Universal MHD Turbulence and SmallScale Dynamo

58
Andrey Beresnyak Los Alamos Fellow Theoretical Division KITP seminar, 2011 Universal MHD Turbulence and Small-Scale Dynamo

Transcript of Universal MHD Turbulence and SmallScale Dynamo

Page 1: Universal MHD Turbulence and SmallScale Dynamo

Andrey BeresnyakLos Alamos Fellow

Theoretical Division

KITP seminar, 2011

Universal MHD Turbulenceand Small­Scale Dynamo

Page 2: Universal MHD Turbulence and SmallScale Dynamo

“universality”

“locality”

Page 3: Universal MHD Turbulence and SmallScale Dynamo

Universal hydrodynamic Turbulence

ONERA wind tunnel turbulence

Page 4: Universal MHD Turbulence and SmallScale Dynamo

ONERA wind tunnel turbulence

Universal hydrodynamic Turbulence

Page 5: Universal MHD Turbulence and SmallScale Dynamo

Sreenivasan 1995

Page 6: Universal MHD Turbulence and SmallScale Dynamo

Gotoh et al 2002, see also Kaneda et al 2003

Page 7: Universal MHD Turbulence and SmallScale Dynamo

Energy density in our Galaxy

Sources of energy for B and CRs:1. magneto-rotational instability2. AGN jets3. Stellar winds4. SN explosions

MHD TurbulencePlasma, cosmic rays and magnetic fields

Page 8: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Elsasser variables: Solenoidal projection:

(locality, but there is a caveat, explained later)

Page 9: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Elsasser variables: Solenoidal projection:

Dynamics is different from hydro, because there is a mean field.

Mean field (Kraichnan 1965, Iroshnikov 1963)

If universality exists, it is different from hydro.

Page 10: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Some hints from weak interaction case.

Page 11: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Page 12: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Page 13: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Page 14: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Page 15: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Isotropicallydriven MHD turbulence 0.01

0.10

Page 16: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

could be split in two equations

Page 17: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Alfvenic dynamics (a.k.a. “reduced MHD”) has essential nonlinearity:

Slow mode is passively mixed:

Page 18: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

A new universality is possible:

Page 19: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Contribution of nonlinear term has a tendencyto increase, thus leading to “strong turbulence”,

despite a strong mean field, i.e. vA>>w.

Page 20: Universal MHD Turbulence and SmallScale Dynamo

Basic properties of MHD turbulence

Goldreich­Sridhar (1995) model:

critical balance, an uncertainty relation                      

Strong cascading, ­5/3 spectra:

Page 21: Universal MHD Turbulence and SmallScale Dynamo

Energy spectral slopes: -5/3 or -3/2?Goldreich-Sridhar model predicts -5/3 but

shallower slopes are often observed in simulations.

Muller & Grappin 2005Gotoh et al 2002

(same paper claims -5/3 withoutbottleneck for B0=0 case)

MHD, strong mean field Hydro

Page 22: Universal MHD Turbulence and SmallScale Dynamo

AA

PI

Mason, Cattaneo & Boldyrev (2006) measured DA, similar to PI, and claimed precise correspondence with Boldyrev model and a new universal ­3/2 spectral slope for MHD.

Beresnyak & Lazarian (2005):

Dynamic alignment (Boldyrev, 2005)Boldyrev (2005) proposed “dynamic alignment” which will weaken the interaction and produce ­3/2 slope.

Page 23: Universal MHD Turbulence and SmallScale Dynamo

What is the physics behind alignment?

Boldyrev (2006) proposed that alignment is dynamicallycreated on each scale and is limited by the field wandering.This gives alignment proportional to the amplitude.

But this directly contradicts the above­mentioned precise symmetry 

But why alignment is scale­dependent?-3/2 slope is not well justified

Page 24: Universal MHD Turbulence and SmallScale Dynamo

Resolution study

Hydro:

Larger resolution could mean larger scales

Universality helps us to understand both hydro and MHD

Page 25: Universal MHD Turbulence and SmallScale Dynamo

Resolution study (Alfvenic turbulence)

Due to the presence of the slow mode (1-1.3 energy of the Alfvenic mode),the full Kolmogorov constant will be:

Page 26: Universal MHD Turbulence and SmallScale Dynamo

Alignment effects are limited to nonlocal range, and do not modify the ­5/3 slope of MHD turbulence

Resolution study shows convergence to 3072 data.

Page 27: Universal MHD Turbulence and SmallScale Dynamo

Locality of energy transfer

Diffuse locality of MHD turbulence is consistentwith high value of the Kolmogorov constant

Page 28: Universal MHD Turbulence and SmallScale Dynamo

Summary for balanced turbulence

• MHD turbulence has a ­5/3 spectrum and a Kolmogorov constant which is much higher than hydrodynamic constant, i.e., in MHD turbulence the energy transfer is much less efficient.

• This has implications for turbulence decay times and turbulence heating rates. E.g., the turbulent heating rate calculated using the measured energy spectrum and hydrodynamic value of the constant will be off by a factor of (4.1/1.6)^1.5 ~ 4.

• More details in Phys. Rev. Lett. 106, 075001

Page 29: Universal MHD Turbulence and SmallScale Dynamo

29

B

Imbalanced turbulence

Page 30: Universal MHD Turbulence and SmallScale Dynamo

Numerical simulations

Pseudospectral code solves MHD/hydro/RMHD equations on a grid,three­dimensional, stationary driven turbulence, explicit dissipation,

up to 30722x1024 (balanced), 1536^3(imbalanced).

Page 31: Universal MHD Turbulence and SmallScale Dynamo

Notation

w's – used in Goldreich's papersz's – used in Biskamp book

Energycascade

Geometry

Page 32: Universal MHD Turbulence and SmallScale Dynamo

obtained insimulations

Basic Measurements

Data from 1024x15362 simulations

Energycascade

Page 33: Universal MHD Turbulence and SmallScale Dynamo

Perez & Boldyrev (2009) 

obtained insimulations

Energy cascade

GS95,Lithwick et al (2007)

Strong cascading

Page 34: Universal MHD Turbulence and SmallScale Dynamo

Comparison of predictions of local models with numerics

are very easy to measure

is generally satisfied

Page 35: Universal MHD Turbulence and SmallScale Dynamo

Limit of very small imbalances

There is a smooth transitioninto GS95 model

Page 36: Universal MHD Turbulence and SmallScale Dynamo

Ene

rgy

spec

tra

of w

's

wavevector1 110 10100 100

400370

85 43

Page 37: Universal MHD Turbulence and SmallScale Dynamo

Ene

rgy

spec

tra

of w

's

wavevector1 110 10100 100

3.85.3

Page 38: Universal MHD Turbulence and SmallScale Dynamo

Powerful message from numerics:

which is also makes sense from theory.

Page 39: Universal MHD Turbulence and SmallScale Dynamo

Cascade in Imbalanced Turbulence?

Suppose, one of the waves is cascaded somewhat weakerthan strong. If “-” wave have insufficient amplitude toprovide strong cascading, then:

Page 40: Universal MHD Turbulence and SmallScale Dynamo

40

GS95: uncertainty relation τ casω ~1, i.e. Λ~λvA/δw.

For weak interaction Λ~const.If for w+ Λ~const, but for w- Λ is decreasing, cascade stops?

w+ w-

w+ w-

Serious problem!

Page 41: Universal MHD Turbulence and SmallScale Dynamo

41

Uncertainty in Λassociated with local field uncertainty

B

θ=δB/B

k⊥

k

k~1/Λ; k⊥~1/λ;

δk~ k⊥ θ ; δΛ~ λB/δB~λvA/δw.

From the point of interacting eddies,mean field is not well-defined.

This is the unique feature of strong turbulence.

Page 42: Universal MHD Turbulence and SmallScale Dynamo

Imbalanced cascade is different from GS cascade

Difference in local field direction

correspond to anisotropy

τ casω ~1

(uncertainty relation)

Page 43: Universal MHD Turbulence and SmallScale Dynamo

New critical balance(field wandering)

Strong cascadingof weak wave

Weak cascading of strong wave

shear rateenergy

A model of strong imbalanced turbulence(Beresnyak & Lazarian, ApJ, 2008)

Old critical balance

(causality)

weakening factor

Asymptotic power­law solutions:

;

Page 44: Universal MHD Turbulence and SmallScale Dynamo

Numerical data support this model

λ

Λ

Page 45: Universal MHD Turbulence and SmallScale Dynamo

Strong eddies are aligned with respect to larger-scale field

Page 46: Universal MHD Turbulence and SmallScale Dynamo

dominant subdominant

imbalanced

Page 47: Universal MHD Turbulence and SmallScale Dynamo

Imbalanced turbulence

Page 48: Universal MHD Turbulence and SmallScale Dynamo

a) the energy imbalance is higher than in the case when both waves are cascaded strongly, which suggest that dominant wave is cascaded weaklyb) Time evolution of spectra suggests that strong wave have a longer dissipation timescale c) the anisotropies are different and the strong wave anisotropy is smallerd) subdominant wave eddies are aligned with respect to the local field, while dominant wave eddies are aligned with respect to larger­scale fielde) the inertial range of the dominant wave is shorterf) there is no “pinning” on dissipation scale, which suggest nonlocal cascading  

Model vs numerics:

Page 49: Universal MHD Turbulence and SmallScale Dynamo

Lithwicket al (2007)

Beresnyak &Lazarian (2008)

Chandran (2008)

Perez &Boldyrev (2009)

models

numerics

cascadingtimescales

spectralslopes

- - -

anisotropies ?

timeevolution

dissipationscale

Page 50: Universal MHD Turbulence and SmallScale Dynamo

Summary• MHD turbulence has a universal cascade, although different from hydrodynamic cascade.

• For the first time, we were able to measure the Kolmogorov constant, i.e. the efficiency of the energy transfer in MHD turbulence and explained the lack of bottleneck effect in earlier MHD simulations. 

• We now have a good idea how cascading happens in the general case, i.e., in imbalanced turbulence. In nature, imbalanced turbulence is more common than the balanced one, as sources and sinks of energy exist in a large scale mean magnetic field.

• Numerics is an efficient tool to discriminate between models, by both qualitative and quantitative means.

Page 51: Universal MHD Turbulence and SmallScale Dynamo

Large-scale dynamo L(B)>Lt

require special conditions and slow.

MHD Dynamo

Small-scale dynamo L(B)<Lt

very generic in three-dimen-sional dynamics and fast

CR shocks: Clusters

Disk galaxies:

Page 52: Universal MHD Turbulence and SmallScale Dynamo

Kazantsev-Krachnan model,see, e.g. Kazantsev, 1967,Kulsrud & Anderson 1992:

Kinematic DynamoInduction eq-n is linear

Page 53: Universal MHD Turbulence and SmallScale Dynamo

much below equipartition

Nonlinear Dynamo

Page 54: Universal MHD Turbulence and SmallScale Dynamo

exp

linear saturationEvolution oftotal magneticenergy

logs

cale

line

ar s

cale

Page 55: Universal MHD Turbulence and SmallScale Dynamo

Astrophysical Small-Scale Dynamo

Page 56: Universal MHD Turbulence and SmallScale Dynamo

MHD scale

hydrodynamiccascade

MHDcascade

Astrophysical Small-Scale Dynamo

Page 57: Universal MHD Turbulence and SmallScale Dynamo

Why Ad is so small (0.06)?

-- small-scale dynamo is a decorrelation of Elsasser fieldsthat propagates upscale, while the cascade direction is downscale

Possible answers:

-- may be our understanding of kinematic dynamo is naive?

Such as taking is bad?

Page 58: Universal MHD Turbulence and SmallScale Dynamo

forward

backward

Unexpected things!compared to Kazantsev-Kraichnan model:• growth rate is off by a factor of several,• velocity backward in time doesn't produce any growth

E_b

t

Simulations of kinematic dynamo forwardand backward in time

Solved Euler's equations (no dissipation and no Lorenz force),and induction equation with diffusivity, i.e. kinematic dynamo.