Unit 7 Inverse and Radical Functions -...

26
Unit 7 Inverse and Radical Functions Test date: _____________________ Name: ___________________________________________________________________________________ By the end of this unit, you will be able to… Find the inverse of a function and identify its domain and range Compose two functions and identify the domain and range Evaluate the inverse of a function in multiple representations Determine if functions are inverses using compositions Find the domain and range of a radical function Graph a radical function or inequality and identify its zeros from its x-intercepts Recognize shifts of radical functions and apply them to a graph Simplify expressions with rational exponents and nth roots Rationalize denominators Solve equations involving radicals and rational exponents Identify extraneous solutions Solve radical inequalities in one variable

Transcript of Unit 7 Inverse and Radical Functions -...

  • Unit 7 Inverse and Radical Functions

    Test date: _____________________

    Name: ___________________________________________________________________________________

    By the end of this unit, you will be able to…

    Find the inverse of a function and identify its domain and range Compose two functions and identify the domain and range Evaluate the inverse of a function in multiple representations Determine if functions are inverses using compositions Find the domain and range of a radical function Graph a radical function or inequality and identify its zeros from its x-intercepts Recognize shifts of radical functions and apply them to a graph Simplify expressions with rational exponents and nth roots Rationalize denominators Solve equations involving radicals and rational exponents Identify extraneous solutions Solve radical inequalities in one variable

  • 2

    Table of Contents

    6.1 Operations on Functions ......................................................................................................................................................... 4

    Function Composition................................................................................................................................................................. 5

    6.2 Finding Inverse Functions ...................................................................................................................................................... 6

    Proving Inverse Functions ........................................................................................................................................................ 7

    Finding Inverses from Tables and Graphs .......................................................................................................................... 8

    6.3 Graphing Square Root and Cube Root Functions .......................................................................................................... 8

    Radical Inequalities ................................................................................................................................................................... 11

    Applications: ................................................................................................................................................................................. 13

    6.4 nth Roots ..................................................................................................................................................................................... 14

    Simplifying Radicals .................................................................................................................................................................. 14

    Approximate Radicals with a Calculator ........................................................................................................................... 15

    Solving Equations using nth Roots ...................................................................................................................................... 15

    Applications .................................................................................................................................................................................. 16

    6.5 Operations with Radical Expressions .............................................................................................................................. 17

    The Product Property of Radicals ........................................................................................................................................ 17

    Quotient Property of Radicals ............................................................................................................................................... 18

    Operations on Radicals ............................................................................................................................................................. 18

    Rationalizing Denominators................................................................................................................................................... 20

    Basic Rational Exponents ........................................................................................................................................................ 20

    6.6 Rational Exponents ................................................................................................................................................................. 21

    Simplifying Radicals with Different Indices ..................................................................................................................... 22

    Using Conjugates to Rationalize the Denominator ........................................................................................................ 23

    6.7 Solving Radical Equations and Inequalities ................................................................................................................... 24

    Solving Equations with Rational Exponents .................................................................................................................... 25

    Solving Inequalities.................................................................................................................................................................... 26

  • 3

    Where are the functions farthest apart? Find the maximum vertical distance d between the parabola and the line for the shaded region.

  • 4

    6.1 Operations on Functions

    1. What is the maximum vertical distance between these two curves?

    2. In a particular county, the population of the two largest cities can be modeled by 𝑓(π‘₯) = 200π‘₯ +

    25 and 𝑔(π‘₯) = 175π‘₯ βˆ’ 15, where x is the number of years since 2000 and the population is in thousands.

    a. What is the population of the two cities combined after 10 years? After any number of years?

    b. What is the difference in the populations of the two cities after 10 years? After any number of years?

    Operation Definition Example:

    f(x) = 2x, and g(x) = -x + 5

    Sum (f + g)(x) = __________________

    (f + g)(x) = __________________________________________

    Difference (f – g)(x) = _________________

    (f – g)(x) = __________________________________________

    Product (f β‹… g)(x) = __________________

    (f β‹… g)(x) = ___________________________________________

    Quotient (𝑓

    𝑔)(x) = __________

    (𝑓

    𝑔)(x) = ___________________________________________

    𝑓(π‘₯) = 2π‘₯ βˆ’ 1

    𝑔(π‘₯) = π‘₯3

  • 5

    Function Composition

    In a composition of functions, the _____________________________________________________________

    _________________________________________________________________________________________.

    [ ]( )f g x _________________ domain of g range of g, domain of f range of f

    __________ ________ ________

    The composition of functions may ______________________. Given two functions f and g,

    [ ]( )f g x is defined only if _______________________________________________________________________________.

    [ ]( )g f x is defined only if _______________________________________________________________________________.

    Example: For f(x) = 4x2 – 2, and g(x) = π‘₯

    2, find the following:

    a.) Find f[g(6)] b.) Find f[f(-1)]

    Examples: Find [g β—¦ h](x), [h β—¦ g](x), and [g β—¦ g](x) for g(x) = 3x – 4 and h(x) = π‘₯2 – 1. Identify the domain and range.

    [g β—¦ h](x) [h β—¦ g](x) [g β—¦ g](x)

    Examples: For each pair of functions, find 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓, if they exist.

    1.

    2.

    [ ]( )f g x

  • 6

    6.2 Finding Inverse Functions 1. Use a table of values to graph f(x) = 2x – 4 2. Switch the x and y values from #1, plot the new

    points and draw the line. Write the equation of a line that passes through those points (use y = mx + b).

    Eq:______________________ 3. In words, f(x) takes an x-value, multiplies it by 2 and then subtracts 4. Describe the equation from #2 in words: ______________________________________________________________

    4. Repeat this process once more for f(x) = π‘₯βˆ’3

    2 5. Switch the x and y values from #4, plot the new

    points and write the equation of a line that passes through those points (use y = mx + b)

    Eq:___________________

    6. In words f(x) subtracts 3 from x, then divides the result by 2. Describe the equation from 5 in words: _______________________________________________________________ 7. Notice how this description β€œinverts” the description of f(x). How could you rewrite your description from #3 so that it better β€œinverts” the description of f(x) but is still accurate?

    x y

    -2

    -1

    0

    1

    2

    x y

    x y

    -3

    -1

    0

    1

    3

    x y

    http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=rvDEFF-nCkg-CM&tbnid=Pl3aj5jpeSEEGM:&ved=0CAgQjRwwAA&url=http://www.algebra-class.com/graphing-equations.html&ei=r8s-Ur2sHo2wqQGhwYDgCg&psig=AFQjCNHtbL9hgk0RiS3qw1PxNef1hmn-JQ&ust=1379933487549291http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=rvDEFF-nCkg-CM&tbnid=Pl3aj5jpeSEEGM:&ved=0CAgQjRwwAA&url=http://www.algebra-class.com/graphing-equations.html&ei=r8s-Ur2sHo2wqQGhwYDgCg&psig=AFQjCNHtbL9hgk0RiS3qw1PxNef1hmn-JQ&ust=1379933487549291http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=rvDEFF-nCkg-CM&tbnid=Pl3aj5jpeSEEGM:&ved=0CAgQjRwwAA&url=http://www.algebra-class.com/graphing-equations.html&ei=r8s-Ur2sHo2wqQGhwYDgCg&psig=AFQjCNHtbL9hgk0RiS3qw1PxNef1hmn-JQ&ust=1379933487549291http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=rvDEFF-nCkg-CM&tbnid=Pl3aj5jpeSEEGM:&ved=0CAgQjRwwAA&url=http://www.algebra-class.com/graphing-equations.html&ei=r8s-Ur2sHo2wqQGhwYDgCg&psig=AFQjCNHtbL9hgk0RiS3qw1PxNef1hmn-JQ&ust=1379933487549291

  • 7

    In general an inverse function maps the output values of a function back to their original input values. In order to find an inverse function, simply switch _____ and _____, and ____________________________________. The resulting function is its inverse, f-1(x). Exercises: Find the inverse f-1(x) of each:

    8. f(x) = 2x – 3 9. f(x) = Β½x3 + 4 10. f(x) = 2

    3π‘₯+5

    11. f(x) = π‘₯2+2

    5 12. f(x) = (2x + 4)2 – 3 13. 𝑓(π‘₯) = √π‘₯ βˆ’ 1

    Proving Inverse Functions

    14. For f(x) = 2x – 4 and g(x) = π‘₯+4

    2, find:

    a) f(g(x)) = b) g(f(x)) =

    15. For f(x) = π‘₯2+2

    5 and g(x) = √5π‘₯ βˆ’ 2 , find:

    a) f(g(x)) = b) g(f(x)) = What do you notice about all of the solutions to all of the compositions of functions that you found? __________________________________________________________________________________________ If two functions f(x) and g(x) are inverses, f(g(x)) = ______ and g(f(x))=_______. If for all values of x, f(g(x)) = x and g(f(x))=x, then the two functions f(x) and g(x) are ___________________. We can use this to prove that two functions are or are not inverses.

  • 8

    Finding Inverses from Tables and Graphs 16. The table below shows several values for the function f(x). If f(x) is a one-to-one function, find each of the values. a. f-1(-3)=_______ b. f-1(0)=_______ c. f-1(-4)=_______ d. f-1(1) =_______ 17. The graph of the function g(x) is shown in the coordinate plane to the right. Find each of the values. Approximate if needed. a. f-1(3)=_______ b. f-1(-1)=_______ c. f-1(-5)=_______ d. f-1(-9) =_______

    x f(x) -4 1 -3 0.5 -2 0 -1 -2 0 -3 1 -3.5 2 -4

  • 9

    6.3 Graphing Square Root and Cube Root Functions 1. Use your calculator to graph the following radical functions below:

    a) y x b) y x 3

    Domain:_________ Range:___________ Domain:_____________ Range:____________ 3. Graph the following functions on the same planes above, and find the points as you did above.

    a) xy 2 b) y x 23

    4. Explain what the coefficient 2 did to each graph: 5. Did the domain and range of either graph change? 6. Now, determine what the coefficient of Β½ will do to each graph.

    a) y x1

    2 b) y x

    1

    2

    3

    x y

    -1

    0

    1

    4

    9

    x Y

    -8

    -1

    0

    1

    8

    X y

    -8

    -1

    0

    1

    8

    x y

    0

    1

    4

    9

  • 10

    7. Graph the following functions, what effect does the negative sign have on the original graphs?

    a) y x b) y x 3

    8. What are the domain and Range of (a) and (b) a) b)

    7. Graph a) y x 2 and b) y x 23 , what effect does adding 2 have on the original graphs of y x

    and y x 3 ? (what direction did the graphs move?)

    a) b)

    Domain:________________________ Domain:______________________ Range:_________________________ Range:_______________________

    8. Graph y x 2 and y x 23 , what effect does subtracting 2 have on the original graphs of y x

    and y x 3 ? (what direction did the graphs move?)

    D: D: R: R:

    x y

    -8

    -1

    0

    1

    8

    x y

    0

    1

    4

    9

    x y

    x y

  • 11

    9. Graph y x 2 and y x 2 , what effect does this have on the original graphs? (what direction did

    the graphs move?) D: D: R: R: General Rules: How do a, h, and k affect the original graphs?

    y a x h k y a x h k 3

    a:_______________________________ k:_____________________________

    h:_______________________________

  • 12

    Radical Inequalities

    1. Graph 𝑦 < √π‘₯ βˆ’ 4 βˆ’ 6

    2. Graph 𝑓(π‘₯) β‰₯ √2π‘₯ + 1

    3. Graph 𝑓(π‘₯) < βˆ’βˆšπ‘₯3

    + 4

    β€œOn my way to teach those kids some RADICAL functions!”

  • 13

    Applications: 1. The pitch of a certain string on an instrument (measure in hertz) can be modeled by the function:

    f(T) = 1

    1.28√

    𝑇

    .0000708, where T is the tension of the string in Kilograms.

    a) Make a table of values for the T values 1-10.

    b) How much tension will be needed for a pitch of 200 Hz?

    c) What is the domain of this function?

    2. The speed of a tsunami can be modeled by the equation v = 356βˆšπ‘‘, where v is the speed in kilometers per hour, and d is the average depth of the water. If a tsunami is found to be traveling at 145 kilometers per hour, what is the average depth of the water?

    3. The approximate time t (in seconds) that it takes an object to fall a distance of d feet is given by t = βˆšπ‘‘

    16.

    Suppose a parachutist falls 11 seconds before the parachute opens, how far does the parachutist fall during that time? What is the domain of this function?

    4. The velocity of a roller coaster as it moves down a hill is V = βˆšπ‘£2 + 64β„Ž, where v is the initial velocity in feet per second and h is the vertical drop in feet. The coaster designer wants the coaster to have a velocity of 90 feet per second. If the initial velocity of the coaster at the top of the hill is 10 feet per second, how high should they make the hill?

  • 14

    6.4 nth Roots

    Simplifying Radicals

    Square Root For any real numbers a and b, _________________, then a is a square root of b.

    nth Root For any real numbers a and b, and any positive integer n, _______, then a is an nth root of b.

    Real nth Roots of b,

    βˆšπ’ƒπ’

    , – βˆšπ’ƒπ’

    1. If n is even and b > 0, then b has _____________________________________________

    2. If n is odd and b > 0, then b has ______________________________________________

    3. If n is even and b < 0, then __________________________________________________

    4. If n is odd and b < 0, then ___________________________________________________

    Simplify.

    Example 1: βˆšπŸ’πŸ—π’›πŸ– Example 2: – √(πŸπ’‚ βˆ’ 𝟏)πŸ”πŸ‘

    Example 3: √81𝑛8π‘š124

    Exercises:

    1.√81 2.βˆšβˆ’343πŸ‘

    3. √144𝑝6

    4.±√4π‘Ž10 5.√243𝑝105

    6. – βˆšπ‘š6𝑛93

    7.βˆšβˆ’π‘123

    8.√16π‘Ž10𝑏8 9. √121π‘₯6

    10.√(4π‘˜)4 11. ±√169π‘Ÿ4 12. – βˆšβˆ’27𝑝63

    13. – √625𝑦2𝑧4 14. √36π‘ž34 15. √100π‘₯2𝑦4𝑧2

    16.βˆšβˆ’0.0273

    17. – βˆšβˆ’0.36 18. √0.64𝑝10

    19. √(2π‘₯)84

    20. √(11𝑦2)4 21. √(5π‘Ž2)63

    22. √(3π‘₯ βˆ’ 1)2 23. √(π‘š βˆ’ 5)63

    24. √36π‘₯2 βˆ’ 12π‘₯ + 1

    √π‘₯𝑛

  • 15

    Approximate Radicals with a Calculator

    Irrational Number

    a number that cannot be expressed as ___________________________________________, examples:

    Example: Use a calculator to approximate βˆšπŸπŸ–. πŸπŸ“

    to three decimal places.

    √18.23

    β‰ˆ Use a calculator to approximate each value to three decimal places.

    25. √8566

    26. √0.05 27. – √5004

    Solving Equations using nth Roots Round to the nearest hundredth.

    31. 1

    2π‘₯4– 10 + π‘₯4 = 12 βˆ’ 2π‘₯4 32. (x – 4)3 + 4 =

    1

    4 33. 5 = -

    3

    2(x2 – 4)5

    Leave your answer in simplified radical form.

    34. 1

    2π‘₯3 +

    1

    2 =

    3

    8 35.

    (2x – 9)4

    2 – 8 = 4 36. 9 – (x – 3)5 =11

  • 16

    Applications Round your answers to the nearest hundredth.

    1. The equation c = βˆšπ‘25

    estimates the number of collisions where b represents the number of bicycle riders per intersection.

    a. Estimate the number of collisions at an intersection that has 1000 bicycle riders per week.

    b. If the total number of collisions reported in one week is 21, estimate the number of bicycle riders that passed through that intersection.

    2. The surface area of a sphere can be determined from the volume of the sphere using the formula

    S = √36πœ‹π‘‰23

    , where V is the volume.

    a. Determine the surface area of a sphere with a volume of 200 cubic inches.

    b. If the surface area of a sphere is 214.5 square inches, determine the volume.

    3. Designers must create satellites that can resist damage from being struck by small particles of dust and rocks. A study showed that the diameter in millimeters d of the hole created in a solar cell

    by a dust particle traveling with energy k in joules is about d = .926 βˆšπ‘˜3

    - 0.169. a. Estimate the diameter of a hole created by a particle traveling with energy 3.5 joules.

    b. If a hole has diameter of 2.5 millimeters, estimate the energy with which the particle that made the hole was traveling.

  • 17

    6.5 Operations with Radical Expressions

    Simplify the following radical expressions in two different correct ways:

    1. βˆ’6√45π‘š5𝑛3 βˆ™ 2√5π‘š3𝑛3 2. 6βˆšβˆ’24π‘₯𝑦3 βˆ™ 2√π‘₯𝑦4

    3

    Bonus:

    3. What is the difference between simplifying √24π‘₯𝑦 and √24π‘₯𝑦3 ?

    The Product Property of Radicals

    For any real numbers a and b and any integer n > 1:

    1. If n is even, and a and b are both ____________, then ____________________________________________.

    2. If n is odd, then ____________________________________________________________.

  • 18

    Simplify the following radical expressions:

    1. √8π‘₯3

    45𝑦5 2. √(βˆ’

    81π‘₯7𝑦6

    4𝑧11)

    3

    Quotient Property of Radicals

    Operations on Radicals Simplify the following radical expressions:

    3. 2√50 + 4√500 βˆ’ 6√125 4. (2√3 βˆ’ 4√2)(√3 + 2√2)

    When can you add radical expressions? How do you do so?

    When can you multiply radical expressions? How do you do so?

    For any real numbers a and 𝑏 β‰  0, and any integer n > 1, if all roots are defined.

  • 19

    Warm Up: Simplify each expression.

    1. 322

    5 2. 2

    √3+1

    The Golden Patio

    Ms. Abels wants to construct the most aesthetically pleasing patio possible for her house. To do so, she

    wants to make sure the ratio of the sum of the length and the width to the length is the same as the ratio

    of the length to the width. Ms. Abels hires the Golden Patio Company, and they build a frame with a width

    of 7 meters and a length of 7+7√5

    2 meters. Check to make sure that this patio meets Ms. Abels’ standards.

    What is this β€œgolden ratio” that Ms. Abels wants for her patio? Simplify as much as possible while keeping

    your answer in terms of radicals.

    The β€œgolden ratio” was used to find the ratio of the length to the width of the patio. What would be the

    ratio of the width to the length? Simplify your answer as much as possible while keeping it in terms of

    radicals.

    Just for fun! Ms. Abels’ patio is what is called a β€œgolden rectangle.” Here are some other examples of the

    Golden Ratio and golden rectangles:

  • 20

    Rationalizing Denominators

    To rationalize a denominator, __________________________________________________________________________________.

    Examples:

    1. 3

    √965 2.

    √33

    √53

    βˆ’2

    Basic Rational Exponents

    Examples:

    3. √16

    6

    √23 4.

    √44

    √2

    5. √10

    3

    √6253

    6.

    7.

    8.

    𝑏π‘₯𝑦 = √ = √

  • 21

    6.6 Rational Exponents

    Exercises:

    Write each expression in radical form, or write each radical in exponential form.

    1. 111

    7 2. 151

    3 3. 3003

    2

    4. √47 5. √3π‘Ž5𝑏23

    6. √162𝑝54

    Evaluate each expression. For these, you will re-write like you did above, but then simplify.

    7. βˆ’272

    3 8. 2161

    3 9. 451

    2 10. 27βˆ’4

    3

    Review of Properties of Exponents

    Property Definition/Example:

    Product of Powers xaxb = ________

    Quotient of Powers π‘₯π‘Ž

    π‘₯𝑏=__________

    Negative Exponent x-a = _________

    Power of a Power (xa)b = _______

    Power of a Product (xy)a = _______

    Power of a Quotient (x/y)a = ______

    Zero Power x0 = _______

    Simplify.

    1. 5𝑦2

    3 βˆ™ 3𝑦3

    8 2. π‘₯3𝑦

    23𝑧

    βˆ’13

    π‘₯12𝑦

    12

    3. (𝑧1

    2)

    3

    4

    4. (π‘₯

    βˆ’12𝑦4)

    14

    π‘₯23𝑦

    32βˆ™π‘₯

    βˆ’32𝑦

    12

    5. (π‘₯3𝑦2)

    32

    (π‘₯βˆ’1π‘¦βˆ’

    23)

    14

  • 22

    Simplifying Radicals with Different Indices **Cannot Add/Subtract/Multiply/Divide two radicals that have a _______________ ________________**

    Example: √π‘₯3

    √π‘₯5

    In order to simplify, it’s possible to re-write as a ___________ ____________, and apply the properties from yesterday.

    β€’ Since Rational Exponents and Radicals can be written in either form, give your final answer in the

    ______ ______ as the original problem.

    β€’ If both are present in the original problem, give answer in ____________ _____________.

    1. √16

    6

    √23

    2. √4

    4

    √2

    3. βˆšπ‘¦3 βˆšπ‘¦3βˆšπ‘¦

    4. √π‘₯ √π‘₯23

    √π‘₯4

    5. √53

    βˆ™ 252

    3 βˆ™ √5 6.

    √√ 10 βˆ™ √ 100

    53

    √ 1000 4

  • 23

    7. √ 3 3

    √√ 27 βˆ™ √ 81 54

    8.

    √√553

    √ √254

    βˆ™ √6256

    Using Conjugates to Rationalize the Denominator

    9. Simplify 𝑓(π‘₯)

    β„Ž(π‘₯) .

    10.

    Simplify 𝑔(π‘₯)

    𝑓(π‘₯) .

    1

    2( ) 1f x y

    3

    4( )g x y1

    2( ) 1h x y

    1

    2( ) 1f x x 1

    2( ) 1g x x

  • 24

    6.7 Solving Radical Equations and Inequalities

    1. 2√4π‘₯ + 8 βˆ’ 4 = 8 2. 4√2π‘₯ + 113

    βˆ’ 2 = 10

    3. √3π‘₯ + 1 = √5π‘₯ βˆ’ 1 4. √4π‘₯ = π‘₯ βˆ’ 3

    5. π‘₯ βˆ’ 4 = √2π‘₯ 6. √5 βˆ’ π‘₯ βˆ’ 4 = 6

    7. √4 + 7π‘₯ = √7π‘₯ βˆ’ 9 8. π‘₯ = √7 βˆ’ π‘₯ + 1

    Important:

    Important: Important:

    Important:

  • 25

    Solving Equations with Rational Exponents

    Warm Up: Solve 3π‘₯2

    3 = 27. How many solutions do you obtain?

    1. 3π‘₯2

    3 = 27 2. 5π‘₯4

    3 = 80

    3. 3(π‘₯ + 1)4

    3 = 48 4. (π‘₯ βˆ’ 5)2

    3 = 4

    5. 18 + 7π‘₯1

    2 = 12 6. 9 + 5(2π‘₯)1

    3 = 29

    7. 18 βˆ’ 3π‘₯1

    2 = 25 8. (2π‘₯ + 3)1

    3 = 2

    Important:

    Important: Important:

    Important:

  • 26

    Solving Inequalities 1. 5 βˆ’ √20π‘₯ + 4 β‰₯ βˆ’3 2. 3√2π‘₯ βˆ’ 1 + 6 < 15

    3. √π‘₯ βˆ’ 2 + 4 β‰₯ 7 4. √10π‘₯ + 9 βˆ’ 2 > 5

    5. 8 βˆ’ √3π‘₯ + 4 β‰₯ 3 6. √2π‘₯ + 8 βˆ’ 4 > 2

    7. 9 βˆ’ √6π‘₯ + 3 β‰₯ 6

    Important: Important: