(1− y)|S | dy

Example. ∫[0,1]2

[(c ∧ x1) ∨ x2

]dx =

1

2+

1

2c2 − 1

3c3

Note. Recall the expected value of the Choquet integral∫[0,1]n

Cµ(x) dx =∑

S⊆[n]

µ(S)

∫ 1

0yn−|S |(1− y)|S | dy

(Marichal 2004)

Page 131: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : computation of certain integrals

Sugeno integral∫[0,1]n

Sµ(x) dx =∑

S⊆[n]

∫ µ(S)

0yn−|S |(1− y)|S | dy

Example. ∫[0,1]2

[(c ∧ x1) ∨ x2

]dx =

1

2+

1

2c2 − 1

3c3

Note. Recall the expected value of the Choquet integral∫[0,1]n

Cµ(x) dx =∑

S⊆[n]

µ(S)

∫ 1

0yn−|S |(1− y)|S | dy

(Marichal 2004)

Page 132: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 133: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 134: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 135: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 136: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 137: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 138: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 139: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 140: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Consider a system made up of n indep. components C1, . . . ,Cn

Each component Ci has

a lifetime Xi

a reliability ri (t) at time t > 0

ri (t) := Pr[Xi > t] = 1− Fi (t)

X1 X2 X3

X1

X2

Assumptions :

The lifetime of a series subsystem is the minimum of thecomponent lifetimes

The lifetime of a parallel subsystem is the maximum of thecomponent lifetimes

Page 141: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Question. What is the lifetime of the following system ?

X1 X2

X3

Solution. Y = (X1 ∧ X2) ∨ X3

Page 142: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Question. What is the lifetime of the following system ?

X1 X2

X3

Solution. Y = (X1 ∧ X2) ∨ X3

Page 143: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

For a system mixing series and parallel connections :

System lifetime :Yp = p(X1, . . . ,Xn)

where p is

an n-ary l.p.f.

an n-ary w.l.p.f. if some Xi ’s are constant

We then have explicit formulas for

the c.d.f. of Yp

the expected value E[Yp]

the moments

Page 144: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

For a system mixing series and parallel connections :

System lifetime :Yp = p(X1, . . . ,Xn)

where p is

an n-ary l.p.f.

an n-ary w.l.p.f. if some Xi ’s are constant

We then have explicit formulas for

the c.d.f. of Yp

the expected value E[Yp]

the moments

Page 145: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

For a system mixing series and parallel connections :

System lifetime :Yp = p(X1, . . . ,Xn)

where p is

an n-ary l.p.f.

an n-ary w.l.p.f. if some Xi ’s are constant

We then have explicit formulas for

the c.d.f. of Yp

the expected value E[Yp]

the moments

Page 146: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

For a system mixing series and parallel connections :

System lifetime :Yp = p(X1, . . . ,Xn)

where p is

an n-ary l.p.f.

an n-ary w.l.p.f. if some Xi ’s are constant

We then have explicit formulas for

the c.d.f. of Yp

the expected value E[Yp]

the moments

Page 147: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

For a system mixing series and parallel connections :

System lifetime :Yp = p(X1, . . . ,Xn)

where p is

an n-ary l.p.f.

an n-ary w.l.p.f. if some Xi ’s are constant

We then have explicit formulas for

the c.d.f. of Yp

the expected value E[Yp]

the moments

Page 148: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

For a system mixing series and parallel connections :

System lifetime :Yp = p(X1, . . . ,Xn)

where p is

an n-ary l.p.f.

an n-ary w.l.p.f. if some Xi ’s are constant

We then have explicit formulas for

the c.d.f. of Yp

the expected value E[Yp]

the moments

Page 149: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

System reliability at time t > 0

Rp(t) := Pr[Yp > t] = 1− Fp(t)

For any measurable function g : [0,∞[→ R such that

g(∞)ri (∞) = 0 (i = 1, . . . , n)

we have

E[g(Yp)

]= g(0) +

∫ ∞

0Rp(t) dg(t)

Mean time to failure :

E[Yp] =

∫ ∞

0Rp(t) dt

Page 150: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

System reliability at time t > 0

Rp(t) := Pr[Yp > t] = 1− Fp(t)

For any measurable function g : [0,∞[→ R such that

g(∞)ri (∞) = 0 (i = 1, . . . , n)

we have

E[g(Yp)

]= g(0) +

∫ ∞

0Rp(t) dg(t)

Mean time to failure :

E[Yp] =

∫ ∞

0Rp(t) dt

Page 151: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

System reliability at time t > 0

Rp(t) := Pr[Yp > t] = 1− Fp(t)

For any measurable function g : [0,∞[→ R such that

g(∞)ri (∞) = 0 (i = 1, . . . , n)

we have

E[g(Yp)

]= g(0) +

∫ ∞

0Rp(t) dg(t)

Mean time to failure :

E[Yp] =

∫ ∞

0Rp(t) dt

Page 152: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Example. Assume ri (t) = e−λi t (i = 1, . . . , n)

E[Yp

]=

∑S⊆[n]S 6=∅

mvp(S)1∑

i∈S λi

Series system

E[Yp

]=

1∑i∈[n] λi

Parallel system

E[Yp

]=

∑S⊆[n]S 6=∅

(−1)|S |−1 1∑i∈S λi

(Barlow & Proschan 1981)

Page 153: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Example. Assume ri (t) = e−λi t (i = 1, . . . , n)

E[Yp

]=

∑S⊆[n]S 6=∅

mvp(S)1∑

i∈S λi

Series system

E[Yp

]=

1∑i∈[n] λi

Parallel system

E[Yp

]=

∑S⊆[n]S 6=∅

(−1)|S |−1 1∑i∈S λi

(Barlow & Proschan 1981)

Page 154: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Example. Assume ri (t) = e−λi t (i = 1, . . . , n)

E[Yp

]=

∑S⊆[n]S 6=∅

mvp(S)1∑

i∈S λi

Series system

E[Yp

]=

1∑i∈[n] λi

Parallel system

E[Yp

]=

∑S⊆[n]S 6=∅

(−1)|S |−1 1∑i∈S λi

(Barlow & Proschan 1981)

Page 155: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Example. Assume ri (t) = e−λi t (i = 1, . . . , n)

E[Yp

]=

∑S⊆[n]S 6=∅

mvp(S)1∑

i∈S λi

Series system

E[Yp

]=

1∑i∈[n] λi

Parallel system

E[Yp

]=

∑S⊆[n]S 6=∅

(−1)|S |−1 1∑i∈S λi

(Barlow & Proschan 1981)

Page 156: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Application : reliability of systems

Example. Assume ri (t) = e−λi t (i = 1, . . . , n)

E[Yp

]=

∑S⊆[n]S 6=∅

mvp(S)1∑

i∈S λi

Series system

E[Yp

]=

1∑i∈[n] λi

Parallel system

E[Yp

]=

∑S⊆[n]S 6=∅

(−1)|S |−1 1∑i∈S λi

(Barlow & Proschan 1981)

Page 157: Université du Luxembourg · 2014. 3. 6. · Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications The set functions v and w, which generate

Lattice polynomials Weighted lattice polynomials Cumulative distribution functions Applications

Thanks for your attention !