United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the...

140
United States Department of Agriculture Forest Service Rocky Mountain Research Station General Technical Report RMRS-GTR-106WWW June 2003 BehavePlus fire modeling system Version 2.0 User’s Guide Patricia L. Andrews Collin D. Bevins Robert C. Seli

Transcript of United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the...

Page 1: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

United StatesDepartmentof Agriculture

Forest Service

Rocky MountainResearch Station

General Technical ReportRMRS-GTR-106WWW

June 2003

BehavePlusfire modeling systemVersion 2.0

User’s GuidePatricia L. Andrews

llin D. Bevinsbert C. Seli

CoRo

Page 2: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Abstract Andrews, Patricia L.; Bevins, Collin D.; Seli, Robert C. 2003. BehavePlus fire modeling system, version2.0: User’s Guide. Gen. Tech. Rep. RMRS-GTR-106WWW. Ogden, UT: Department of Agriculture, Forest Service, Rocky Mountain Research Station. 132p.

The BehavePlus fire modeling system is a program for personal computers that is a collection of mathematical models that describe fire and the fire environment. It is a flexible system that produces tables, graphs, and simple diagrams. It can be used for a multitude of fire management applications including projecting the behavior of an ongoing fire, planning prescribed fire, and training. BehavePlus is the successor to the BEHAVE fire behavior prediction and fuel modeling system. Primary modeling capabilities include surface fire spread and intensity, safety zone size, size of point source fire, fire containment, spotting distance, crown scorch height, tree mortality, and probability of ignition. The User’s Guide describes operation of the program. Other papers describe the models and application of the system. Keywords Fire behavior, fire spread, fire intensity, computer program

The Authors Patricia L. Andrews is a Research Physical Scientist at the Fire Sciences Laboratory in Missoula, MT. She received a B.A. degree in mathematics and chemistry from Montana State University, Billings in 1970 and an M.A. degree in mathematics and computer science in 1973 from the University of Montana, Missoula. She has been at the Fire Sciences Laboratory since 1973, serving as Project Leader of the Fire Behavior Research Work Unit from 1991 to 1996.

Collin D. Bevins is Director of Systems for Environmental Management, a Missoula, MT, nonprofit research and educational organization founded in 1977. Collin earned a B.A. degree from Carleton College, Northfield, MN in 1974, and an M.S. degree in forestry, University of Washington, Seattle, 1975.

Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire Management Officer on the Lolo National Forest, a Silviculturist on the Nezperce National Forest, and received a B.S. degree in forestry from North Carolina State University in 1974.

Acknowledgments Funding for development of the BehavePlus program and supporting material was provided by the Joint Fire Science Program; USDA Forest Service, Rocky Mountain Research Station, Fire Behavior Research Work Unit; USDA Forest Service, Fire and Aviation Management, Washington D.C.; and Systems for Environmental Management.

Program development and supporting material was done primarily through contracts #53-0343-7-0020 and #53-0343-0-0011 with Systems for Environmental Management (SEM).

The following SEM people contributed to the project: Collin Bevins (program design and development, version 2 User’s Guide), Don Carlton (version 1 User’s Guide and online help system), Deb Tirmenstein (program testing, document review and editing), Joe Scott (online help and supporting material for the fire models added in version 2), and Miguel Cruz (Portuguese translation for the ‘language’ option).

Other contributors include Dave Custer (tutorial editing and formatting), Rob Seli (tutorial development, editing, online help, and version 2 User’s Guide), and Pat Andrews (project manager, system design, program testing, tutorial development, version 2 User’s Guide).

Software technical support is provided by USDA Forest Service, Fire and Aviation Management, National Systems Support Group, Boise, ID.

Cover Art: "WILDFIRE" (C) 1992, an original acrylic painting by Monte Dolack. Trumpeter swans take refuge in the air as a threatening wildfire rages through the forest habitat. This image is from a 29" x 24" poster commissioned by the National Wildfire Foundation and used here by permission of the artist.

All images used in BehavePlus and its associated manuals and training materials are from original works by Monte Dolack and appear by permission of the artist.

Page 3: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Preface This User’s Guide explains how to use the BehavePlus fire modeling system software. Other papers will describe the models incorporated into the system and application of the predictions.

This is an RMRS online publication. It can be downloaded from the Rocky Mountain Research Station publications web page, http://www.fs.fed.us/rm/main/pubs/electronic.htmlYou can download this User’s Guide and the BehavePlus program and provide comments through the BehavePlus web site, http://fire.orgThis User’s Guide is also an integral part of the BehavePlus system, serving as online help.

This publication will be updated as features and modeling capabilities are added to the program.

The BehavePlus system is supported by USDA Forest Service National Fire and Aviation Management Information Systems Team 3833 S. Development Avenue Boise, ID 83705 (800) 253-5559

[email protected]

The use of trade or firm names in this publication is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service.

Page 4: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...
Page 5: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Table of Contents 1. Introduction ......................................................................................................................1 2. Operation .........................................................................................................................7

2.1. Overview ....................................................................................................................7 2.2. Design.........................................................................................................................8 2.3. Features ....................................................................................................................10 2.4. Installation.................................................................................................................11 2.5. Definitions.................................................................................................................13 2.6. Menus and Toolbar ....................................................................................................14

3. Worksheets ....................................................................................................................15

3.1. Worksheet layout......................................................................................................15 3.2. Loading a previously saved Worksheet........................................................................21 3.3. The startup Worksheet..............................................................................................22 3.4. Changing a Worksheet...............................................................................................22 3.5. Saving a Worksheet or a Run .....................................................................................22

4. Modules ..........................................................................................................................23

4.1. Input options .............................................................................................................23 4.2. Output options..........................................................................................................25

5. Entering input ..................................................................................................................27

5.1. Shaded text boxes .....................................................................................................27 5.2. Direct entry ..............................................................................................................27 5.3. Range of values ..........................................................................................................27 5.4. Discrete variables ......................................................................................................27 5.5. Choices.....................................................................................................................28 5.6. Linked input variables.................................................................................................29

6. Table output....................................................................................................................31

6.1. Single value calculation ...............................................................................................31 6.2. Table output..............................................................................................................32 6.3. Two way tables .........................................................................................................32 6.4. Table appearance .......................................................................................................34 6.5. Multiple pages............................................................................................................34

7. Graph output...................................................................................................................37

7.1. Single variable graph...................................................................................................37 7.2. Two variable graph ....................................................................................................39 7.3. Axis scales.................................................................................................................42 7.4. Graph appearance......................................................................................................47 7.5. Number of curve points .............................................................................................55

8. Diagram output ...............................................................................................................57

8.1. Wind/slope/spread direction.......................................................................................57 8.2. Fire characteristics chart ............................................................................................61 8.3. Shape of a point source fire ........................................................................................65 8.4. Containment shape ....................................................................................................69

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 i

Page 6: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Table of Contents BehavePlus v2.0 User’s Guide

9. View, print, & capture results............................................................................................739.1. View size...................................................................................................................73 9.2. Windows ..................................................................................................................73 9.3. Pages ........................................................................................................................74 9.4. Print .........................................................................................................................75 9.5. Capture ....................................................................................................................75

10. Error checking ...............................................................................................................77 11. Custom fuel models .......................................................................................................79

11.1. Using previously saved fuel models............................................................................79 11.2. Defining and saving custom fuel models .....................................................................81

12. Moisture scenarios .........................................................................................................83

12.1. Using previously saved moisture scenarios.................................................................83 12.2. Defining and saving moisture scenarios ......................................................................85

13. Map applications.............................................................................................................87

13.1. Slope from map measurements .................................................................................87 13.2. Map distances ..........................................................................................................90

14. Units .............................................................................................................................93

14.1. English or metric......................................................................................................93 14.2. Custom units set......................................................................................................93 14.3. Number of decimal places ........................................................................................93 14.4. Units conversion tool...............................................................................................94

15. Language........................................................................................................................95

15.1. English or Portuguese...............................................................................................95 15.2. Custom language set ................................................................................................95

16. Fine Dead Fuel Moisture Tool.........................................................................................97 17. Sun-Moon Calendar Tool................................................................................................99 18. File management ..........................................................................................................101

18.1. Workspaces ..........................................................................................................101 18.2. Load a Worksheet .................................................................................................102 18.3. Load a Run ............................................................................................................102 18.4. Save as…...............................................................................................................102 18.5. Deleting Files & Folders..........................................................................................103

19. Help ............................................................................................................................105

19.1. Browser pane help .................................................................................................105 19.2. Guide button .........................................................................................................106 19.3. User’s Guide..........................................................................................................106

References ........................................................................................................................107 Appendices A – Version comparison…………………………………………………………………..…..A1 B – Input and Output Variable Tables…...………..…………………………………………..B1 C – Units Editor..…………………………………..……………………………………..…...C1 D – The 0Startup.bpw worksheet, defaults...……………………….…………………………D1 E – Example Worksheets……...……………………………………………………….……...E1

ii USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 7: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

1. Introduction

The BehavePlus fire modeling system is a PC-based program that is a collection of models that describe fire and the fire environment. It is a flexible system that produces tables and graphs and can be used for a multitude of fire management applications. BehavePlus is the successor to the BEHAVE fire behavior prediction and fuel modeling system (Andrews 1986, Andrews and Chase 1989, Burgan and Rothermel 1984, Andrews and Bradshaw 1990). It is called the BehavePlus fire modeling system to reflect its expanded scope (Andrews and Bevins 1999).

This document describes operation of the BehavePlus program. The fire models and their application are described elsewhere. Many of the fire models in BehavePlus are the same as those in the FARSITE fire area simulator (Finney 1998) and the FlamMap fire behavior mapping and analysis system. Each system meets a different need. The same surface fire spread model (Rothermel 1972) was used in each case. These three programs and supporting documentation are available through www.fire.org. Shown below are example outputs from each system.

Sample table, graph, and diagram output from BehavePlus:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 1

Page 8: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Introduction BehavePlus v2.0 User’s Guide

2 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 9: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Introduction

Sample fire perimeter output from FARSITE:

Sample landscape fire potential output from FlamMap:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 3

Page 10: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Introduction BehavePlus v2.0 User’s Guide

Version 1.0 of BehavePlus was based primarily on the same fire models that composed the old BEHAVE system. Development focus was initially on a new look and feel for the program. This paper describes version 2.0, which provides additional models and features. A summary of changes from version 1.0 to version 2.0 is given in Appendix A.

The primary modeling capabilities of BehavePlus, version 2.0, include

• Surface fire spread and intensity • Safety zone size • Size of a point source fire • Fire containment • Spotting distance • Crown scorch height • Tree mortality • Probability of ignition from fire brands or from lightning

Other modeling capabilities include

• Tables for fine dead fuel moisture • Tables for relative humidity or dew point • Standard and custom fuel models • Dynamic palmetto-gallberry fuel • Three methods for weighting two fuel models: two-dimensional expected spread, harmonic mean,

area weighted • Sunrise, sunset, dawn, and dusk at any location or date

Key features include

• Diagrams for point source fire shape, shape of a contained fire, fire characteristics chart, wind / slope / fire directions

• Photographs and a key for the standard 13 fuel models • Distances in map units • User control of input options and output variables • Description of each input and output variable • User control of units and number decimal places displayed • Multiple values can be entered for almost any input variable • User interface language can be changed (currently English and Portuguese)

4 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 11: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Introduction

The help system is an important part of the BehavePlus system. This User’s Guide is available with the program for help on operation of the program. In addition, a help browser is available in the dialog boxes providing immediate information on specific operations and definition of input and output variables as shown below.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 5

Page 12: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Introduction BehavePlus v2.0 User’s Guide

This page is blank on purpose.

6 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 13: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

2. Operation

2.1. Overview This User’s Guide addresses only operation of the program. The fire models, associated variables, and application are described elsewhere.

Organization of material on Operation of the BehavePlus program is different from the organization of the program itself. It is designed to help you find the answer to a question. Most users are comfortable with looking at menus and dialog boxes and associated information in the program without use of a User’s Guide.

This is not a step-by-step operation manual, but a reference guide. The tutorials provide step-by-step instructions.

In describing operation of the program, we use the following font and/or conventions in describing menus, commands, buttons, tabs, and checkboxes:

Configure > Module selection > SURFACE > Options… > Fuel & Moisture > fuel models option button.

For example the sequence of menus, commands, check boxes, buttons, and tabs shown above refers to the following actions in BehavePlus:

Each of the above elements would be described in this User’s Guide as

1. Configure menu

2. Module selection command

3. SURFACE check box

4. Options... button

5. Fuel & Moisture tab

6. fuel models option button

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 7

Page 14: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Operation BehavePlus v2.0 User’s Guide

Other elements used in BehavePlus include

7. Spin box – select the value using the buttons or enter a value from the keyboard,

8. Text box – click inside the box to enter values from the keyboard.

9. Drop-down list – Choose the value from the list displayed with the button.

In the interest of saving space and improving readability, we include screen captures of only the portion of concern. The Tutorials include more complete screen captures.

2.2. Design

2.2.1. Page Oriented BehavePlus is meant to be more than just a fire modeling tool. It is meant to be a lesson book with a built-in training manual, and a planning tool whose results may be incorporated into management reports. It is meant to be a fire behavior assessment aid whose tables and graphs can be shared with others in briefings and in written documentation. BehavePlus is meant to be run over and over for multiple purposes, so it is meant to be self-documenting.

Because of these expectations, the BehavePlus user interface is designed around the concept of the standard 8.5 x 11 printed page.

Given input information BehavePlus can generate documentation, diagrams, tables, and graphs. Fortunately, they all fit on a standard printer page; merely press the Print button and file the copy. Six months later when you need to review the work, the What, How, and Why of each Run is considerably less obscure than it would have been otherwise. The page on which you enter input information appears first (page 1) and is called the Worksheet. A complex Worksheet may span several pages. Once the Calculate button is pressed, BehavePlus generates additional pages containing output tables, graphs, and diagrams. These too are deigned to fit neatly on the printed page. Navigation buttons on the Tool Bar let you move to the first page, last page, next page, or previous page. The Pages menu lets you jump directly to any diagram, table, or graph. The Print dialog lets you print selected pages.

8 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 15: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Operation

2.2.2. Highly Configurable BehavePlus is meant to be the repository of many current and future models related to fire behavior and effects. These models may have alternate input sets and can produce many output variables. Individual models may be linked together so that outputs from one module automatically become inputs for another module. Input and output variables may have user-specified units of measure. Outputs may be in the form of diagrams, tables, and/or graphs. The language displayed on Worksheets and output pages may be changed.

BehavePlus may be used for fire behavior training, for fire planning, or for real-time fire behavior assessment. It may be used to assess just fire behavior, or just fire effects, or the link between them. It may be used to build custom fuel models, to determine astronomical events, or as a units conversion utility.

2.2.3. Self Documenting The brooding step-brother of configurability is complexity. Because BehavePlus is so highly configurable and may be used by people in various roles for various purposes, it strives to be self-documenting in an attempt to thwart entropy. The input Worksheet automatically documents all Modules in use, all input variables and units of measure, all output variables and units of measure, and pertinent notes on the current configuration. The Worksheet also allows you to enter a Run description (and possibly additional training or fire incident information) and contains a notes field for free-field entry of expository text.

2.2.4. User Manual and Help BehavePlus tries to provide pertinent information to you when you need it the most. The Guide Button next to each entry field opens a dialog containing a help browser pane with suggested or valid inputs. The help browser pane describes input and output variables and program operation. The browser provides tables, photographs, and figures to help you select inputs.

In addition, this manual is available as part of BehavePlus through Help > Program help.

2.2.5. Not Boring Finally, every attempt has been made to keep BehavePlus from becoming yet another boring program with a gray personality. Just in case all the complexity, configurability, widgets, dialogs, models, diagrams, tables, graphs, browsers, and quirky behavior aren’t enough to hold your attention, here and there we’ve inserted some paintings we rather enjoy to ease our weary eyes.

If you, however, prefer the gray approach, you can eliminate the pictures for the entire session by clearing the Show picture pane check box on the Configure > Appearance > Application tab

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 9

Page 16: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Operation BehavePlus v2.0 User’s Guide

You can also choose to show the picture or not in individual windows by selecting or clearing the Picture check box

2.3. Features

2.3.1. Fire Models BehavePlus contains models to estimate

• surface fire spread, intensity, flame length, scorch height, and direction of maximum spread • surface fire spread rate, intensity, flame length, and scorch height in any compass direction • fire shape, area, and perimeter • spotting distance from a burning pile, from torching trees, or from a wind-driven surface fire • success or failure of suppression resources to build line around a fire • recommended fire safety zone radius, separation distance, and zone size • fire-induced tree mortality • probability of fire ignition from firebrands • probability of fire ignition from lightning strikes • relative humidity or dew point temperature • midflame wind speed • fine dead fuel moisture content • sun-rise, sun-set, dawn, and dusk at any location or date • palmetto-gallberry dynamic fuels • custom fuel models • custom moisture scenarios • weighted fire behavior within a two fuel model complex

10 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 17: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Operation

2.3.2. Operation BehavePlus has the following operational features:

• BehavePlus is cross-platform and works identically on all versions of Windows and Linux. • Multiple Worksheets may be open at one time. • Worksheets may be overlaid, tiled, cascaded, and resized. • Modules (collections of related fire models) may be individually toggled on/off. • Modules may have alternate input options available through the Configure > Module > Options >

Input Options dialog box. • Module output variables can be toggled on/off via the Configure > Modules > Options >

Output Variables dialog box. • Modules may be linked so the outputs from one module are automatically input into another module. • All distance outputs may be scaled to map units. • All input and output units of measure may be modified by the user. • Custom Worksheet configurations may be saved and re-used. • Custom sets of units of measure may be saved and re-used. • The Guide Button next to each Worksheet entry field displays a help browser pane with context-

specific text and either a list of valid choices (for discrete variables) or fields for generating a range of input values.

• Zero, one, or two input variables may have multiple entry values, producing either a simple result list, a single one-way table, or a multipage two-way table, respectively.

• If one input variable has multiple entry values, a separate graph can be generated for each output variable. If two input variables have multiple entry values each output variable graph contains a family of curves.

• The SURFACE, SIZE, and CONTAIN Modules can produce diagrams of their results. • Help > Program Help makes this manual and all associated documentation available in PDF format

for reading, web browsing, and printing. • The user interface language may be dynamically changed via Configure > Language. Currently

English (U.S.) and Portuguese (Portugal) are supported. (Contact [email protected] if you’d like to volunteer to add support for another language).

• Completed Runs may be saved and re-used.

2.4. Installation

2.4.1. Download BehavePlus is available for download from www.fire.org. Simply follow the BehavePlus links to the download page and select either the Windows or Linux installation package.

You should check the downloaded file size against the original to ensure you received the entire package. To be absolutely certain the package arrived intact, use the md5sum program from a command line prompt:

md5sum bp_2_0_0.exe

If the resulting 32-digit hexadecimal number is not identical to the one published on the BehavePlus download page, your download copy is corrupt.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 11

Page 18: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Operation BehavePlus v2.0 User’s Guide

2.4.2. System Requirements BehavePlus has modest system requirements met by the most inexpensive computers available on the market:

• Linux or Windows 95, 98, ME, NT, 2000, or XP • Minimum 800 x 600 video resolution with 256 (8-bit) colors (recommend 1024 x 768 video

resolution with 64K (16-bit) colors) • 16 megabytes of available RAM • 20 megabytes of disk storage

2.4.3. Windows Installation BehavePlus for Windows is packaged using the Wise Installation System. Simply type the name of the package (e.g., bp_2_0_0.exe) at a command prompt (or click on its name in Windows Explorer) and the installation wizard will guide you through the process. This mostly consists of pressing the OK button.

2.4.4. Linux Installation BehavePlus for Linux is packaged as a tarball using tar and gzip. Move the downloaded file (bp-2.0.0.tar.gz) into the parent directory where you wish it to be installed, and enter

tar xvzf bp-2.0.0.tar.gz

This creates the bp-2.0.0 subdirectory and unpacks the BehavePlus binary executable, supporting library files, and data subdirectory structure within it.

2.4.5. File Structure BehavePlus has a proscribed file system structure; all files must be located in specific subdirectories. The parent directory of this file structure and all its subdirectories and files are collectively known as a Workspace. When BehavePlus is first installed it has a single Workspace called “DefaultDataFolder” as shown below.

This is the default current Workspace every time BehavePlus is started.

12 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 19: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Operation

We recommend that you use Workspaces to aid file management as you apply BehavePlus to several projects. See the section 18.1 Workspaces for more information.

A list of three letter file extensions used by BehavePlus is shown in the following table. These extensions are automatically attached to the files you create in BehavePlus.

File extension File type Folder

.bpf Custom fuel models FuelModelFolder

.bpm Moisture scenarios MoistureScenarioFolder

.bpr Runs RunFolder

.bpu Custom Units Sets UnitsSetFolder

.bpw Worksheets WorksheetFolder

2.5. Definitions A Worksheet is the first page or two containing the input Entry Fields. The content of a Worksheet depends upon the specific BehavePlus configuration including module selections, input options, output variables, units of measure, and diagram/table/graph options. Thus there are a large number of possible Worksheets. Some Example Worksheets are supplied with the BehavePlus distribution and are included in every Workspace. You may reconfigure BehavePlus as needed for any purpose, then save its Worksheet for later reuse. Functionally, a Worksheet is a BehavePlus configuration that does not have any input values associated with it.

A Run is a Worksheet that has a complete set of valid inputs, but no ouputs are saved in a Run. You must calculate a saved Run to obtain outputs. Any given Worksheet may have an infinite number of Runs, each determined by its input values. Runs may be saved for later use and review. The BehavePlus installation includes Example Runs.

A Model is a set of equations that estimate one or more output variables from one or more input variables. While BehavePlus contains many models, you will more commonly see references to Modules, which are collections of models.

A Fuel Model is a set of numbers describing a fuel bed used by the surface fire spread model.

A Module is a collection of one or more Models that can be activated/deactivated by the user during Worksheet configuration. Selecting the IGNITE Module, for example, includes both the firebrand ignition model and the lightning strike ignition model. A Continuous Variable is an input or output variable that has a continuous range of values. Continuous variables have a minimum and maximum valid value. Examples include fuel moisture content, and wind speed.

A Discrete Variable has a finite set of valid values. Examples include Fuel Model, Spotting Source Location, and Tree Species.

A Guide Button is the button with the arrow icon next to each Worksheet entry field. Pressing the Guide Button activates an Input Guide dialog box containing a help browser pane and input assistance. For continuous variables, the dialog facilitates entry of a large number of inputs by specifying the minimum input value, maximum input value, and increment value. For discrete variables the dialog contains a list of all valid inputs from which the user may select zero or more values.

A Workspace is a complete subdirectory tree containing all required BehavePlus files plus any additional Worksheet, Run, Fuel Model, Moisture Scenario, Units Set, or capture files saved by the user. A Workspace corresponds to a single BehavePlus project, and each BehavePlus project should have its own Workspace. Workspaces are created by the File > Workspaces > New workspace and the Files > Workspaces > Clone current workspace commands.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 13

Page 20: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Operation BehavePlus v2.0 User’s Guide

2.6. Menus and Toolbar All BehavePlus operations are available from the menu bar.

The more common operations, such as Module Selection or Calculate, may also be invoked from Toolbar buttons. Toolbar buttons and their equivalent Menu commands are shown below:

Toolbar

Buttons Definition Equivalent menu operation

Open a new Worksheet File > New

Open a saved Run File > Open run

Print this Run File > Print

Module selection Configure > Module selection

Calculate this Run File > Calculate

Display first page Page > then select page #

Display last page Page > then select page #

Display previous page Page > then select page #

Display next page Page > then select page #

Access User’s Guide Help > Program help

14 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 21: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

3. Worksheets

A Worksheet is a form on which you enter input. Worksheets vary in appearance and content in response to the current module configuration: a SURFACE module configuration requires different inputs than a SPOT module configuration.

Module selection, input options, and output variable selections determine BehavePlus configuration, which in turn defines the Worksheet appearance and content.

A number of predefined example Worksheets are included in the BehavePlus installation. You may use these Worksheets as provided, or use them as starting points for your own configuration. Simply open an example Worksheet and proceed to change your Module selection, input options, and/or output variables. Once BehavePlus is configured the way you want, you may name and save it as a new Worksheet. During subsequent BehavePlus sessions you may load your custom Worksheet and BehavePlus is configured as expected.

3.1. Worksheet layout A BehavePlus Worksheet is more than just an input form; it is the primary source of documentation about the Run. Worksheets include the following sections:

Header – The Worksheet header shows the BehavePlus version number, useful for reporting bugs and determining if you have the most recent update. The header also includes the date and time of the last calculation and the page number, which lets you collate the correct pages after printing and spreading them out for further study.

Border – The line surrounding the Worksheet body may be modified with the Configure > Appearance > Worksheet tab.

Tabs – Zero, one, or more page tabs with labels along the right-hand margin of the Worksheet may be activated with the Configure > Appearance > Page Tabs tab.

Documentation – This section lists all the currently selected modules and contains an entry field for the Run description. Additional documentation entry fields for training applications or for fire projection applications are optionally activated through Configure > Appearance > Worksheet tab.

Input – This section contains the required input data entry fields identified by a short phrase and their units of measure. Each entry text box also has a Guide button that may be pressed for input assistance. Entry text boxes are grouped under headings such as “Fuel/Vegetation”, “Fuel Moisture”, “Weather”, and “Terrain”.

Run Options – This section documents some of the configuration settings that are selected for the Worksheet.

Output Variables – This section lists all the selected output variables and their units of measure. This section may be toggled on/off in the Configure > Appearance > Worksheet tab.

Notes – This section permits the user to enter free-field expository text. The user has control of the size of this section or whether it is displayed using the Configure > Appearance > Worksheet tab.

Following is an example Worksheet:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 15

Page 22: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Worksheets BehavePlus v2.0 User’s Guide

3.1.1. Page Header The header of each page includes the version number of the BehavePlus program, the date and time of the calculation, and the page number.

The date and time and page number can be used to correctly collate printed documents.

3.1.2. Documentation Documentation is the header information on the Worksheet. The calculation modules that have been selected are listed. Documentation always includes a Description field.

16 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 23: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Worksheets

Additional documentation lines can be added by selecting the Fire projection documentation and/or Training documentation check boxes from the Configure > Appearance > Worksheet tab.

Selecting the Fire projection documentation check box adds the following input fields to the Worksheet:

Selecting the Training documentation check box adds the following input fields to the Worksheet:

Both options can be checked.

3.1.3. Input section The required input variables and their units are displayed next to their entry fields. Fuel moisture variables that are not required have the text box shaded. In the example below, only 1-h fuel moisture is required for fuel model 1, because the other fuel categories are not included in the fuel model.

The Guide button for each input variable provides access to definitions and input assistance. Input variables are organized by logical association (rather than by calculation module). A table of all possible input variables by category is given in Appendix B.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 17

Page 24: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Worksheets BehavePlus v2.0 User’s Guide

3.1.4. Input codes The definition of valid input codes can be displayed on the Worksheet by selecting the Show input codes for all discrete variables check box on the Configure > Appearance > Worksheet tab.

For example, with this option selected, fuel models names are given.

3.1.5. Run options For clarification, Run options are given after the input variables. The user does not have the option of suppressing this information.

3.1.6. Output variables Selected output variables and their units can be displayed at the end of the input Worksheet using the Configure > Appearance > Worksheet tab.

18 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 25: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Worksheets

For example:

3.1.7. Notes The Notes section of the Worksheet allows the user to enter a large amount of text associated with a Run. The user has the option of changing the number of lines provided for notes or even eliminating the notes section on the Configure > Appearance > Worksheet tab with the Show notes section check box and the Notes Lines spin box.

3.1.8. Borders The border color and thickness on the Worksheet and output pages can be changed on the Configure > Appearance > Application tab using the Border Color drop-down list and the Border Width spin box. The border can be eliminated by entering a Border Width of 0.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 19

Page 26: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Worksheets BehavePlus v2.0 User’s Guide

3.1.9. Page Tabs Page tabs can be displayed along the right margin of the page. This is useful, for example, to identify Runs for a particular fire or training session that are subsequently bound in a three-ring binder or stored in filing folders. Page tabs can be added and defined with the Configure > Appearance > Page Tabs tab.

Tabs per page -- The size of the tab depends upon the value selected in this spin box. Only one tab is actually displayed per page. If tabs per page is 4, the displayed tab occupies one-fourth the page height. If it is 10, the displayed tab occupies one-tenth the page height. As this number increases, the displayed tab size decreases.

Tab position -- Determines the position of the displayed tab. Tab position 1 is always at the upper edge of the right margin.

Tab text -- The text to appear on the tab. The text is centered within the tab and will therefore be truncated at both ends if it is too long.

Tab text color -- A color is selected from the drop-down list.

Tab font size -- Font point size is selected using this spin box.

The above settings create the tab on the Worksheet below:

20 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 27: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Worksheets

3.2. Loading a previously saved Worksheet A previously saved Worksheet can be loaded using

• the File > New command,

• or the toolbar button.

To see the Worksheets in the folder click on the button to the left of the folder.

To select a Worksheet either

• double click on it, • or select and click the OK button.

A set of Worksheets is supplied with the program in the “ExampleWorksheets” folder. A short description is given for each. See Appendix E for further description of the “ExampleWorksheets”.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 21

Page 28: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Worksheets BehavePlus v2.0 User’s Guide

3.3. The startup Worksheet The 0Startup.bpw Worksheet automatically loads whenever you start Behave Plus v2.0. This Worksheet is a special case. It is used as the starting place for selecting calculation modules. It shows no input or output variables, but it sets defaults for all Run settings as described in Appendix D. The 0Startup.bpw Worksheet was used to initialize all of the example Worksheets.

A Worksheet can be designed to meet specific needs by starting with the 0Startup.bpw Worksheet, selecting the desired modules, and changing options as needed. The startup Worksheet is named 0Startup.bpw to assure that it is the first selection of the Example Worksheets folder.

3.4. Changing a Worksheet A Worksheet can be changed at any time by changing the selected modules and associated options. The changes are in effect only for the current session unless the revised Worksheet is saved. If a Worksheet that came with the program in the ExampleWorksheets folder is changed, the revised version must be saved in another Worksheet folder.

3.5. Saving a Worksheet or a Run A Worksheet can be saved for later use with the File > save As > Worksheet command. The values entered onto the Worksheet are not saved.

Save the Run, which is just a Worksheet with the defined input values, with the File > save As > Run command.

See the Section 18.4, Save As, for more specific information.

22 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 29: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

4. Modules

Modules define a set of fire models for a Worksheet. Selection can be made with the Configure > Module command.

The output variables that can be calculated by each module are given in the output variable table in Appendix B.

Indentation indicates that the modules can be linked, which means that output from one module is used as input to the other. For example, if both SURFACE and SAFETY are selected, the modules are linked. Output from SURFACE is used as input to SAFETY. If only SAFETY is selected, all required input is entered by the user. A table of input variables and associated modules is given in Appendix B.

Selection of modules, options, and output variables determines the required input variables.

The Options… button is used to configure a modules input options or change the output variables it calculates.

4.1. Input options Some modules offer options on alternate ways of specifying input. Others do not. For example, clicking the MORTALITY Options… button displays the “Mortality Module Options” dialog box with the Bark thickness is input option:

The choice affects the input variables included on the Worksheet. If Bark thickness is specified on the worksheet is selected, the resulting Worksheet is as follows:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 23

Page 30: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Modules BehavePlus v2.0 User’s Guide

If Bark thickness is estimated from species and d.b.h. is selected, the resulting Worksheet is as follows:

The SURFACE module has many input options. For readability, they are available on several tabs:

24 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 31: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Modules

4.2. Output options The desired output variables are selected through the Options… button associated with each module.The selected output determines the input requirements. For example, input variables for the SPOT Module are different for each spotting source.

Pause the mouse over the name of an output variable to see its description in the browser pane. For example, a pause over Spotting Distance from a Wind Driven Surface Fire in the SPOT Output Variables tab results in this browser pane.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 25

Page 32: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Modules BehavePlus v2.0 User’s Guide

This page is blank on purpose.

26 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 33: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

5. Entering input

There are several ways to supply input to the BehavePlus program. Values can be typed directly into the input field, a choice can be made from a list of valid input values, a range of values can be specified, and for some variables, a selection can be made from a list of common choices.

5.1. Shaded text boxes In some cases, input variables depend on values entered elsewhere on the Worksheet. When an input variable is not required, its text box is shaded. If a value is entered for a shaded text box, it is not used.

5.2. Direct entry Values can be typed directly into the entry fields. Using the ‘Enter’ or ‘Tab’ keys move the cursor to the next field. The cursor can be moved to any field by a mouse click.

Valid input values can be viewed by using the guide button.

5.3. Range of values More than one value can be entered for an input variable. Multiple values are separated by space or comma delimiters.

For continuous variables the Guide button allows definition of a range of values by a constant increment. For example, midflame wind speed from 0 to 20 mi/h in steps of 5 enters 0, 5, 10, 15, 20 on the Worksheet below.

You do not need to always specify equal steps. You can enter several independent values separated by commas directly in the text box.

5.4. Discrete variables When the Guide button is clicked for a discrete variable, the allowed selections are given in the center pane.

Clicking the values selects them; you can select several values. This example shows the fuel model “Input Guide” dialog box. The Ok button enters them on the Worksheet.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 27

Page 34: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Entering input BehavePlus v2.0 User’s Guide

28 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

5.5. Choices Although any value in the valid range can be entered for a continuous variable, in some cases common values can be entered with the Choices button.

Clicking the Choices button displays commonly used values.

Page 35: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Entering input

Selected values in the Slope Steepness choices. Clicking the Ok button enters them on the Worksheet.

Selected values in the Slope Steepness choices. Clicking the Ok button enters them on the Worksheet.

5.6. Linked input variables 5.6. Linked input variables In some cases input variables are directly associated with each other (an exception to the general rule). For example, in CONTAIN a line production rate, arrival time, and duration are assigned to each resource. In the following example, although multiple values are assigned to several input variables, those variables are linked together, so only a single calculation is done.

In some cases input variables are directly associated with each other (an exception to the general rule). For example, in CONTAIN a line production rate, arrival time, and duration are assigned to each resource. In the following example, although multiple values are assigned to several input variables, those variables are linked together, so only a single calculation is done.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 29

Page 36: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Entering input BehavePlus v2.0 User’s Guide

30 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 37: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

6. Table output

When more than one value is assigned to one or two input variables, table output is produced. Tables are produced by selecting the Display table results checkbox in the “Calculate Results” dialog box that displays after selecting a File > Calculate command.

6.1. Single value calculation When each variable is assigned only one value, a simple list of output is given. No table or graph is possible. For example:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 31

Page 38: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Table output BehavePlus v2.0 User’s Guide

32 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

6.2. Table output When more than one value is assigned to a variable, table output is produced. Each output variable is a specified column. For example, these Rate of Spread inputs produce the page 2 table below:

6.3. Two way tables When more than one value is assigned to two variables, a two way table is produced. A table is produced for each selected output variable. Either variable can be specified as the row variable in the “Calculate Results” dialog box.

Page 39: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Table output Table output

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 33

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 33

For example, with the above inputs this dialog box appears when you Calculate the Run. For example, with the above inputs this dialog box appears when you Calculate the Run.

After selecting the Rate of Spread (maximum) option button and clicking the Ok button, the following tables are produced: After selecting the Rate of Spread (maximum) option button and clicking the Ok button, the following tables are produced:

Changing the Table Row Variable to the Elapsed Time option button swaps the table columns and rows produces the following tables:

Page 40: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Table output BehavePlus v2.0 User’s Guide

34 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

6.4. Table appearance Table shading can be changed with the Configure > Appearance > Tables tab.

Selecting the Shade alternate table rows check box causes all output tables to have alternating rows shaded with a background color. This may improve the readability of wide tables. If the check box is cleared, tables are displayed without any row background color. The table row background color is selected from the Shade drop-down list.

6.5. Multiple pages There is essentially no limit on the number of values that can be assigned to a variable. But the resulting table might not fit on a single page. For example, if rate of spread is calculated for values from 2 to 30 in steps of 2, and elapsed time is specified as the row variable, the table overlaps onto 3 pages.

Page 41: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Table output

The > or < symbols lined to the right and/or left of the table heading indicates that there are additional results for those variables in the indicated direction.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 35

Page 42: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Table output BehavePlus v2.0 User’s Guide

36 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

The box diagram at the upper left of the pages shows the relative position of the currently viewed page in the multipage table.

In this example, however, it would make more sense to specify rate of spread as the row variable since it produces a table that fits on a single page as shown below:

Page 43: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

7. Graph output

When more than one value is entered for one or two input variables, graphs can be produced. Graphs are viewed by selecting the Display Graph Results check box in the “Calculate Results” dialog box that displays after Calculate is requested. The form of the graph depends on whether the variables are continuous or discrete. The program automatically takes care of the differences for the user.

7.1. Single variable graph When a range of values is entered for a single continuous variable, a graph is produced by calculating a fixed number of points (which can be changed in the Configure > Appearance > Graph Elements tab) over the entered range. Intermediate values entered on the Worksheet are ignored. For example, rate of spread entry of 5, 7, 9, 11, 13, 15 produces the same graph as rate of spread entry of 5, 15:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 37

Page 44: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

38 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

When a range of values is assigned to a discrete variable, a single calculation is performed for each value and a bar graph is produced. For example, the following is a comparison of surface fire spread rates for the standard 13 fire behavior fuel models:

Page 45: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output

7.2. Two variable graph When a range of values is assigned to two variables, a graph is produced. If both variables are continuous, the variable used for the X-axis can be selected from the “Calculate Results” dialog box. For example:

In the “Calculate Results” dialog box clear the Display table results check box and accept the defaults in the Display graph results section:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 39

Page 46: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

40 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Changing the X-Axis Variable to the Midflame Wind Speed (upslope) in the “Calculate Results” dialog box produces a very different graph:

If a range is assigned to two variables, one of which is continuous and one discrete, the continuous variable is always on the X-axis. For example:

Page 47: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output

Now you no longer have the option of changing the X-Axis Variable in the “Calculate Results” dialog box.

A graph is not possible when ranges are selected for two discrete variables.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 41

Page 48: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

42 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

7.3. Axis scales

7.3.1. X-axis The X-axis variable and scale are the same for all graphs produced by a Run. The maximum for the x-axis is set to be the maximum value specified for the variable on the Worksheet.

X Axis Origin and Y Axis Origin (minimum values) can be set for each as either zero or as the variable's minimum value as specified on the input Worksheet. The graph origin is set to (0,0) as the default.

For example, consider the following Run:

Options to define the origin of the graph are set through the Configure > Appearance > Graph Size tab.

Setting both the X Axis Origin and Y Axis Origin to zero produces the following graph:

Page 49: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output

In the Configure > Appearance > Graph Size tab select Min Value from the X-Axis Origin drop-down list to alter the graph appearance.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 43

Page 50: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

44 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

7.3.2. Y-axis The Y-axis scale normally differs between graphs produced by a Run since each graph is for a different output variable. For example, fireline intensity and flame length have different ranges of output and require a different Y-axis scale. By default the Y-axis is scaled to the maximum calculated output value for the variable to make best use of the graph area.

When you want to compare graphs between Runs, different Y-axis scales can obfuscate the comparison. A rate of spread graph for fuel model 10, for example, usually has a narrower output range than for fuel model 5 under the same conditions. To better compare calculated rate of spread graphs for the two fuel models, you can set both graphs to have the same Y-axis scale.

The following Run is for fuel model 10, which has relatively low rates of spread.

Page 51: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output

With the X Axis Origin and Y Axis Origin set to zero, the rate of spread graph below is produced:

To compare the results for fuel model 10 with the faster spreading fuel model 5, the scale for the fuel model 10 Run is changed to match that produced by model 5. The calculated maximums are given for each of the selected output variables as a reference.

In the “Calculate Results” dialog box select the Specify graph Y axis limits check box if you wish to modify the Y-axis ranges of the output graphs before they are displayed.

This displays the “Graph Limits” dialog box, where you can change the Y-axis maximum for the variable Rate of Spread (maximum) to 40:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 45

Page 52: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

46 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

The comparison with the corresponding graph for fuel model 5 is now more straightforward.

Page 53: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output

7.4. Graph appearance The appearance of the graph can be changed through the Configure > Appearance > Graph Size and Configure > Appearance > Graph Elements tabs.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 47

Page 54: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

48 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

7.4.1. Graph Size

The vertical graph height on the page is set with the Graph Size(%) spin box on the Configure > Appearance > Graph Size tab. Graphs are drawn starting at the upper left corner of the page and may occupy 25% to 100% of the page height. The default is 50%, as shown in the following graph.

Page 55: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output

Changing the Graph Size to 100% changes the above to the following graph:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 49

Page 56: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

50 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

7.4.2. Graph Title

The graph title content is controlled using the Graph Title drop-down list on the Configure > Appearance > Graph Size tab. Selecting Short from the Graph Title drop-down list displays just the contents of the Worksheet Description text box as the title. Selecting Long displays the Description text box and the graph variables.

Page 57: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output

Using the above Run a graph with a short title (the default) looks like the following.

Selecting Long from the Graph Title drop-down list on the Configure > Appearance > Graph Size tab adds more information to the title.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 51

Page 58: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

52 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

7.4.3. Graph colors

Graph colors can be changed with the Configure > Appearance > Graph Elements tab.

Colors are selected from the predefined drop-down lists.

Background is the background color of the graph.

Rainbow Colors sets the number of colors used to display graph lines or bars when Rainbow Colors is selected as the curve color. With three rainbow colors, the colors are red, green, and blue. If 4 colors are requested, four equally spaced hues from the color spectrum are used to display each graph line or bar in turn.

Page 59: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output Graph output

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 53

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 53

Bar ColorBar Color is used to fill graph bars. Selecting Rainbow Colors fills each bar with its own color. The number of rainbow colors is set by the Rainbow Colors spin box discussed above.

Curve Color is used to draw graph lines. Selecting Rainbow Colors draws each line with its own color. The number of rainbow colors is set by the Rainbow Colors spin box discussed above.

Axis Color is used to draw graph axis lines, tic marks, and axis labels.

Gridline Color is for the graph grid lines. The default is yellow.

Changing Rainbow Colors to 10 results in the following graph coloring:

Page 60: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

54 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

7.4.4. Line widths

Line widths can be changed using the Curve Width, Axis Width, and Gridline Width spin boxes on the Configure > Appearance > Graph Elements tab

Curve Width sets the width of graph lines. 0 is the thinnest and 9 thickest.

Axis Width sets the width of axis lines drawn on the graph. 1 is thinnest and 9 thickest.

Gridline Width sets the width of grid lines drawn on the graph. 1 is thinnest and 9 thickest. To prevent the display of any grid lines set Gridline Width to 0. The following graph uses the default line and color settings.

Page 61: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Graph output Graph output

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 55

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 55

7.5. Number of curve points 7.5. Number of curve points The resolution of the curves can be changed with the Curve Points spin box on the Configure > Appearance > Graph Elements tab. The resolution of the curves can be changed with the Curve Points spin box on the Configure > Appearance > Graph Elements tab. The Curve Points spin box determines the number of points calculated for each curve in the graph. A straight-line segment is drawn between each pair of points. The default of 20 is visually adequate for most graphs. Requesting more points usually results in a marginal improvement in the visual appearance and requires more computation time. In cases where many curves are plotted and the calculation time is slow, reducing the number of curve points will speed things up.

The Curve Points spin box determines the number of points calculated for each curve in the graph. A straight-line segment is drawn between each pair of points. The default of 20 is visually adequate for most graphs. Requesting more points usually results in a marginal improvement in the visual appearance and requires more computation time. In cases where many curves are plotted and the calculation time is slow, reducing the number of curve points will speed things up.

Changing Curve Points from the default of 20 to 5 results in the following graph: Changing Curve Points from the default of 20 to 5 results in the following graph:

Page 62: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Graph output BehavePlus v2.0 User’s Guide

56 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

This page is blank on purpose.

Page 63: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

8. Diagram output

In addition to the usual table and graph output, BehavePlus produces diagrams for the following output variables.

• Wind/slope/fire spread direction diagrams from the SURFACE module • Fire characteristics chart from the SURFACE module • Shape of a point source fire from the SIZE module • Shape of a fire after suppression action from the CONTAIN module

The option of diagram output is given in the lists of output variables.

8.1. Wind/slope/spread direction Direction diagrams can help the user avoid confusion on directions for wind, slope, and spread directions. Direction input options are selected on the Configure > Module selection > SURFACE > Options… > Directions tab.

Direction diagrams are produced with the Configure > Module selection > SURFACE > Options… > Outputs tab and selecting the Wind/Slope/Spread Direction Diagram check box.

The diagrams differ according to the direction Input Options selected from the Configure > Module selection > SURFACE > Options… > Directions tab. The following shows the Input Option selection, the resulting Worksheet, the outputs table and diagrams.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 57

Page 64: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

58 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 65: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Diagram output

The following illustrates the effect of selecting the Wind & spread directions are option button on the variables that are requested on the Worksheet.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 59

Page 66: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

60 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 67: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Diagram output

8.2. Fire characteristics chart A fire characteristics chart diagram plots the relationship of rate of spread, heat per unit area, flame length, and fireline intensity. This option is a simplified plot and does not offer the user any display options. Axis scales are set automatically and points are labeled with simple numbers. In the future, BehavePlus will provide a Fire Characteristics Tool so that that the user can customize it for a specific need.

Fire characteristics charts are produced with the Configure > Module selection > SURFACE > Options… > Outputs tab and selecting the Fire Characteristics Chart check box.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 61

Page 68: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

62 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

It is not necessary to select the four output variables that are plotted on the chart.

The following shows the Worksheet and resulting output table and Fire Characteristics Chart.

Page 69: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Diagram output

The points labeled 1, 2, and 3 correspond to the three lines of the output table. Point 1 is for fuel model 2, point 2 for fuel model 5, and point 3 for fuel model 10.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 63

Page 70: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

64 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

In the case of two variables with multiple entry values a two-way table is produced:

Page 71: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Diagram output

The numbers on the chart correspond to the table cells in left-to-right and top-to-bottom order. In this example, Points 1 and 2 are for the first row of the result table (3% moisture) at the two wind speeds (7 and 10 mi/h). Points 3 and 4 are for the second row of the result table (6% moisture) at the two wind speeds. Points 5 and 6 are for the third row of the result table (9% moisture) at the two wind speeds.

8.3. Shape of a point source fire The elliptical shape of a point source fire can be plotted on the Configure > Module selection > SIZE > Options … > Outputs tab by selecting the Fire Shape Diagram check box

For example, the following shows the Worksheet, output table, and Fire Shape Diagram.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 65

Page 72: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

66 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 73: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Diagram output

In addition to the shape diagrams, values for all of the selected output variables are given on each diagram.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 67

Page 74: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

68 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

When the SIZE Module is linked to the SURFACE Module, the wind vector is also shown on the diagram.

Page 75: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Diagram output

8.4. Containment shape The Containment Diagram shows fire perimeter at time of report, at initial attack, and constructed fireline at the time the fire was successfully contained or when it escaped initial attack (all resources exhausted before containment). The Containment Diagram is displayed by selecting the Containment Diagram checkbox from the Configure > Module selection > Containment > Options … > Output Variables tab.

Select the Contain Status checkbox to output whether the fire was Contained or Escaped on the Containment Diagram.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 69

Page 76: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

70 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 77: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Diagram output

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 71

Page 78: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Diagram output BehavePlus v2.0 User’s Guide

72 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

This page is blank on purpose.

Page 79: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

9. View, print, & capture results

9.1. View size The View > xx% command changes the size of your Worksheet and Run when viewed on screen. It does not affect the size of printed output.

9.2. Windows When a Worksheet is first opened, the Run it represents is assigned a default name such as “unnamed01.bpr”, “unnamed02.bpr”, etc. This name is displayed on the title bar at the top of the BehavePlus application window.

When you save a Run with the File > saveAs > Run command you should rename the Run. The name of the Run is then displayed in the title bar of the BehavePlus window. The complete path name for the Run is shown at the bottom of the BehavePlus application window.

BehavePlus allows you to have any number of Runs open at once. Each Run has its own display window containing a Worksheet and possibly containing calculation results. Only one Run window is active at a time. The Windows menu item allows you to switch between Runs. It also allows you to cascade or tile the Runs within the BehavePlus window area. By default the Run windows are stacked on top of each other, so you only see the active Run. If your Run windows are already cascaded or tiled, you can make a Run active by clicking it.

The following is a “tiled” display of the two Runs, one English, one metric. The English Run (unnamed01.bpr) is the active Run.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 73

Page 80: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

View, print, & capture results BehavePlus v2.0 User’s Guide

74 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

9.3. Pages While each Run has its own window, the window has one or more Pages. The first page(s) contain the Worksheet, and subsequent pages contain results tables, graphs, and diagrams.

You can navigate between pages using the following toolbar buttons:

Go to the first page

Go to the last page

Go to the previous page

Go to the next page

The keyboard navigation arrows will also move you from one page to the next. The Pages > command allows you to jump directly to a specific page.

Page 81: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide View, print, & capture results

Selection can be made from the list of pages with text descriptions and an icon indicating whether it is a table, graph, diagram, etc.

9.4. Print You can print all pages or selected pages with the File > Print command. Alternatively, select Print from the shortcut menu when you right click inside a page.

Whenever an output page is printed, it is good practice to print the associated Worksheet pages to avoid confusion on conditions for the Run. Printed pages are numbered and the date and time of the Run are included on the page header.

9.5. Capture The currently displayed page can be captured and saved as a file in bmp, jpg, or png format with the File > Capture command. In the “Save As” dialog box enter a file name in the Capture File text box and select a file type from the Capture Description drop-down list.

The saved file can then be edited with an image processor or inserted into other documents.

In addition to the File > Capture command, you can use the ALT-Print Screen key or a screen capture utility (e.g. FullShot) to insert results from BehavePlus in other documents. The following steps are an example and do not constitute endorsement of specific software.

• Startup BehavePlus, WORD word processor, and FullShot software. • On BehavePlus display, select the ‘R’ (for Region) in upper right hand of the window (put there by

FullShot). • Use the cursor to select the desired area • Upon release of the mouse, FullShot opens with the selected image • CTRL-C to save it in a clip board • Go to the WORD document • CTRL-V to insert the image

This is a quick and efficient method. There is no need to save the image in a file of its own. The image can be resized, cropped, or moved within WORD if desired.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 75

Page 82: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

View, print, & capture results BehavePlus v2.0 User’s Guide

76 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

This page is blank on purpose.

Page 83: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

10. Error checking

If you do something that causes the program to crash, it is a program bug. Please report it through www.fire.org.

When you do something in error, the program will tell you what the problem is and give you a chance to fix it.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 77

Page 84: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Error checking BehavePlus v2.0 User’s Guide

This page is blank on purpose.

78 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 85: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

11. Custom fuel models

A fuel model is a set of values that describe a fuel type for the surface fire spread model. The standard fuel models are numbered 1 through 13. Additional fuel models, called Custom Fuel Models, can be developed, tested, saved, and used in BehavePlus.

11.1. Using previously saved fuel models The 13 standard fuel models are always available. In order to use previously saved custom fuel models, the folder in which they are stored must be attached using the Configure > Fuel model set selection command.

Click on a folder's button to view its fuel model files. Each fuel model is stored in a separate file.

Fuel model files are attached by attaching the folder in which they reside. This makes the fuel models in that folder accessible for use. It is not possible to select and attach individual fuel models; the entire folder must be attached. For example, all the southern California fuel models are attached by selecting the SoCalifornia folder. Once a fuel model folder is attached, the fuel models appear in the Fuel Model input guide and may be entered as fuel model input.

After the SoCalifornia fuel model folder is attached, the Fuel Model input Guide Button gives the following valid selections for the Fuel Model text box.

To view the parameters of a particular fuel model, right-click on its name and select View parameters from the shortcut menu.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 79

Page 86: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Custom fuel models BehavePlus v2.0 User’s Guide

80 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Folders (and files) with a paper clip icon are currently attached to (i.e., accessible for use by) BehavePlus in the current session. Once the Ok button is pressed, only the selected folders will have their files attached. Unselected folders will NOT have their files attached, even if they are currently marked as attached by the paper clip icons.

Page 87: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Custom fuel models

11.2. Defining and saving custom fuel models To change the Worksheet so that individual fuel parameters are entered in place of the fuel model code use the Configure > Module selection > SURFACE > Options… > Fuel and moisture tab and select the fuel parameters. option button.

Or you can load the Example Worksheet FuelModeling.bpw, which as been set up this way, using the File > New command or toolbar button.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 81

Page 88: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Custom fuel models BehavePlus v2.0 User’s Guide

82 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Fuel model parameters can be typed directly into the parameter text boxes. Or they can be initiated with an existing fuel model by clicking the Initialize from a Fuel Model button on the Worksheet.

The process of developing a custom fuel model is more complex that just filling in these blanks. It involves a process of evaluation and revision.

Once the fuel model parameters are defined, a custom fuel model can be saved for later use with the File > Save as > Fuel model command. In the “Save As” dialog box enter a file name in the Fuel Model File text box and a short description in the Fuel Model Description text box. If more than one value is assigned to a fuel model parameter for testing purposes, the first value in the list is the one that is saved.

Fuel models should be grouped in folders named by some logical association of meaning to the user. See Section 18.4 , Save As, for more information.

Page 89: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

12. Moisture scenarios

A moisture scenario is a set of fuel moistures for 1-h, 10-h, and 100-h dead fuel and herbaceous and woody live fuel. It is analogous to the fuel model concept in that a single code represents a set of moisture values. Fuel moisture scenarios may be developed, for example, to represent local 90-, 95-, and 97-percentile weather situations. The set of moisture scenarios used in the old BEHAVE TSTMDL fuel modeling program are provided with the BehavePlus program.

Fuel model scenarios are for developing and comparing fuel models. They are not designed for fire behavior prediction, in which case fuel moisture values should be assigned directly.

12.1. Using previously saved moisture scenarios A folder of moisture scenarios is attached using the Configure > moisture Scenario set selection command to open the “Moisture Scenarios” dialog box.

Click on a folder's to view its moisture scenario files. Each moisture scenario is stored in a separate file.

Moisture scenario files are made available by attaching the folder in which they reside. This makes the moisture scenarios in that folder accessible for use. It is not possible to select and attach individual moisture scenarios; the entire folder must be attached. For example, the moisture scenarios that come with the BehavePlus program are attached by selecting the Tstmdl folder. Once a moisture scenario folder is attached, its moisture scenarios appear in the Moisture Scenario input guide.

Set up the Worksheet to enter fuel moistures with moisture scenarios using the Configure > Module selection > SURFACE > Options… > Fuel & Moisture tab and select the Moisture is entered by moisture scenario. option button.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 83

Page 90: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Moisture scenarios BehavePlus v2.0 User’s Guide

84 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 3

After the Tstmdl moisture scenario folder is attached, the Moisture Scenario Guide After the Tstmdl moisture scenario folder is attached, the Moisture Scenario Guide button on the Worksheet gives the following valid selections for moisture scenarios. To view the parameters of a particular moisture scenario, right-click on its name and select View parameters from the context menu.

When viewing folders (and files) in the “Moisture Scenario” dialog box, those scenarios with a paper clip icon are currently attached to (e.g., accessible for use by) the BehavePlus application. Once the Ok button is pressed, only selected folders will have their files attached. Unselected folders will NOT have their files attached, even if they are currently marked as attached by the paper clip icons.

Page 91: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Moisture scenarios

12.2. Defining and saving moisture scenarios To define a Moisture Scenario first set the Worksheet to require individual fuel moisture values by selecting individual size class in the Configure > Module selection > SURFACE > Options… > Fuel & Moisture tab.

Enter values for each size class on the Worksheet, even if that item is shaded. Other input text boxes don’t matter.

Save the moisture scenario with the File > Save as > Moisture scenario command. In the “Save As” dialog box enter a file name in the Moisture Scenario File text box and a short description in the Moisture Scenario Description text box. See Section 18.4 , Save As, for more information on saving moisture scenarios.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 85

Page 92: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Moisture scenarios BehavePlus v2.0 User’s Guide

86 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

This page is blank on purpose.

Page 93: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

13. Map applications

BehavePlus allows calculation of slope steepness from map measurements and conversion of distances to map distances.

Map scale is given as map representative fraction, which is the ratio of the number of units on the map between two points to the distance on the ground between the same two points. For example, if the map representative fraction is 1:24,000, then for each inch on the map there are 24,000 inches on the ground.

Although any value can be entered, the “Input Guide” dialog box provides common map scales, available by clicking the Choices button.

13.1. Slope from map measurements To set up a Worksheet to calculate slope steepness from measurements on a topographic map use the Configure > Module selection > SURFACE > Options… > Slope tab and select Slope steepness is calculated from map measurements.

You can add the calculated slope steepness and intermediate values to the output list with the Configure > Module selection > SURFACE > Options… > Outputs tab. Select any or all of the Slope Steepness, Slope Elevation Change, or Slope Horizontal Distance check boxes.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 87

Page 94: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Map applications BehavePlus v2.0 User’s Guide

88 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 95: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Map applications

The Worksheet then includes a Map section with text boxes for data.

The contour interval is the difference in elevation between adjacent topographic contours on a topographic map.

The map distance is the distance between two points on a map generally expressed in inches or centimeters.

Number of contour intervals is a count between two points on a map.

If only slope values are requested as output, then only Map input variables are requested. An existing Worksheet, SlopeMap.bpw, showing this configuration is found in the ExampleWorksheets folder.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 89

Page 96: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Map applications BehavePlus v2.0 User’s Guide

90 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

13.2. Map distances To specify that output calculated distances should also be given in map units use the Configure > Module selection command and select the Display output distances in map units check box.

Page 97: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide Map applications

When a distance is calculated in SURFACE, SIZE, or SPOT and the Display output distances in map units check box is selected, a Map Representative Fraction (1x) text box is added to the Worksheet and map distances are added to the list of output variables.

For example, when the Spread Distance check box is selected in the Configure > Module selection > SURFACE > Options… > Outputs tab the following Worksheet results:

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 91

Page 98: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Map applications BehavePlus v2.0 User’s Guide

92 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

This page is blank on purpose.

Page 99: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

14. Units

Default units for BehavePlus are English for use in the United States It is easy to change all units to metric using the Configure > Units > metric command.

If a user wishes to use something other than the units we have selected for English or metric, a custom set of units can be defined and saved for later use.

The Units set also defines the number of decimal places displayed for each variable.

Note that whenever a Worksheet or Run is saved, its current units of measure and display decimals are saved with it. The next time you open the Worksheet or Run, the units and decimal settings are restored.

BehavePlus also provides a quick units conversion tool accessed with the Tools > Units converter command.

14.1. English or metric The units set can be changed using the Configure > Units > English or metric or custom commands.

Immediately upon change, the units on the active Worksheet and all values that have been entered are changed.

Because units are stored with a Worksheet or Run, if units are changed to metric and then another Worksheet is loaded from the ExamplesWorksheets folder, with the File > New command, the new Worksheet will be English units.

14.2. Custom units set Develop and save a custom units set using the “Units Editor” dialog box opened with the Tools > units Editor command.

The Units editor controls the selection of units of measure and decimal places for the input, display, and output of variables. The selected units are then applied to the current Worksheet and saved as a custom units set.

The units of measure initially displayed by the dialog are those in use for the current Worksheet.

Select the desired units for each variable set. Rather than repetitiously having to enter units for every variable, they are grouped by type of unit of measure. Appendix C gives these groupings and their default English and metric units.

Once you have defined and saved a custom units set, you can apply it to a Worksheet or Run with the Configure >Units > Custom command that opens the “Select A Units Set” dialog box.

14.3. Number of decimal places In addition to setting units of measure, the “Units Editor” dialog box also allows you to change the number of digits displayed after the decimal place of all input and output variables.

For example, fire area has 1 decimal place as the default. You may want to round area to the nearest acre by changing the number of decimals to 0.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 93

Page 100: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Units BehavePlus v2.0 User’s Guide

14.4. Units conversion tool For all those times when somebody gives you an observed spread rate in furlongs/fortnight or you just need to know what the temperature is at that Canadian RAWS station just across the border, BehavePlus has a utility you can reach with the Tools > Units conversion tool command.

In the “Units Conversion Tool” dialog box enter your known observation into the From Amount and From Units text boxes (12.3 meters per second in the above example). Then enter the desired units in the Into Units text box and click the Convert button to get your results (27.5143 miles per hour in the above example).

In the help window of the “Units Conversion Tool” dialog box there is a list of all the available units.

94 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 101: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

15. Language

The FIRE1 program of the old BEHAVE system was translated into several languages including Spanish and Chinese. We have designed BehavePlus to make the translation process easier. A Portuguese translation is included as an example. Instructions are available for translation to other languages. This translation process applies to the program interface itself, not to the help files.

15.1. English or Portuguese To change the language from the default English to Portuguese use the Configure > Language > Portuguese (Portugal) command.

15.2. Custom language set To develop a custom language set contact Collin Bevins at [email protected].

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 95

Page 102: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Language BehavePlus v2.0 User’s Guide

This page is blank on purpose.

96 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 103: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

16. Fine Dead Fuel Moisture Tool

The “Fine Dead Fuel Moisture Tool” dialog box can be accessed with the Tools > Fine dead fuel moisture command.

This tool is an automation of the daytime tables from Rothermel (1983). Selections are made through drop down lists. As soon as a change is made, the results are displayed. Since these tables are not based on equations, they can’t effectively be incorporated as a module into BehavePlus.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 97

Page 104: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Fine Dead Fuel Moisture Tool BehavePlus v2.0 User’s Guide

This page is blank on purpose.

98 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 105: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

17. Sun-Moon Calendar Tool

The “Sun-Moon Calendar” dialog box is opened with the Tools > Sun-moon calendar command.

This tool allows you to specify any month of any year at a location on the globe and generate a calendar of sun-rise, sun-set, civil dawn, civil dusk, moon-rise, and moon-set times in table or calendar format. It can also display a table of equinox, solstice, and moon phases for the year.

The calendar tool also includes a large database of named places within the United States so you can select a location by name rather than by coordinates.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 99

Page 106: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Sun-Moon Calander Tool BehavePlus v2.0 User’s Guide

This page is blank on purpose.

100 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 107: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

18. File management

18.1. Workspaces BehavePlus has a proscribed file system structure; all files must be located in specific subdirectories. The parent directory of this file structure and all its subdirectories and files are collectively known as a Workspace.

A Workspace is a complete subdirectory tree containing all required BehavePlus files plus any additional Worksheet, Run, Fuel Model, Moisture Scenario, Units Set, or screen capture files saved by the user. A Workspace corresponds to a single BehavePlus project, and each BehavePlus project should have its own Workspace. Workspaces are created with either the File > Workspaces > New Workspace or Clone current workspace commands.

When BehavePlus is first installed it has a single Workspace called the “DefaultDataFolder”. This is the default current Workspace every time BehavePlus is started.

We recommend you create a new Workspace using the File > Workspaces > New Workspace command for every BehavePlus project you’re working on. A project can be a collection of fire behavior projections for a wildfire or a fuels analysis for an environmental impact statement. The new, “pristine” Workspace is automatically populated with all example Worksheets, example Runs, and standard and predefined custom fuel models just like the “DefaultDataFolder” Workspace.

Alternatively, you may clone an existing Workspace with the File > Workspaces >Clone current workspace command to copy all of the current Workspace into a new Workspace, including all Run, Units Sets, custom Fuel Models, and custom Moisture Scenarios.

The Workspace concept provides the following benefits:

• All files pertaining to a specific training class, fire situation, or other project are segregated into their own file structure.

• Workspaces are easily backed up or copied onto removable media using either the File > Workspaces > Clone current workspace command or Windows Explorer.

• BehavePlus has self-validation tests and informs you whenever it is missing required files.

• BehavePlus knows where to find all custom Fuel Models and Moisture Scenarios and include them in Guide Button dialog boxes.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 101

Page 108: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

File management BehavePlus v2.0 User’s Guide

102 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

We recommend using a compression utility such as WinZip, PKZip, or gzip when emailing or moving a Workspace over the Internet as compression significantly reduces BehavePlus file sizes.

A list of three letter file extensions used by BehavePlus is shown in the following table. These extensions are automatically attached to the files you create in BehavePlus.

File extension File type Folder

.bpf Custom fuel models FuelModelFolder

.bpm Moisture scenarios MoistureScenarioFolder

.bpw Worksheets WorksheetFolder

.bpr Runs RunFolder

.bpu Custom Units Sets UnitsSetFolder

.exe Executable program file BehavePlus

.png Portable network graphic image format MyScreenCaptures

.bmp Bitmap graphic image format MyScreenCaptures

.jpg JPEG graphic image format MyScreenCaptures

.xml Extensible Markup Language Various places

18.2. Load a Worksheet A previously saved Worksheet is loaded with the File > New command, which opens the “Select a Worksheet” dialog box.

The Worksheet is ‘blank’ in that none of the input variables have been assigned values. But all of the associated options are still part of the Worksheet (e.g., graph appearance).

18.3. Load a Run A previously saved Run is loaded through File > Open Run command, which opens the “Select a Run” dialog box.

A Run is a Worksheet with valid values assigned to all input variables. Calculated values, tables, graphs, and diagrams are not saved. These are generated with the File>Calculate command.

18.4. Save as… A sub-menu of the File > saveAs command offers several choices of what to save from the active Worksheet:

• Run • Worksheet • Fuel model • Moisture scenario

A Run can be saved only if all valid values have been assigned to all variables on the Worksheet. The Run can be opened at a later time using the File > Open Run command or the toolbar button.

When a Worksheet is saved, it is saved without any values assigned to input variables. The Worksheet can be opened at a later time using the File > New command or the toolbar button.

Before saving a fuel model make sure the SURFACE module check box is selected and the fuel parameters checkbox is selected in the Fuel is entered as section of the SURFACE > Options… > Fuel &

Page 109: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 User’s Guide File management

Moisture tab. Valid values must be assigned to each fuel model parameter. To make custom fuel models available at a later time use the Configure > Fuel model set selection command.

Before saving a moisture scenario make sure the SURFACE module is selected and the individual size class check box is selected in the Moisture is entered by section of the SURFACE > Options… > Fuel & Moisture tab. Valid values must be assigned to each size class, even those that are shaded. To make a moisture scenario available use the Configure > moisture Scenario set selection command.

The following example saves a Worksheet. The process is the same for other file types. In all cases, the File > saveAs command requests input of folder name, file name, and file description in the “Save As” dialog box.

In this case, the Worksheet Folder field is initially set to MyWorksheets. To create a new folder, simply type a new name into the Worksheet Folder text box: TestFolder in the above example. You are asked to enter a Worksheet folder description. The folder description subsequently appears in the file selection dialog box as a reminder of its contents. The Worksheet description is initially set to whatever is in the Description text box on the Worksheet. When saving a Worksheet, you should assure that it describes the blank Worksheet, not the specific Run.

18.5. Deleting Files & Folders Files and folders in a BehavePlus Workspace are deleted using Windows Explorer. However you should only delete files and folders you create, not any of the files and folders BehavePlus creates for the Workspace.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 103

Page 110: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

File management BehavePlus v2.0 User’s Guide

104 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

This page is blank on purpose.

Page 111: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

19. Help

Help features are a primary feature of BehavePlus. The Users Guide is available from the menu bar, and all dialogs and wizards include a help browser pane. Input fields include a Guide button for help in entering range inputs or selecting one or more discrete choices.

19.1. Browser pane help The right-hand pane of many BehavePlus dialog boxes is a help browser. These can be printed by right-clicking in the help window to display a shortcut menu and selecting the appropriate command.

It includes a description of input variables when the guide button associated with the variable on the Worksheet is clicked. It includes a description of output variables when the cursor is held over a variable name on the list of possible output variables for a MODULE, reached through Configure > Module selection > MODULE > Options… > Outputs tab.

For each variable, information includes

• Short description • Input to modules • Output from modules • More Information • See also • Links

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 105

Page 112: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Help BehavePlus v2.0 User’s Guide

19.2. Guide button Help on entering a specific Worksheet variable is available by pressing the Guide button next to each Worksheet entry field to activate an “Input Guide” dialog box containing a help browser pane and input assistance. For continuous variables, the dialog facilitates entry of a large number of inputs by specifying the minimum input value, maximum input value, and increment value.

Additional values are sometimes displayed by clicking the Choices button where available in the “Input Guide” dialog box.

For discrete variables the dialog contains a list of all valid inputs from which the user may select values.

19.3. User’s Guide This User’s Guide can either be printed or accessed interactively using a PDF viewer such as Adobe Acrobat Reader. It serves as the online help for BehavePlus and can be opened with the Help > Program help command. When viewed with the Adobe Acrobat Reader, the contents at the left provide access to the section in question.

106 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 113: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

References Anderson, Hal E.1982. Aids to Determining Fuel Models For Estimating Fire Behavior. Gen. Tech. Rep. INT-122. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 22 p. Andrews, Patricia L.1986. BEHAVE: fire behavior prediction and fuel modeling system-BURN subsystem, Part 1. Gen. Tech. Rep. INT-194. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 130 p. Andrews, Patricia L. and Collin D. Bevins. 1999. Update and expansion of the BEHAVE fire behavior prediction system. 3rd International Conference on Forest Fire Research; 14th Conference on Fire and Forest Meteorology. 21-22 November 1998, Luco-Coimbra, Portugal. Vol. I, pp.733-740. Andrews, Patricia L.; Bradshaw, Larry S. 1990. RXWINDOW: Defining windows of acceptable burning conditions based on desired fire behavior. Gen. Tech. Rep. INT-273. Ogden, UT: U.S. Department of Agriculture, Forest Service. Intermountain Research Station. 54 p. Andrews, Patricia L.; Chase, Carolyn H. 1989. BEHAVE: fire behavior prediction and fuel modeling system-BURN subsystem, Part 2. Gen. Tech. Rep. INT-260. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 93 p. Burgan, Robert E.; Rothermel, Richard C. 1984. BEHAVE: fire behavior prediction and fuel modeling system-FUEL subsystem. Gen. Tech. Rep. INT-167. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 126 p. Finney, Mark A. 1998. FARSITE: Fire area simulator–model development and evaluation. Res. Pap. RMRS-RP-4. Ogden, UT: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 47 p. Fried, J.S. and B.D. Fried. 1996. Simulating Wildfire Containment with Realistic Tactics. Forest Science 42:267-281. Rothermel, Richard C. 1972. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 40 p. Rothermel, Richard C. 1983. How to Predict the Spread and Intensity of Forest and Range Fires. Gen. Tech. Rep. INT-143. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. 161 p.

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 107

Page 114: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

This page is blank on purpose.

108 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Page 115: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 A1

Appendix A: Version Comparison

Version 1 and Version 2

Following are significant differences between BehavePlus version 1.0 and version 2.0. Minor changes are not listed here.

• Safety zone size model added as a new SAFETY module

• Containment model added as a new CONTAIN module. This is a new model that allows multiple

resources to make direct or parallel attack.

• Probability of ignition by lightning model added to the IGNITE module

• Two fuel weighting, three methods added to the SURFACE module

• Dynamic palmetto-gallberry fuel model added to the SURFACE module

• Size diagram output added to SIZE

• Contain diagram output in CONTAIN

• Direction diagram added to SURFACE

• Fire characteristics chart diagram output added to SURFACE

• Fine dead fuel moisture added as a new tool

• A Run Option section is added to the worksheets for clarification

• The contents of the Notes section on example worksheets is blank. The description of the worksheet that was there for version 1 is not necessary, especially with the addition of the Run

Options section.

• The ‘Standard’ worksheet folder that was supplied with version 1 of the program is called the

ExampleWorksheets folder in version 2 to better reflect what it is. The worksheets in that folder are just some that the developers put together. The term ‘standard’ gave them significance that

they didn’t deserve.

• The Blank.bpw Worksheet that was in version 1 is called the 0Startup.bpw Worksheet in version 2 to better reflect what it is—the worksheet to use as a startup in selecting calculation modules. The ‘0’ (zero) as a first character of the file name puts it as the first item on the list for easy

selection. • The program now automatically loads the 0Startup.bpw worksheet upon initiation. This saves

some steps if the worksheet is set up by module selection. If a previously saved worksheet is

desired, it is selected and loaded as before with the File > New command.

• The Fuel model guide button gives you access to the photographs and descriptions in Anderson

(1982) “Aids to selecting fuel models” and to the selection key in Rothermel (1983) “How to predict the spread and intensity of forest and range fires”

• The Program Help and the Users Guide for version 1 have been replaced by a single, new document—a users guide in PDF format that can be both printed and accessed online for specific

help.

• A Language option has been added. Portuguese is provided as an example.

• Additional Workspace options aid in file management.

• Graph Y-axis are now user-scalable.

BEHAVE and BehavePlus

The old BEHAVE fire behavior prediction and fuel modeling system is a set of five DOS programs, three

of which were first available in 1984. The whole look and feel of the BehavePlus fire modeling system is different, using modern user interface technology

Page 116: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix A BehavePlus v2.0 Users Guide

A2 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Following are some specific differences that will be of interest to users of the old BEHAVE system.

• BehavePlus is one program. The old BEHAVE was five programs (FIRE1, FIRE2, RXWINDOW, NEWMDL, TSTMDL). The separation was due to computer limitations at the time and an

extended development period.

• BehavePlus gives the user control of input options that were fixed on the old BEHAVE. For

example, in the old BEHAVE, the DIRECT module required direct input of fuel moisture by size class, midflame wind speed, and direction of wind and spread with respect to upslope. The SITE

module calculated fine fuel moisture and requested input of 20-ft wind speed, exposure to the wind, and direction of wind and spread. The DISPATCH module requested dead and live fuel moisture, 20-ft wind speed and wind adjustment factor. Calculations were for upslope spread

with the wind. In the TSTMDL program, fuel moisture was specified by category. In contrast, the BehavePlus SURFACE module allows users to specify the method of entry for fuel moisture, wind speed, and directions.

• In BEHAVE only continuous variables could be assigned more than one value for a maximum of seven values. For example, wind speed could be assigned a range of values, but fuel model could

not. BehavePlus allows multiple input values for every variable and there is essentially no limit to the number of values. Table output is carried over to multiple pages if necessary.

• BehavePlus produces graphs and diagrams as well as tables. The primary output of the old

BEHAVE was tables. Crude graphs were produced using characters.

• The fuel modeling portion of the old BEHAVE consisted of the NEWMDL and TSTMDL programs. The features in NEWMDL are not in BehavePlus. The TSTMDL fuel model testing

methods are in BehavePlus.

• BehavePlus does not include the fine dead fuel moisture model in MOISTURE and SITE modules

in the FIRE2 program of BEHAVE. A better moisture model based on hourly weather data has been developed and is being incorporated into the National Fire Danger Rating System (NFDRS) and the FireFamily Plus program. Eventually it will be available for fire behavior calculations in

BehavePlus. BehavePlus offers the fuel moisture tables as a tool.

• The CONTAIN module of BehavePlus is different from that used in BEHAVE. The old model had

a mathematical problem that occasionally surfaced. BehavePlus uses a model by Fried and Fried (1996) that offers the application of multiple resources with various productivity rates and arrival times, and direct or parallel attack at either the fire head or rear. BehavePlus does not offer the

option of reverse calculation that was in the old BEHAVE (i.e. given a final fire size, what is the required line production rate).

• The RxWindow program is not and will not be part of BehavePlus. Reverse calculation becomes more difficult (essentially impossible) as models are added. The plan is to provide a new method

of table shading to aid in prescribed fire planning.

• The equations in the MORTALITY module in BehavePlus have been updated to match those of

FOFEM. Many new tree species have been added.

• BehavePlus lists input values by category (Fuel/Vegetation, Weather, …) rather than by module

(DIRECT, SIZE, …) as was done in the old BEHAVE.

• In BehavePlus users select the output variables to be displayed. In BEHAVE the output list was

fixed.

• Map distance calculation was a stand-alone feature in BEHAVE. It is integrated into BehavePlus.

• BEHAVE asked users whether they were using a computer with a screen. The program could be

run in either WORDY or TERSE mode. BehavePlus assumes it is being run on a 21st century personal computer.

Page 117: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 B1

Appendix B: Input and Output Variable Tables

Each input variable in BehavePlus, version 2, is listed in the table according to category. ‘I’ (for Input) in a

Module column indicates that it is a possible input for that module. In some cases an input variable may also be an output variable, indicated by ‘O’ (for Output). It depends on the selected modules, input options, and output variables.

For example, note that

• Midflame wind speed is an input to SURFACE under the input option Wind speed is entered

as midflame height. However, it is an output variable if Wind speed is entered as 20-ft

wind and wind adjustment factor is selected.

• Rate is spread is an output from SURFACE and an input to SIZE. If both SURFACE and SIZE are

selected, the rate of spread from SURFACE is automatically used in SIZE. If only SIZE is selected, then the user must input values for rate of spread.

• Temperature is used only in SCORCH and RH, it is not used for the spread rate and intensity calculations in SURFACE.

• These tables also give the English and metric units and number of decimal places and the output

variables selected for display initiated by the 0Startup.bpw worksheet. (See Appendix D.)

Page 118: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix B BehavePlus v2.0 Users Guide

B2 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Input Variables and Modules

Input variable

SU

RF

AC

E

SA

FE

TY

SIZ

E

CO

NT

AIN

SPO

T

SCO

RC

H

MO

RT

AL

ITY

IGN

ITE

RH

Var

iabl

e T

ype

English Range/Units

Metric Range/Units Notes

Fuel / Vegetation

Fuel model I D N/A N/A First fuel model I D N/A N/A For two fuel models Second fuel model I D N/A N/A “ First fuel model coverage I C 0-100% 0-100% “ 1-h fuel load I

C

0.0-30.49 ton/ac

0.0-68.35 tonne/ha Fuel model parameter

10-h fuel load I C 0.0-30.49 ton/ac 0.0-68.35 tonne/ha “ 100-h fuel load I C 0.0-30.49 ton/ac 0.0-68.35 tonne/ha “ Live herbaceous fuel load I C 0.0-30.49 ton/ac 0.0-68.35 tonne/ha “ Live woody fuel load I C 0.0-30.49 ton/ac 0.0-68.35 tonne/ha “ 1-h surface area / vol ratio I C 109-4,000 ft2/ft3 358-13,123 m2/m3 “ Live herb surface area / vol ratio

I C 109-4,000 ft2/ft3 358-13,123 m2/m3 “

Live woody surface area / vol ratio

I C 109-4,000 ft2/ft3 358-13,123 m2/m3 “

Fuel bed depth I/O C 0.05 to 10.0 ft 0.02-3.05 m “ output for P-G

Dead fuel moisture of extinction

I C 5 – 100% 5 – 100% Fuel model parameter

Dead fuel heat content I C 6,000-12,000 BTU/lb 13,967-27,934kJ/kg “ Live fuel heat content I C 6,000-12,000 BTU/lb 13,967-27,934kJ/kg “

Page 119: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 Users Guide Appendix B

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 B3

Input Variables and Modules

Input variable

SUR

FA

CE

SAF

ET

Y

SIZ

E

CO

NT

AIN

SPO

T

SCO

RC

H

MO

RT

AL

ITY

IGN

ITE

RH

Var

iabl

e T

ype

English Range/Units

Metric Range/Units Notes

Fuel / Vegetation (cont.)

Palmetto-gallberry age of rough

I C 1-25 years 1-25 years For dynamic palmetto-gallberry

Height of understory I C 1-6 ft 0 -2 m “ Palmetto coverage I C 15-85 % 15-85 % “ Overstory basal area I C 30-110 ft2/ac 6.8-25.3 m2/ha “ Mean cover height I C 0 –300 ft 0 –91 m Tree height I I C 10 – 300 ft. 3 – 91 m Crown ratio I C 0.1 – 1.0 0.1 – 1.0 Mortality tree species I I D (206 species) (206 species) Spot tree species I D (14 species) (14 species) D.B.H. I I C 5 – 40 in 13 – 102 cm Bark thickness I/O C 0.1 – 2.0 in 0.3 – 5.1 cm Lightning ignition fuel type I D PPL, PWC, PWD,

PWS, LPD, DFD, ESH, PMC

PPL, PWC, PWD, PWS, LPD, DFD, ESH, PMC

Lightning duff and litter depth

I C 0-12 in 0-30 cm

Page 120: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix B BehavePlus v2.0 Users Guide

B4 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Input Variables and Modules

Input variable

SUR

FA

CE

SAF

ET

Y

SIZ

E

CO

NT

AIN

SPO

T

SCO

RC

H

MO

RT

AL

ITY

IGN

ITE

RH

Var

iabl

e T

ype

English Range/Units

Metric Range/Units Notes

Fuel Moisture

Moisture scenario D N/A N/A 1-h moisture I I C 1 – 60% 1 – 60% Fuel moisture

scenario parameter 10-h moisture I C 1 – 60% 1 – 60% “ 100-h moisture I I C 1 – 60% 1 – 60% “ Live herbaceous moisture I C 30 – 300% 30 – 300% “

Live foliage for P-G Live woody moisture I C 30 – 300% 30 – 300% “

Live stemwood for P-G

Dead fuel moisture I I C 1 – 60% 1 – 60% Used for 1-h, 10-h, 100-h

Live fuel moisture I C 30 – 300% 30 – 300% Used for live herbaceous and woody

Page 121: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 Users Guide Appendix B

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 B5

Input Variables and Modules

Input variable

SUR

FA

CE

SAF

ET

Y

SIZ

E

SPO

T

SCO

RC

H

MO

RT

AL

ITY

IGN

ITE

RH

CO

NT

AIN

Var

iabl

e T

ype

English Range/Units

Metric Range/Units Notes

Weather

Midflame wind speed I/O I C 0 – 60 mi/h 0.0 – 96.6 km/h 20-ft (or 10-m) wind speed

I I C 0 – 99 mi/h 0.0 – 159 km/h

Wind adjustment factor I C 0.1 – 1.0 0.1 – 1.0 Effective wind speed O I C 0 – 60 mi/h 0.0 – 96.6 km/h Wind direction (from North) or (from upslope)

I C 0 – 360 deg 0 – 360 deg Reference depends on input option selections

Air temperature I I I C -40 – 120 deg F -40 – 49 deg C Wet bulb temperature I C -40 – 120 deg F -40 – 49 deg C Dew point temperature I/O C -40 – 120 deg F -40 – 49 deg C Fuel shading from the sun I C 0 – 100% 0 – 100% by cloud or canopy Lightning strike type I D +, -, or unknown +, -, or unknown Terrain

Slope steepness I C 0 – 45 deg 0 – 100%

0 – 45 deg 0 – 100%

Aspect I C 0 – 360 deg 0 – 360 deg Site elevation I C -1,000-30,000 ft -305 – 9,144 m Ridge-to-valley elevation difference

I C 0 – 4,000 ft 0 – 1,219 m

Ridge-to-valley horizontal distance

I C 0 – 4.0 mi 0 – 6.4 km

Spotting source location I D RT, MW, VB, ML RT, MW, VB, ML

Page 122: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix B BehavePlus v2.0 Users Guide

B6 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Input Variables and Modules

Input variable

SUR

FA

CE

SAF

ET

Y

SIZ

E

CO

NT

AIN

SPO

T

SCO

RC

H

MO

RT

AL

ITY

IGN

ITE

RH

Var

iabl

e T

ype

English Range/Units

Metric Range/Units Notes

Fire

Rate of spread (maximum)

O I I C 0 – 500 ch/h 0.0-167.6 m/min Head fire

Flame length O I I I C 0 – 200 ft 0 – 61 m Worst-case estimate of flame height for SAFETY

Fireline intensity O I C 0 – 10,000 BTU/ft/s 0 – 34,641 kW/m Flame height from a burning pile

I C 0 – 100 ft 0 – 30.5 m

Spread direction (from North) or (from upslope)

I/O C 0 – 360 deg 0 – 360 deg Reference depends on input option selections

Number of torching trees I C 0 – 30 0 - 30 Scorch height O I C 0 – 200 ft 0 – 61 m Elapsed time I I C 0.5 – 8.0 h 0.5 – 8.0 h From ignition/start Fire size at report O I C 0.1-100 ac 0.0-40.5 ha ‘area’ from SIZE Length-to-width ratio O I C 1-7 1-7

Page 123: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 Users Guide Appendix B

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 B7

Input Variables and Modules

Input variable

SUR

FA

CE

SAF

ET

Y

SIZ

E

CO

NT

AIN

SPO

T

SCO

RC

H

MO

RT

AL

ITY

IGN

ITE

RH

Var

iabl

e T

ype

English Range/Units

Metric Range/Units Notes

Map

Map representative fraction (1:x)

I I I C 1,980 – 1,013,760 1,980 – 1,013,760

Contour interval I C 1 - 1000 ft 0.3 – 304.8 m Map distance I C 0.1 – 100 in 0.3 – 254 cm Number of contour intervals

I C 1 – 100 1 - 100

Page 124: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix B BehavePlus v2.0 Users Guide

B8 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

Input variable

SUR

FA

CE

SAF

ET

Y

SIZ

E

CO

NT

AIN

SPO

T

SCO

RC

H

MO

RT

AL

ITY

IGN

ITE

RH

Var

iabl

e T

ype

English Range/Units

Metric Range/Units Notes

Suppression

Suppression tactic I D Head or Rear Head or Rear Line construction offset I C 0-100 ch 0-2012 m 0 = direct attack

else parallel attack Resource name I D N/A N/A Entry for each

resource Resource line production rate

I C 1-200 ch/h 20.1-4023.4 m/h “

Resource arrival time I C 0-8 h 0-8 h “ Resource duration I C 0.0-10 h 0.0-10 h “ Resource base cost I C 0-500,000 0-500,000 “ Resource hourly cost I C 0-500,000 0-500,000 “ Number of personnel I C 1-200 1-200 Integer Area per person I C 10-100 ft2 .93-9.3 m2 Number of heavy equipment

I C 0-10 0-10 Integer

Area per heavy equipment

I C 100-500 ft2 9.3-46.5 m2

I = Input O = Output I/O = Input or Output depending on the selected modules and options C = Continuous variable D = Discrete variable

Page 125: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus 2.0 Users Guide Appendix B

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 B9

Output Variables and Modules

Output variable

Default output variable

English Units

Metric Units

Notes

SURFACE

Rate of spread X ch/h m/min Heat per unit area X BTU/ft2 KJ/m2 Fireline intensity X BTU/ft/s KW/m Flame length X ft m Reaction intensity BTU/ft2/min KW/m2 Direction of maximum spread X degrees degrees Spread distance ch m Can be map distance Midflame wind speed mi/h km/h Effective wind speed mi/h km/h Maximum reliable wind speed mi/h km/h Maximum wind exceeded? X Yes or No Yes or No Slope steepness percent percent Slope elevation change ft m Slope horizontal distance ft m Wind/slope/fire direction diagram N/A N/A Fire characteristics chart N/A N/A P-G dead fine fuel load ton/ac tonne/ha P-G dead medium fuel load ton/ac tonne/ha P-G dead foliage fuel load ton/ac tonne/ha P-G live fine fuel load ton/ac tonne/ha P-G live medium fuel load ton/ac tonne/ha P-G live foliage fuel load ton/ac tonne/ha P-G litter fuel load ton/ac tonne/ha Fuel bed depth ft m

Page 126: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix B BehavePlus 2.0 Users Guide

B10 USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003

Output Variables and Modules

Output variable

Default output variable

English Units

Metric Units Notes

SAFETY

Safety zone separation distance X ft m Safety zone size X ac ha Safety zone radius ft m SIZE

Area X ac ha Perimeter X ch m Length-to-width ratio N/A N/A Real number Forward spread distance ch m Can be map distance Backing spread distance ch m Can be map distance Fire length ch m Can be map distance Maximum fire width ch m Can be map distance Fire shape diagram N/A N/A CONTAIN

Time from report X h h To containment or escape

Contain status X Contained, Withdrawn, or Exhausted

Contained, Withdrawn, or Exhausted

Either withdrawn or exhausted is escaped

Contained area X ac ha At containment. If escape, area = 0

Fireline constructed X ch m Number of resources used X N/A N/A Integer Cost of resources used N/A N/A Containment diagram N/A N/A

Page 127: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus 2.0 Users Guide Appendix B

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 B11

Output Variables and Modules

Output variable

Default output variable

English Units

Metric Units

Notes

SPOT

Spotting distance from torching trees X mi km Spotting distance from a burning pile mi km Spotting distance from a wind-driven surface fire

mi km

SCORCH

Scorch height X ft m MORTALITY

Bark thickness in cm Tree crown length scorched ft m Tree crown volume scorched percent percent Probability of mortality X percent percent IGNITE

Probability of ignition from a firebrand X percent percent Probability of ignition from lightning percent percent RH

Relative humidity X Percent Percent

Dew point temperature deg F deg C

Page 128: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 C1

Appendix C: Units Editor

Variable English units No. Dec.

Metric units No. Dec.

Fuel and Vegetation Units

Fuel Load • 1-h fuel load • 10-h fuel load • 100-h fuel load • Live herbaceous fuel load • Live woody fuel load • Palmetto-gallberry dead fine

fuel load • Palmetto-gallberry dead

medium fuel load • Palmetto-gallberry dead

foliage fuel load • Palmetto-gallberry live fine

fuel load • Palmetto-gallberry live

medium fuel load • Palmetto-gallberry live

foliage fuel load • Palmetto-gallberry litter fuel

load

ton/ac 2 tonne/ha 2

Surface Area/Vol Ratio • 1-h surface area/volume

ratio • Live herb surface

area/volume ratio • Live woody surface

area/volume ratio

ft2/ft3 0 m2/m3 0

Understory Fuel Depths • Fuel bed depth • Palmetto-gallberry height of

understory

ft 2 m 2

Ground Fuel Depth • Lightning duff and litter

depth

in 1 cm 0

Page 129: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix C BehavePlus 2.0 Users Guide

C2 USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003

Variable English units No.

Dec. Metric units No.

Dec. Fuel Moisture & Extinction Moisture

• Dead fuel moisture of extinction

• 1-h moisture • 10-h moisture • 100-h moisture • Live herbaceous moisture • Live woody moisture • Dead fuel moisture • Live fuel moisture

percent 0 percent 0

Fuel Heat Content • Dead fuel heat content • Live fuel heat content

Btu/lb 0 kJ/kg 0

Tree Height & Mean Cover Height • Mean cover height • Tree height • Tree crown length scorched

ft 0 m 0

Tree D.b.h. and Bark Thickness • D.b.h. • Bark thickness

in 0 cm 0

Coverage • First fuel model coverage • Palmetto coverage

percent 0 percent 0

Basal Area • Palmetto-gallberry overstory

basal area

ft2/ac 0 m2/ha 0

Weather Units

Wind Speed • Midflame wind speed • 20-ft wind speed • 10-m wind speed • Effective wind speed • Maximum reliable wind

speed

mi/h 1 km/h 1

Temperature • Air (dry bulb) temperature • Wet bulb temperature • Dew point temperature

oF 0 oC 0

Relative Humidity • Relative humidity

percent 0 percent 0

Shading from sun percent 0 percent 0

Page 130: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus 2.0 Users Guide Appendix C

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 C3

Variable English units No.

Dec. Metric units No.

Dec. Terrain & Spotting Units

Slope Steepness • Slope steepness

(Note: these units only apply when the SURFACE Module option Slope is specified as percent is selected. When Slope is specified as degrees is selected, all slope units are degrees.)

percent 0 percent 0

Site Elevation & Ridge-to-Valley Elevation Difference

• Site elevation • Ridge-to-valley elevation

difference • Elevation change (slope

rise) • Horizontal distance (slope

reach)

ft 0 m 0

Spotting Distance & Ridge-to-Valley Horizontal Distance

• Spotting distance from torching trees

• Spotting distance from a burning pile

• Spotting distance from a wind-driven surface fire

• Ridge-to-valley horizontal distance

mi 1 km 1

Fire & Effects units

Rate of Spread ch/h 1 m/min 1 Fire Heat Per Unit Area Btu/ft2 0 kW/s/m2 0 Fireline Intensity Btu/ft/s 0 kW/m 0 Flame Length & Scorch Height

• Flame length • Flame height of a burning

pile • Scorch height

ft 1 m 1

Fire Reaction Intensity Btu/ft2/min 0 kW/m2 0 Spread Distance

• Spread distance • Forward spread distance • Backing spread distance • Fire length • Maximum width of fire

ch 1 m 1

Page 131: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix C BehavePlus 2.0 Users Guide

C4 USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003

Variable English units No.

Dec. Metric units No.

Dec. Fire Area

• Area • Contained area • Fire size at report

ac 1 ha 1

Fire Perimeter ch 0 m 0 Probability of Mortality & Crown Volume Scorched

• Tree crown volume scorched

• Probability of mortality

percent 0 percent 0

Probability of Ignition • Probability of ignition from a

firebrand • Probability of ignition from a

lightning strike

percent 0 percent 0

Time & Map Units

Time • Elapsed time • Resource Arrival Time • Resource Duration • Time from Report

h 1 h 1

Contour Interval • Map contour interval

ft 0 m 1

Map Distance • Map distance (for slope

calculation) • Fire spread map distances • Fire length and width map

distances • Spotting map distance from

torching trees • Spotting map distance from

a burning pile • Spotting map distance from

a wind-driven surface fire

in 2 cm 1

Page 132: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus 2.0 Users Guide Appendix C

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 C5

Variable English units No.

Dec. Metric units No.

Dec. Contain & Safety Units

Rate • Resource Line Production

Rate

ch/h 1 m/h 1

Distance, Containment • Fireline Constructed • Line Construction Offset

ch 1 m 0

Distance, Safety Zone • Safety Zone Radius • Safety Zone Separation

Distance

ft 0 m 0

Area, Safety Zone • Safety Zone Size

ac 2 ha 0

Area, Personnel and Equipment • Area per person • Area per heavy equipment

ft2 0 m2 0

Page 133: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 D1

Appendix D: The 0Startup.bpw worksheet, defaults

The 0Startup.bpw worksheet is generally the starting place for selection of calculation modules. Therefore,

upon initiation, the BehavePlus program automatically loads that worksheet. You have the option of ignoring

or closing it and loading a previously saved worksheet loaded through the File > New command.

The 0Startup.bpw worksheet doesn’t look like much on the screen, but it carries with it all of the ‘default’ selections for calculation modules and displays. Any of those selections can be changed, of course. The

0Startup.bpw worksheet can be reloaded at any time to reset the defaults. The 0 (zero) is the first character in the file name to assure that it is listed first in the list of Example Worksheets for easy selection.

If you want to use a different set of ‘defaults’, simply develop and save a similar startup worksheet in your own

folder. For example, if you generally use metric units or if you prefer to display graphs as full screen rather than 50%, then you can define an alternate appropriate startup worksheet. The program will, however, continue to load our 0Startup.bpw worksheet when the program is initiated. You will need to load your own

using the File > New command.

Page 134: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix D BehavePlus v2.0 Users Guide

D2 USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003

Following are the ‘default’ selections that come with the 0Startup.bpw worksheet.

Module Input option 0Startup.bpw selection

Other options

SURFACE Fuel is entered as • Fuel models • Fuel parameters

• Dynamic palmetto-gallberry

• Two fuel models, two-

dimensional expected spread

• Two fuel models, harmonic

mean

• Two fuel models, area weighted

Moisture is entered by

• Individual size class • Dead and live category

• Moisture scenario

Wind speed is entered as

• Midflame height • 20-ft wind and wind adjustment factor

• 10-m wind and wind

adjustment factor

Wind direction is • Specified on the

worksheet

• Upslope

Rate of spread is calculated

• Only in the direction

of maximum spread

• In directions specified on the

worksheet

Wind & spread directions are

• Degrees clockwise from upslope

(direction the wind is pushing the fire)

• Degrees clockwise from north (direction from which

the wind is blowing)

Slope is specified as • Percent • degrees

Slope steepness is • Specified on the worksheet

• Calculated from map measurements

SCORCH Fire intensity is entered as

• Flame length • Fireline intensity

MORTALITY Bark thickness is • Specified on the worksheet

• Estimated from species and d.b.h

RH Relative humidity is derived from

• Dew point and dry

bulb temperature

• Dry and wet bulb

temperature and elevation

Page 135: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 Users Guide Appendix D

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 D3

Module 0Startup.bpw

output variable selection

Other output variables

SURFACE • Rate of spread

• Heat per unit area

• Fireline intensity

• Flame length

• Direction of maximum spread

• Maximum wind exceeded?

• Reaction intensity

• Spread distance

• Midflame wind speed

• Effective wind speed

• Maximum reliable wind speed

• Slope steepness

• Slope elevation change

• Slope horizontal distance

• Wind/slope/spread direction

diagram

• Fire characteristics chart

• For Palmetto-gallberry dynamic

fuel:

• P-G dead fine fuel load

• P-G dead medium fuel load

• P-G dead foliage fuel load

• P-G live fine fuel load

• P-G live medium fuel load

• P-G live foliage fuel load

• P-G litter fuel load

• Fuel bed depth

SAFETY • Safety zone separation distance

• Safety zone size

• Safety zone radius

SIZE • Area

• Perimeter

• Length-to-width ratio

• Forward spread distance

• Backing spread distance

• Fire length

• Maximum fire width

• Fire shape diagram

CONTAIN • Time from report

• Contain status

• Contained area

• Fireline constructed

• Number of resources used

• Cost of resources used

• Containment diagram

SPOT • Spotting distance from torching trees

• Spotting distance from a burning pile

• Spotting distance from a wind-driven surface fire

SCORCH • Scorch height

MORTALITY • Probability of mortality • Bark thickness

• Tree crown length scorched

• Tree crown volume scorched

IGNITE • Probability of ignition from a

firebrand

• Probability of ignition from

lightning

RH • Relative humidity • Dew point temperature

Page 136: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix D BehavePlus v2.0 Users Guide

D4 USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003

Menu item 0Startup.bpw selection

Other options

View 100% 50, 67, 75, 83, 117, 133, 150, 167, 200%

None SURFACE, SAFETY,

SIZE,CONTAIN, SPOT, SCORCH, MORTALITY, IGNITE, RH

Configure > Module selection

Display output distances in map units. Off

On

Configure > Units English Metric

Custom

Configure > Language English (US) Portuguese (Portugal)

Configure > Fuel model set selection

None No other options.

Fuel model set selection must be

done every time a Worksheet or Run is loaded

Configure > Moisture scenario set selection

None No other options

Moisture scenario set selection

must be done every time a Worksheet or Run is loaded

Page 137: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

BehavePlus v2.0 Users Guide Appendix D

USDA Forest Service General Technical Report RMRS-GTR-xxxWWW. 2003 D5

Configure > Appearance

Tab

Option 0Startup.bpw selection

Other options

Show help pane On Off

Show picture pane On Off

Border color Black Other colors

Application

Border width 1 0 = no border

2-9= thicker border

Graph size 50% 25-100%

Graph title Short Long

X axis origin Zero Min value

Graph size

Y axis origin Zero Min value

Background White Other colors

Rainbow colors 3 4-18

Bar color Red Other colors

Curve points 20 4-100

Curve color Rainbow colors Single color

Curve width 3 0-9

Axis color Black Other colors

Axis width 1 2-9

Gridline color Yellow Other colors

Graph elements

Gridline width 1 0=no gridlines

2-9=thicker gridlines

Display page tab Off On

Tabs per page 4 0 = no tabs

1-10

Tab position 1 0=no tabs

1- #tabs per page

Tab text Blank User defined

Tab text color Black Other color

Page tabs

Tab font size 12 8-24

Shade alternate table

rows

On Off Tables

Shade Light grey Other colors

Fire projection

documentation

Off On

Training documentation Off On

Show input codes for all

discrete variables

Off On

Show output variables

to be calculated

On Off

Show notes section On Off

Worksheet

Notes lines 4 1-10

Page 138: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003 E1

Appendix E: Example Worksheets BehavePlus allows the user to define and save a worksheet for later use. A set of Example Worksheets is provided with the program. Those worksheets are described in this appendix. A worksheet is selected

through File > New. Clicking on the by the Example Worksheets folder displays the following list. A

double click on the selection or a single click and Ok loads the worksheet.

It is important to recognize that these are only examples. We expect that people will set up their own folder of commonly used worksheets.

0Startup.bpw This worksheet is a special case. It is used as the starting place for selecting calculation modules. It shows no

input or output variables, but it sets defaults for all run settings as described in Appendix D. The 0Startup.bpw worksheet was used to initialize all of the following example worksheets.

SurfaceSimple.bpw This worksheet is the ultimate simplification of the setup for a surface fire spread and intensity calculation. It

can be used to examine relationships among the basic variables (fuel, moisture, wind, and slope) on surface fire spread. For specific fire behavior prediction, more information would be used.

• Fuel moisture is entered as dead and live category. A single value is used for 1-h, 10-h, and 100-h moisture content and another for live herbaceous and live woody fuel moisture.

• Calculations are for maximum spread rate, upslope spread with the wind.

SurfaceBasic.bpw This worksheet is similar to the DIRECT module in the old BEHAVE. This method of specifying directions is

used to show the relative effects of wind and slope by vectoring. Reference is to upslope, so there is no need to define aspect or reference directions with respect to north.

• A fuel moisture value is required for each size class.

• Calculations are only for the direction of maximum spread

• Wind and spread directions are specified as degrees clockwise from upslope

• Wind direction is specified as the direction the wind is pushing the fire

Page 139: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

Appendix E BehavePlus v2.0 Users Guide

E2 USDA Forest Service General Technical Report RMRS-GTR-106WWW. 2003

SurfaceBasicFrom.bpw This worksheet is like SurfaceBasic.bpw except the other option for specifying directions is selected. This method of specifying directions is suited for onsite calculations for a specific location on the landscape. The wind direction is that used in weather forecasts.

• A fuel moisture value is required for each size class.

• Calculations are only for the direction of maximum spread.

• Wind and spread directions are specified as degrees clockwise from north.

• Wind direction is the direction from which the wind is blowing.

FuelModeling.bpw This is the SURFACE module set up to examine the effect of changing fuel parameters, part of the process of developing a custom fuel model.

• Fuel is entered as fuel parameter.

• Fuel moisture is entered as moisture scenario.

• Wind is blowing upslope.

• Calculations are only for the direction of maximum spread.

• Only rate of spread (maximum) and flame length are selected as output.

SurfaceMap.bpw This worksheet might be used when using maps in projecting fire growth.

• The header includes those for ‘fire projection documentation’.

• Output distances are displayed as map units.

• Calculations are only for the direction of maximum spread.

• Wind and spread directions are degrees clockwise from north.

• Wind direction is the direction from which the wind is blowing.

• Direction of maximum spread and spread distance are selected as additional output variables.

• Slope steepness is calculated from map measurements.

SlopeMap.bpw This simple worksheet is used to calculate slope steepness from map measurements. It is available from the SURFACE module.

• Slope steepness is specified to be calculated from map measurements.

• Only the slope output variables are selected.

SurfaceScorchMortality.bpw This worksheet enables the three modules SURFACE, SCORCH, and MORTALITY.

• Calculations are for specified spread directions (rather than for the direction of maximum spread).

• Wind and spread directions are degrees clockwise from upslope.

• Wind direction is the direction the wind is pushing the fire.

SurfaceSpotIgnite.bpw This worksheet enables the three modules; SURFACE, SPOT, and IGNITE

• Spotting distance is calculated from a wind-driven surface fire, which is the only spotting distance

output option that makes sense for a link to SURFACE.

• Wind is entered as 20-ft wind speed and wind adjustment factor (rather than as midflame wind

speed).

• Wind direction is upslope.

• Calculations are only for the direction of maximum spread (the only option that is valid for this

spotting option).

Page 140: United States Department BehavePlus Forest Service fire ... · Robert C. Seli is a Forester at the Fire Sciences Laboratory in Missoula, MT. He was previously a District Fire ...

ROCKY MOUNTAIN RESEARCH STATIONRMRS

The Rocky Mountain Research Station develops scientific information and technology to improve management, protection, and use of the forests and rangelands. Research is designed to meet the needs of National Forest managers, Federal and State agencies, public and private organizations, academic institutions, industry, and individuals. Studies accelerate solutions to problems involving ecosystems, range, forests, water, recreation, fire, resource inventory, land reclamation, community sustainability, forest engineering technology, multiple use economics, wildlife and fish habitat, and forest insects and diseases. Studies are conducted cooperatively, and applications may be found worldwide. Research Locations Flagstaff, Arizona Reno, Nevada Fort Collins, Colorado* Albuquerque, New Mexico Boise, Idaho Rapid City, South Dakota Moscow, Idaho Logan, Utah Bozeman, Montana Ogden, Utah Missoula, Montana Provo, Utah Lincoln, Nebraska Laramie, Wyoming *Station Headquarters, Natural Resources Research Center, 2150 Centre Avenue, Building A, Fort Collins, CO 80526 The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.