Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the...

29
Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time- domain

Transcript of Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the...

Page 1: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Universal matter-wave interferometry

from microscopic to

macroscopic

Philipp Haslinger

…in the time-domain

Page 2: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Douglas Hofstadter

Page 3: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

1923 De Broglie hypothesis

1927 Electrons

1930 He atoms & H2

1936 Neutrons

90‘s I2, He2, Na2

1995 BEC

1999 Fullerenes C60 & C70

2013 m > 10.000 amu 810 atoms

zdB vm

h

Matter-waves timeline

Page 4: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Overview

Motivation

Talbot-Lau interferometry

Talbot-Lau in the time domain (OTIMA)

Experimental protocol

Interference of molecular clusters …

Limits and outlook

Far-off-resonant Bragg interferometer

Page 5: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

MotivationProbing quantum theory on large and complex systems

Study of novel decoherence effects

Collapse models Bassi et al. Rev. Mod.Phys. 85, 471 (2013)

5th force models

Realization of a novel matter-wave interferometer scheme

Quantum enhanced metrology of nanoparticles

Relative momentum sensitivity < single photon recoil

Page 6: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

The Talbot Lau interferometer

diffractionincoherent

matter waves

intensity

Δx

detection by shift of G3

g

G1 G2 G3

v

Δx

preparation oftransversalcoherence

Page 7: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

The Talbot Lau interferometerintensity

Δx

g

G1 G2 G3

v

Δx

dBT

gL

2

dB

T

gL

2

mv

hdB

Page 8: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

The Talbot Lau interferometerintensity

Δx

g

G1 G2 G3

v

Δx

dBT

gL

2

dB

T

gL

2

mv

hdB

Page 9: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

g

ds dBmax

dB

gd

2

d

g

g

TL

s

A model interferometer

Page 10: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

The Talbot Lau interferometerintensity

Δx

g

G1 G2 G3

v

Δx

dBT

gL

2

dB

T

gL

2

mv

hdB

Page 11: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

g

ds dBmax

g

d

mv

hs max

Time - domain

g

t

m

hts max)(

mv

hdB g

g = s max

= d

A model interferometer

Page 12: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

g

d

mv

hs max

Time - domain

d

g

t

m

hts max)(

g

A model interferometer

Interference pattern of faster particles

Page 13: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

g

d

mv

hs max

Time - domain

d

g

t

m

hts max)(

g

A model interferometer

Interference pattern of slower particles

Page 14: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

g

d

mv

hs max

Time - domain

g

t

m

hts max)(

After the same time all particles with the same mass produce the same interference, regardless of their velocities!

A model interferometer

Page 15: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

After a certain time

.... all particles with the same mass

.... contribute to the same interference pattern

.... regardless of their velocity

Transition to time-domain

Cahn et al., PRL 79 (1997) Nimmrichter et al., NJP 13 (2011)

-pulsed standing laser waves as periodic ionizing gratings

nmnm

g laser 5,782

157

2

g

dBT

gL

2

h

mgTT

2

How to implement?

Page 16: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

t=0

to MCP

interferometer mirrorpulsed source TOF MS

t=TT

hmgTT /2

tsource tdetection

mass

sig

nal

200 400 600 800 1000 1200 1400 1600 1800 2000 22000

2

4

6

8

10

12

x 105

Pulsed cluster source

3 x 157 nm, = 8 nsF2 excimer laser

t=2TT

OTIMA interferometer

157 nm post

ionization

Page 17: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

t=0

to MCP

interferometer mirrorpulsed source TOF MS

t=TT

hmgTT /2

tsource tdetection

mass

sig

nal

200 400 600 800 1000 1200 1400 1600 1800 2000 22000

2

4

6

8

10

12

x 105

Pulsed cluster source

3 x 157 nm, = 8 nsF2 excimer laser

t=2TT

OTIMA interferometer

157 nm post

ionization

Page 18: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Quantum interference is revealed as a Mass-dependent signal amplification/reduction

T1 T2

Asymmetric pulses

T1 T2

Symmetric pulses⟶ Interference

m

m/2

Page 19: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

The machine

Page 20: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Δ𝑆 𝑁≡𝑆𝑦𝑚− 𝐴𝑠𝑦𝑚

𝐴𝑠𝑦𝑚

Interference pattern encodedin the mass spectrum

Haslinger et al. Nature Physics (2013)

AnthraceneC14H10

m = 178 amu

neon seedgas, vmax ≈920m/s ⟶ TT =19 µs

difference due to constructive interference

argon seedgas, vmax ≈700m/s ⟶ TT =26 µs

Page 21: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Haslinger et al. Nature Physics (2013)

Interference pattern encodedin the mass spectrum

AnthraceneC14H10

m = 178 amu

Page 22: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Clusters of the following molecules have interfered in the OTIMA interferometer recently:

3 4 5 6 7 8 9 10 11 12 13

0

0.2

0.4

0.6

0.8

cluster number

no

rm.

con

tra

st

ferrocene Fe(C5H5)2

m = 186 amu

1973

3 4 5 6 7 8 9 10 11

0

0.2

0.4

0.6

0.8

1

cluster number

no

rm.

con

tra

st

caffeine C8H10N4O2

m = 194 amu

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15-0.2

0

0.2

0.4

0.6

cluster number

no

rm.

con

tra

st

vanillin C8H8O3

m = 152 amu

Page 23: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

• S. Nimmrichter et al.Concept of a time-domain ionizing matter-wave interferometer New J. Phys. 13, 075002-23 (2011)

• P. Haslinger et al. A universal matter-wave interferometer with optical ionization gratings in the time domainNature Physics,  9, 144–148 (2013)

• N. Dörre et al.Photofragmentation beam splitters for matter-wave interferometryPhys. Rev. Lett. 113, 233001 (2014)

• N. Dörre et al. A refined model for Talbot Lau matter-wave optics with pulsed photo-depletion gratingsJOSA B 32, 114–120 (2015)

Page 24: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

-absence of dispersive Grating/wall interactionhigh interference contrast expected for masses even beyond 106 amu

mass Talbot time required velocity

requiredvacuua

gravitational deflection

106 amu

107 amu

108 amu

mass Talbot time required velocity

requiredvacuua

gravitational deflection

106 amu 15 ms

107 amu 150 ms

108 amu 1.5 s

mass Talbot time required velocity

requiredvacuua

gravitational deflection

106 amu 15 ms 1.3 m/s

107 amu 150 ms 13 cm/s

108 amu 1.5 s 1.3 cm/s

mass Talbot time required velocity

requiredvacuua

gravitational deflection

106 amu 15 ms 1.3 m/s 10-9 mbar

107 amu 150 ms 13 cm/s 10-11 mbar

108 amu 1.5 s 1.3 cm/s 10-12 mbar

mass Talbot time required velocity

requiredvacuua

gravitational deflection

106 amu 15 ms 1.3 m/s 10-9 mbar 4.5 mm

107 amu 150 ms 13 cm/s 10-11 mbar 45 cm

108 amu 1.5 s 1.3 cm/s 10-12 mbar 45 m

managable

cooling and/or trapping necessary

Limits & Outlook:

Page 25: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

THE OTIMA TEAM

special thanks to

Markus ArndtJonas RodewaldNadine DörrePhilipp GeyerStefan Nimmrichter (Theory)

Page 26: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Universal matter-wave interferometry

from microscopic to macroscopic

…in the time-domain

Page 27: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

V(z)

z

Interferometer

Standing wave

Pions

zg

Mirror coils

Bias field

Mirror

Octupole windings

60 cm

Interferometer cell

Trap

Antihydrogen interferometer

P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, 121102, 2014

Page 28: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Antihydrogen interferometerGoals and features• Test g for H, anti-H • Initially 10-3, eventually 10-6

Design• Efficient use of ~300 atoms / month• Laser cooling (Donin, Fujiwara, Robicheaux J. Phys. B 46, 025302) • Adiabatic cooling• No Lyman-α laser for interferometry (but for laser cooling)• Far off-resonant Bragg transitions, couples to dc polarizability• Almost any atom

Advantages• Commercial lasers• Based on ALPHA and atom interferometers, both work

P. Hamilton, A. Zhmoginov, F. Robicheaux, J. Fajans, J. Wurtele, H. Müller PRL 112, 121102, 2014

Page 29: Universal matter-wave interferometry from microscopic to macroscopic Philipp Haslinger …in the time-domain.

Thank you for your attention!