Unit 5 Packet - Prof Ackley's SEC Science...

31
Unit Five Packet: Genetics Unit Outline: 1130: Introduction to genetics HW: Mendel’s Mysteries WS 123: Monohybrid Crosses (day one) HW: Unit Five Review Sheet One 124: Monohybrid Crosses (day two) HW: Punnett Square WS 1 125: Incomplete Dominance, Codominance, and Multiple Alleles HW: Punnett Square WS 2 126: Blood Typing Lab Quiz HW: Unit Five Review Sheet Two 127: Codominance and Environmental Impact Lab HW: Lab Report (I) 1210: SexLinked Genes (day one) HW: SexLinked Traits WS 1 1211: SexLinked Genes (day two) HW: SexLinked Traits WS 2 OVER WINTER BREAK/JANUARY: Dihybrid Crosses (day one) HW: Unit Five Review Sheet Three BabyDaddy Lab HW: Lab Report (C) Dihybrid Crosses (day two) HW: Dihybrid Crosses WS Pedigrees HW: Pedigrees WS Pedigrees Lab HW: Unit Five Review Sheet Four 110: Unit Five Review 111: Unit Five Test Unit Five Vocabulary Week One Vocab: Alleledifferent forms of the same gene (Ex. The gene for eye color has a blue and brown allele) Dominanta trait that always gets expressed, controlling Genea piece of DNA that gives information about a specific trait. (ex. The gene for eye color) Genotype the combination of alleles (genes) that an organism has for a trait (shown with two letters) Phenotype The physical characteristics of an organism. The expression of the genes. Recessive one of a pair of alleles whose effect is masked by the activity of the second when both are present Week Two Vocab: Codominant when two traits cooperate or share the organism so they are both shown at the same time Dihybrid when you do a cross looking at two traits at the same time Incomplete Dominancewhen two traits mix in an organism causing a new trait that blends them both Monohybrid when you do a cross looking at one trait at a time Multiple Alleles when a trait has multiple variations SexLinked when a trait is connected to a sex chromosome (usually the X chromosome) Week Three Vocab (Latin Prefixes) Bronch Windpipe Cardio Heart Cephal Head Crani Skull Cuti Skin Dent Tooth

Transcript of Unit 5 Packet - Prof Ackley's SEC Science...

Unit Five Packet: Genetics

Unit  Outline:  11-­‐30:    Introduction  to  genetics  

HW:  Mendel’s  Mysteries  WS  12-­‐3:    Monohybrid  Crosses  (day  one)     HW:  Unit  Five  Review  Sheet  One  12-­‐4:  Monohybrid  Crosses  (day  two)                              HW:  Punnett  Square  WS  1  12-­‐5:    Incomplete  Dominance,  Codominance,  

and  Multiple  Alleles     HW:  Punnett  Square  WS  2  12-­‐6:    Blood  Typing  Lab       Quiz     HW:    Unit  Five  Review  Sheet  Two  12-­‐7:  Codominance  and  Environmental  Impact  

Lab     HW:  Lab  Report  (I)  12-­‐10:  Sex-­‐Linked  Genes  (day  one)                              HW:  Sex-­‐Linked  Traits  WS  1  

12-­‐11:  Sex-­‐Linked  Genes  (day  two)     HW:  Sex-­‐Linked  Traits  WS  2  OVER  WINTER  BREAK/JANUARY:  Dihybrid  Crosses  (day  one)     HW:  Unit  Five  Review  Sheet  Three  Baby-­‐Daddy  Lab     HW:  Lab  Report  (C)  Dihybrid  Crosses  (day  two)     HW:  Dihybrid  Crosses  WS  Pedigrees     HW:  Pedigrees  WS  Pedigrees  Lab  

HW:  Unit  Five  Review  Sheet  Four  1-­‐10:  Unit  Five  Review  1-­‐11:    Unit  Five  Test  

 Unit  Five  Vocabulary  

Week  One  Vocab:  Allele-­‐different  forms  of  the  same  gene  (Ex.    The  gene  for  eye  color  has  a  blue  and  brown  allele)  Dominant-­‐a  trait  that  always  gets  expressed,  controlling  Gene-­‐a  piece  of  DNA  that  gives  information  about  a  specific  trait.  (ex.  The  gene  for  eye  color)  Genotype-­‐  the  combination  of  alleles  (genes)  that  an  organism  has  for  a  trait  (shown  with  two  letters)  Phenotype-­‐  The  physical  characteristics  of  an  organism.    The  expression  of  the  genes.  Recessive-­‐  one  of  a  pair  of  alleles  whose  effect  is  masked  by  the  activity  of  the  second  when  both  are  present      Week  Two  Vocab:  Codominant-­‐  when  two  traits  cooperate  or  share  the  organism  so  they  are  both  shown  at  the  same  time  Dihybrid-­‐  when  you  do  a  cross  looking  at  two  traits  at  the  same  time  Incomplete  Dominance-­‐when  two  traits  mix  in  an  organism  causing  a  new  trait  that  blends  them  both  Monohybrid-­‐  when  you  do  a  cross  looking  at  one  trait  at  a  time  Multiple  Alleles-­‐  when  a  trait  has  multiple  variations  Sex-­‐Linked-­‐  when  a  trait  is  connected  to  a  sex  chromosome  (usually  the  X  chromosome)    Week  Three  Vocab  (Latin  Prefixes)  Bronch-­‐   Windpipe    Cardio-­‐   Heart  Cephal-­‐   Head  Crani-­‐   Skull  Cuti-­‐   Skin  Dent-­‐   Tooth    

 

 

Unit Five Notes Introduction  to  genetics  

Gene:  a  piece  of  DNA  that  gives  information  about  a  specific  trait.  (ex.  The  gene  for  eye  color)  Alleles:    different  forms  of  the  same  gene  (Ex.    The  gene  for  eye  color  has  a  blue  and  brown  allele)    Genotype:    the  combination  of  alleles  (genes)  that  an  organism  has  for  a  trait  (shown  with  two  letters)     Capitol  letters  are  the  dominant  trait:    the  trait  that  is  always  expressed     Lowercase  letters  are  the  recessive  trait:  the  trait  that  can  be  hidden  by  the  dominant  trait  

If  the  letters  are  the  same,  we  say  they  are  homozygote.    (ex.    AA  or  aa)  If  they  are  different,  they  are  heterozygous.    (ex.    Aa)  

Phenotype:    The  physical  characteristics  of  an  organism.    The  expression  of  the  genes.    Law  of  Dominance:    the  trait  that  is  dominant  will  always  be  expressed  in  the  phenotype  if  it  is  present  in  the  genotype.    The  recessive  trait  will  only  be  expressed  if  the  dominant  trait  is  not  present.     Ex.    BB-­‐Brown  hair,    Bb-­‐Brown  hair,  bb-­‐red  hair    

Punnett  Squares  Punnett  Square:  a  tool  used  to  figure  out  the  projected  (estimated)  results  of  crosses  between  organisms.  When  we  do  crosses,  the  organisms  we  crossed  are  called  the  parent  generation  (P).    The  first  generation  of  offspring  is  called  F1,  the  second  generation  is  called  F2.    

Incomplete  Dominance,  Codominance,  and  Multiple  Alleles  Incomplete  dominance:    When  neither  of  two  alleles  is  dominant  or  recessive  to  the  other.    The  heterozygous  genotype  has  a  blended  (mixed)  phenotype  of  the  homozygous  phenotypes.    We  show  both  traits  as  capitol  letters  since  neither  is  recessive.     Ex.    RR-­‐red  flowers,    RW  has  pink  flowers  (a  mix  of  red  and  white),    WW  has  white  flowers    Codominance:    Similar  to  incomplete  dominance,  but  the  heterozygous  genotype  has  a  phenotype  that  expresses  both  the  homozygous  phenotypes  in  different  parts  of  the  organism  (instead  of  mixing  them  together).    They  cooperate  and  share  the  organism.     Ex.    WW-­‐white  hairs,  RR-­‐red  hairs,  RW-­‐a  mix  of  red  and  white  hairs  (called  a  roan  coat)    Multiple  Alleles:    Traits  with  more  than  two  alleles.    Ex.    Blood  type  has  A,  B  and  O.      

 Sex  Linked  Genes  

Sex-­‐Linked  genes:  Genes  that  are  attached  to  the  sex  chromosomes  (X  and  Y)-­‐XX  is  female,  XY  is  male  When  doing  sex  linked  problems,  each  X  will  receive  a  letter  that  represents  the  gene  it  carries  while  Y  will  not  receive  a  letter.      Because  the  male  only  gets  one  X  gene,  they  are  much  more  likely  to  express  recessive  alleles  for  genes  on  the  X  chromosome.        

Pedigree  Pedigree:    A  family  tree  of  genetic  inheritance  used  to  track  specific  traits  through  families.    Each  line  

represents  the  next  generation  with  lines  connecting  shapes  horizontally  representing  mating.    If  two  parents  with  one  trait  have  a  child  with  a  different  trait,  that  different  trait  is  recessive.  

Carrier:    someone  who  has  just  one  copy  of  a  recessive  gene  (they  carry  the  gene  but  don’t  express  it).    

Dihybrid  Crosses  Law  of  Independent  Assortment:    Genes  on  different  chromosomes  separate  independently  of  each  other.    For  example,  the  genes  for  eye  color  and  hair  color  are  on  different  chromosomes  so  the  eye  color  alleles  do  not  affect  how  the  hair  color  alleles  sort.  

Mendel’s  Mysteries  WS    

 

1.    What  is  the  difference  between  a  gene  and  an  allele?              2.    What  is  the  difference  between  dominant  and  recessive  genes?              3.    What  is  the  difference  between  homozygous  and  heterozygous?              4.    What  is  the  difference  between  phenotype  and  genotype?              5.    Label  the  following  as  heterozygous  (Hz)  or  homozygous  (Ho).      _____Rr          _____TT          _____qq          _____Yy        _____Ee            _____WW          _____pp          _____jj          _____LL      6.    Label  either  each  of  the  following  would  show  the  dominant  (D)  or  recessive  (R)  trait.      _____Rr          _____TT          _____qq          _____Yy        _____Ee            _____WW          _____pp          _____jj          _____LL      7.  Using  the  letters  A  and  a,  write  out  the  following  genotypes:      _______    Homozygous  Dominant            ________  Heterozygous  Dominant            ________  Homozygous  Recessive      8.    Why  can  you  not  have  a  heterozygous  recessive  genotype?  

Unit  Five  Review  Sheet  One    

 

1)    A  green  pea  plant  (Gg)  is  crossed  with  a  yellow  pea  plant  (gg).    What  are  the  RATIOS?  

 Genotype=        Phenotype=          2)    A  tall  plant  (TT)  is  crossed  with  a  tall  plant  (Tt).    What  are  the  PERCENTAGES?  

 Genotype=        Phenotype=          3)    A  red  flower  (RR)  is  crossed  with  a  white  flower  (rr).    What  are  the  RATIOS?  

 Genotype=        Phenotype=          4)    In  corn  plants,  ragged  leaves  (R)  are  dominant  to  smooth  leaves  (r).  If  two  heterozygous  ragged-­‐leaf  plants  are  crossed,  what  are  the  genotypes  and  phenotype  PERCENTAGES  of  the  offspring?      Genotype=          Phenotype=            

   

   

   

   

   

   

   

   

Introduction  Section  Lab    

 

1) Working with a partner, determine the genotype of the baby by flipping pennies. "Mom" flips one penny to choose an allele for her egg and "Dad" flips the other to choose an allele for his sperm. HEADS will be the dominant or first trait, TAILS will be the recessive or second trait. (Note that the gender of the baby is a special case and is determined by dad alone. Females must give an X while males will flip: Heads gives an X, Tails give a Y).

2) Record the alleles which resulted from the coin flips, and put "sperm and egg" together. (You cannot pick the traits you want; life doesn't work that way!). Record the baby's phenotype in Table 1. Repeat for all traits and then draw, color, and name your creation. Remember that you are drawing a baby's face - not a child's or an adult's (no tattoos, no mustaches, no pierced ears, noses, etc., and not too much hair!)

Mom's Name: ________________

Dad's Name _________________

Baby's Name: ________________

Trait Allele from Mom Allele from Dad Genotype Phenotype Gender ______X______ _____________ _____________ _____________ Face Shape _____________ _____________ _____________ _____________ Chin Shape _____________ _____________ _____________ _____________ Freckles _____________ _____________ _____________ _____________ Lip Thickness _____________ _____________ _____________ _____________ Eye Brows _____________ _____________ _____________ _____________ Eyelashes _____________ _____________ _____________ _____________ Ear Shape _____________ _____________ _____________ _____________ Ear Lobes _____________ _____________ _____________ _____________ Widow's Peak _____________ _____________ _____________ _____________ Hair Curliness _____________ _____________ _____________ _____________ Eyebrow Color _____________ _____________ _____________ _____________ Eye Width _____________ _____________ _____________ _____________ Eye Size _____________ _____________ _____________ _____________ Nose Size _____________ _____________ _____________ _____________ Birth Mark _____________ _____________ _____________ _____________ Skin Tone _____________ _____________ _____________ _____________ Polygenic Trait Alleles from Mom Alleles from Dad Genotype Phenotype Hair Color #1____ #2____ #1____ #2____ __ __ /__ __ _____________ Eye Color #1____ #2____ #1____ #2____ __ __ /__ __ _____________

Introduction  Section  Lab    

 

Trait Genotype/Phenotype

(Homozygous for Allele 1)

Genotype/Phenotype (Heterozygous)

Genotype/Phenotype (Homozygous for Allele

#2)

Face Shape RR

Round

Rr

Round

rr

Square

Chin Shape NN

Noticeable

Nn

Noticeable

nn

Less Noticeable

Freckles FF

Present

Ff

Present

ff

Absent

Lip Thickness TT

Thick

Tt

Thick

tt

Thin

Eye Brows BB

Bushy

Bb

Bushy

bb

Fine

Eyelashes LL

Long

Ll

Long

ll

Short

Ear Shape RR

Long

Rr

Long

rr

Round

Ear Lobes FF

Free

Ff

Free

ff

Attached

Widow's Peak WW

Present

Ww

Present

ww

Absent

Hair Curliness C1C1

Curly

C1C2

Wavy

C2C2

Strait

Eyebrow Color

D1D1

Darker than hair

D1D2

Same as hair

D2D2

Lighter than hair

Introduction  Section  Lab    

 

Lab  Report:    On  Monday,  you  will  turn  in  a  lab  report  with  the  Introduction,  Results,  and  Conclusion  sections.    This  lab  report  needs  to  be  on  a  separate  paper  that  you  can  TURN  IN  TO  ME.      

Introduction:      First  Paragraph  ___  Introductory  sentence  that  mentions  the  topic  of  the  lab  ___  Defines  at  least  two  terms  you  used  in  the  lab  ___  Explains  what  biology  information  you  should  already  know  before  the  lab  in  2-­‐3  sentences    Second  Paragraph  ___  Mentions  the  question  THIS  LAB  was  trying  to  answer  ___  Describes  what  was  done  in  the  lab  to  answer  that  questions  in  1-­‐2  sentences  ___  Mentions  the  hypothesis  for  the  experiment  ___  Gives  a  science-­‐based  reason  for  their  hypothesis   Results:    Draw  the  picture  of  your  baby  and  list  your  babie’s  traits  below  the  picture.    Conclusion:    Answer  the  following  questions:  1.    Why  is  the  coin-­‐flip  a  better  model  of  real-­‐life  than  you  picking  what  trait  you  wanted  to  give?  2.    Why  is  the  male  the  only  one  that  determines  the  sex  of  a  baby?  

Eye Width

W1W1

Close Together

W1W2

Average

W2W2

Far apart

Eye Size S1S1

Large

S1S2

Medium

S2S2

Small

Nose Size P1P1

Small

P1P2

Medium

P2P2

Large

Birth Mark (mole)

B1B1

Left cheek

B1B2

Absent

B2B2

Right cheek

Skin Tone S1S1

Light

S1S2

Medium

S2S2

Dark

Hair Color AABB=Black AaBB=Dark Brown aaBB=Blond AABb=Black AaBb=Light Brown aaBb=Blond AAbb=Red Aabb=Dark Blond aabb=white (albino)

Eye Color AABB=Deep Brown AaBB=Greenish Brown aaBB=Green AABb=Deep Brown AaBb=Light Brown aaBb=Light Blue AAbb=Brown Aabb=Gray-Blue aabb=Pink

Punnett  Square  WS  1    

 

For  the  following  questions,  write  the  GENEOTYPES  OF  THE  PARENTS  ONLY.    DO  NOT  DO  THE  PUNNETT  SQUARE!  1)    A  homozygous  black  rat  is  crossed  with  a  homozygous  white  rat  (black  is  recessive).      2)    A  homozygous  brown  mouse  is  crossed  with  a  heterozygous  brown  mouse  (tan  is  recessive).          3)    Two  heterozygous  white  rabbits  are  crossed.      4)    A  heterozygous  white  rabbit  is  crossed  with  a  homozygous  black  rabbit.  

 For  the  following,  complete  the  punnett  square  and  give  the  genotype  and  phenotype  PERCENTAGES.  

5)  A  homozygous  brown  mouse  is  crossed  with  a  heterozygous  brown  mouse  (tan  is  the  recessive  color).      

 Genotype=        Phenotype=          6)    Two  heterozygous  black  rabbits  are  crossed.    Brown  fur  is  recessive.  

 Genotype=        Phenotype=          7)    A  heterozygous  grey  rabbit  is  crossed  with  a  homozygous  black  rabbit.  

 Genotype=        Phenotype=    

   

   

   

   

   

   

Punnett  Square  WS  2    

 

Complete  a  punnett  square,  list  the  percentages  of  each  genotypes  and  each  phenotype.  1.    A  homozygous  red  flower  is  crossed  with  a  homozygous  white  flower.    Red  and  white  show  incomplete  dominance.    Genotype=        Phenotype=          2.    A  heterozygous  medium  height  plant  is  crossed  with  a  homozygous  tall  plant.    Tall  and  short  show  incomplete  dominance.    Genotype=        Phenotype=          3.    Two  heterozygous  grey  bunnies  are  crossed.    Black  and  white  fur  show  incomplete  dominance.              Genotype=        Phenotype=          4.    A  homozygous  red-­‐coated  dog  is  crossed  with  a  homozygous  white-­‐coated  dog.    Red  and  white  coats  are  codominant.    Genotype=        Phenotype=            

   

   

   

   

   

   

   

   

Punnett  Square  WS  2    

 

5.    Two  heterozygous  black  and  white  spotted  T-­‐rexes  are  crossed.    Black  and  white  are  codominant.                                                                      Genotype=        Phenotype=          6.    A  heterozygous  black  and  red  dragon  is  crossed  with  a  homozygous  red  dragon.    Red  and  black  are  codominant.  

 Genotype=        Phenotype=            7.  A  nurse  at  a  hospital  removed  the  wrist  tags  of  three  babies  in  the  maternity  ward.  She  needs  to  figure  out  which  baby  belongs  to  which  parents,  so  she  checks  their  blood  types.  Using  the  chart  below,  match  the  baby  to  its  correct  parents.  Show  the  crosses  to  prove  your  choices.    

Parents   Blood  Types  

 

Baby   Blood  type  

Mr.  Hartzel     O          

Mrs.  Hartzel   A   Jennifer   O  

Mr.  Simon     AB   Rebecca   A  

Mrs.  Simon   AB   Holly   B  

Mr.  Peach     O      

Mrs.  Peach   O      

     

   

   

   

   

Blood  Typing  Lab    

 

 

 

 

 

Blood  Typing  Lab    

 

 

 

Blood  Typing  Lab    

 

     

   

Lab  Report:    On  Friday,  you  will  turn  in  a  lab  report  with  the  Introduction,  Results,  and  Conclusion  sections.    This  lab  report  needs  to  be  on  a  separate  paper  that  you  can  TURN  IN  TO  ME.      

Introduction:      First  Paragraph  ___  Introductory  sentence  that  mentions  the  topic  of  the  lab  ___  Defines  at  least  two  terms  you  used  in  the  lab  ___  Explains  what  biology  information  you  should  already  know  before  the  lab  in  2-­‐3  sentences    Second  Paragraph  ___  Mentions  the  question  THIS  LAB  was  trying  to  answer  ___  Describes  what  was  done  in  the  lab  to  answer  that  questions  in  1-­‐2  sentences  ___  Mentions  the  hypothesis  for  the  experiment  ___  Gives  a  science-­‐based  reason  for  their  hypothesis   Results:    Copy  the  final  chart  above.    Conclusion:    Answer  the  following  questions:  1.    Who  committed  the  crime?    How  do  you  know?  2.    If  a  person  has  blood  type  A,  what  type  of  antigen  do  they  make?    What  anti-­‐antigen  would  they  react  with?    Why?  

Unit  Five  Review  Sheet  Two    

 

For  the  following  problems,  complete  the  punnett  square  and  tell  the  genotype  and  phenotype  frequencies.  1)    Two  heterozygous  white  rabbits  are  crossed.    Brown  is  recessive.    Genotype=        Phenotype=          2)    Two  heterozygous  grey  bunnies  are  crossed.    Black  and  white  furs  show  incomplete  dominance.              Genotype=        Phenotype=            3)    A  heterozygous  black  and  red  dragon  is  crossed  with  a  homozygous  red  dragon.    Red  and  black  are  codominant.    Genotype=        Phenotype=          4.    A  mother  with  blood  type  A  and  a  father  with  blood  type  AB  have  a  child  who  is  blood  type  B.    What  are  the  genotype  of  the  mother,  father,  and  child.    Use  a  punnett  square  to  prove  this!    Mother  Genotype=        Father  Genotype=      Child  Genotype=      

   

   

   

   

   

   

   

   

Codominance  and  Environmental  Impact  Lab    

 

   

Codominance  and  Environmental  Impact  Lab    

 

Codominance  and  Environmental  Impact  Lab    

 

Lab  Report:    On  Monday,  you  will  turn  in  a  lab  report  with  the  Introduction,  Results,  and  Conclusion  sections.    This  lab  report  needs  to  be  on  a  separate  paper  that  you  can  TURN  IN  TO  ME.      

Introduction:      First  Paragraph  ___  Introductory  sentence  that  mentions  the  topic  of  the  lab  ___  Defines  at  least  two  terms  you  used  in  the  lab  ___  Explains  what  biology  information  you  should  already  know  before  the  lab  in  2-­‐3  sentences  Second  Paragraph  ___  Mentions  the  question  THIS  LAB  was  trying  to  answer  ___  Describes  what  was  done  in  the  lab  to  answer  that  questions  in  1-­‐2  sentences  ___  Mentions  the  hypothesis  for  the  experiment  ___  Gives  a  science-­‐based  reason  for  their  hypothesis   Results:  Copy  the  final  chart  above  and  then  write  a  paragraph  that  describes  what  happened  to  your  population  both  before  and  after  the  disaster.    Conclusion:    Answer  the  following  questions:  1.    Can  two  red  fish  mate  and  have  green  offspring?    Why  or  why  not?  2.    What  if  each  of  the  groups  started  with  only  one  green  gene  among  your  fish-­‐how  do  you  think  your  population  would  have  changed  and  why?  3.    What  if  the  orange  fish  had  been  best  camouflaged,  so  that  a  few  green  fish  were  eaten  each  generation?  

Sex-­‐Linked  Traits  WS  1    

 

What  makes  something  sex-­‐linked  trait  instead  of  just  a  regular  trait?      

   

Are  males  or  females  more  susceptible  (likely  to  be  affected)  to  sex-­‐linked  diseases?  Explain.                

Hemophilia  is  a  sex-­‐linked  trait  found  on  the  X  chromosome.  To  get  this  disease,  a  person  must  have  a  recessive  copy  of  the  gene  (h)  on  every  X  chromosome.  Write  the  genotypes  of  a  woman  who  was  a  carrier  for  the  disease  and  a  man  who  had  the  disease.      Genotype  of  Mother:  _______                      Genotype  of  Father:__________  

 

Baldness  is  also  a  sex-­‐linked  trait  found  on  the  X  chromosome.  To  become  bald,  a  person  must  have  a  recessive  copy  of  the  gene  (b)  on  every  X  chromosome.  Write  the  genotypes  of  a  woman  who  has  no  history  of  baldness  in  her  family  (B)  and  a  man  who  was  bald.      Genotype  of  Mother:  _______                      Genotype  of  Father:__________  

 

In  fruit  flies,  the  gene  for  red  eye  color  (R)  is  dominant  to  the  gene  for  white  eye  color  (r).  The  trait  is  sex-­‐linked.  What  would  be  the  genotype  of  a  white-­‐eyed  female?  A  XRXr  B  XrXr  C  XRy  D  Xry  

 

Coat color in cats is a codominant trait and is also located on the X chromosome. Cats can be black, yellow or calico. A calico cat has black and yellow splotches. In order to be calico, the cat must have an allele for the black color and an allele for the yellow color. Use the possible genotypes to show why there are no male calico cats.  

 

Sex-­‐Linked  Traits  WS  2    

 

Hemophilia  is  a  sex-­‐linked  trait  found  on  the  X  chromosome.  To  get  this  disease,  a  person  must  have  a  recessive  copy  of  the  gene  (h)  on  every  X  chromosome.  Predict  the  genotypic  and  phenotypic  percentages  of  the  offspring  if  a  woman  who  was  a  carrier  for  the  disease  had  a  baby  with  a  man  who  had  the  disease.    Genotype  of  Mother:  _______                      Genotype  of  Father:__________    

Genotype=        Phenotype=      Baldness  is  also  a  sex-­‐linked  trait  found  on  the  X  chromosome.  To  become  bald,  a  person  must  have  a  recessive  copy  of  the  gene  (b)  on  every  X  chromosome.  Predict  the  genotypic  and  phenotypic  probabilities  of  the  offspring  if  a  woman  who  has  no  history  of  baldness  in  her  family  (B)  had  a  baby  with  a  man  who  was  bald.    Genotype  of  Mother:  _______                      Genotype  of  Father:__________    

Genotype=        Phenotype=        A  woman  who  is  colorblind  (XcXc)  can  expect  —  A  100%  of  her  female  offspring  to  be  colorblind.  B  100%  of  her  male  offspring  to  be  colorblind.  C  50%  of  her  female  offspring  to  be  colorblind.  D  50%  of  her  male  offspring  to  be  colorblind.    In  people,  the  trait  for  colorblindness  (Xb)  is  a  recessive  sex  linked  trait  and  normal  vision  (XB)  is  dominant.  If  a  female  who  is  heterozygous  for  colorblindness  has  children  with  a  man  who  has  normal  vision,  what  percent  of  their  male  children  would  be  expected  to  be  color  blind?  A  0%  B  25%  C  50%  D  100%  

   

   

   

   

Unit  Five  Review  Sheet  Three    

 

In  rabbits,  grey  hair  is  dominant  to  white  hair.    Also  in  rabbits,  black  eyes  are  dominant  to  red  eyes.  These  letters  represent  the  genotypes  of  the  rabbits:  G-­‐Grey  hair              g-­‐white  hair                                            B-­‐black  eyes          b-­‐red  eyes    1.  What  are  the  phenotypes  of  rabbits  that  have  the  following  genotypes:    Ggbb  ____________________________                                ggBB  ______________________________    ggbb  ____________________________                                GgBb  ______________________________    GGBB____________________________                                GgBB_______________________________    2.    Using  the  FOIL  method,  list  the  four  gametes  that  would  be  produces  from  the  following  parental  genotypes:    GGBB:      Ggbb:      ggBB:      GGBb:      GgBb:      ggBb:      3.    Baldness  is  also  a  sex-­‐linked  trait  found  on  the  X  chromosome.  To  become  bald,  a  person  must  have  a  recessive  copy  of  the  gene  (b)  on  every  X  chromosome.  Predict  the  genotypic  and  phenotypic  probabilities  of  the  offspring  if  a  woman  who  is  a  carrier  of  baldness  in  her  family  (B)  had  a  baby  with  a  man  who  is  not  bald.    Genotype  of  Mother:  _______                      Genotype  of  Father:__________    

Genotype=        Phenotype=      

   

   

Baby-­‐Daddy  Lab    

 

No Widow's Peak Widow's Peak Widow's Peak

Attached Earlobes Attached Earlobes Free Earlobes

Blood Type: A Blood Type: O Blood Type: B

In order to match these babies with their proper parents, you must first determine the babies' possible genotypes for each trait. Use the following symbols to represent the dominant and recessive alleles.

W = widow's peak w = no widow's peak E = free earlobes e = attached earlobes

TRAIT BABY 1 BABY 2 BABY 3

Widow's Peak Earlobes Blood Type

Mr. Al Leel Mrs. Allie Leel

Widow's Peak No Widow's Peak

Attached Earlobe Free Earlobe

Blood Type: B Blood Type: AB

Baby-­‐Daddy  Lab    

 

Determine the parents' possible genotypes for each trait. Use the following symbols to represent the dominant and recessive alleles.

TRAIT Al Leel Allie Leel

Widow's Peak Earlobes Blood Type

Now, determine the possible genotypes of the babies born to the Leels. Use Punnett squares.

Trait Possible Baby Genotypes

Widow's Peak

Earlobes Blood Type

Arron Haye Dina Haye

Widow's Peak No Widow's Peak

Attached Earlobes Attached Earlobes

Blood Type: A Blood Type: AB

Determine the parents' possible genotypes for each trait. Use the following symbols to represent the dominant and recessive alleles.

Baby-­‐Daddy  Lab    

 

TRAIT Arron Haye Dina Haye

Widow's Peak Earlobes Blood Type

Now, determine the possible genotypes of the babies born to the Hayes. Use Punnett squares if you need.

Trait Possible Baby Genotypes

Widow's Peak Earlobes Blood type

Gene  Poole   Fallen  Poole  

 

 

No  Widow's  Peak   Widow's  Peak  

Free  Earlobes   Free  Earlobes  

Blood  Type:  B   Blood  Type:  A  

Determine the parents' possible genotypes for each trait. Use the following symbols to represent the dominant and recessive alleles.

 

Baby-­‐Daddy  Lab    

 

TRAIT   Gene  Poole   Fallen  Poole  

Widow's  Peak            

Earlobes                  

Blood  Type          

Now, determine the possible genotypes of the babies born to the Pooles. Use Punnett squares if you need.

Trait   Possible  Baby  Genotypes  

Widow's  Peak      

Earlobes        

Blood  Type      

 Indicate  which  babies  belong  to  each  set  of  parents?  Parents   Baby  

Mr.  and  Mrs.  Leele    

Mr.  and  Mrs.  Haye    

Mr.  and  Mrs.  Poole    

Lab  Report:    This    lab  report  needs  to  be  on  a  separate  paper  that  you  can  TURN  IN  TO  ME.    Introduction:      First  Paragraph  ___  Introductory  sentence  that  mentions  the  topic  of  the  lab  ___  Defines  at  least  two  terms  you  used  in  the  lab  ___  Explains  what  biology  information  you  should  already  know  before  the  lab  in  2-­‐3  sentences  Second  Paragraph  ___  Mentions  the  question  THIS  LAB  was  trying  to  answer  ___  Describes  what  was  done  in  the  lab  to  answer  that  questions  in  1-­‐2  sentences  ___  Mentions  the  hypothesis  for  the  experiment  ___  Gives  a  science-­‐based  reason  for  their  hypothesis  Results:  Copy  the  final  chart  above.  

Dihybrid  Crosses  WS    

 

These  letters  represent  the  genotypes  of  the  rabbits:  G-­‐Grey  hair              g-­‐white  hair                                            B-­‐black  eyes          b-­‐red  eyes  1.    Given  the  gametes  (GB,  Gb,  GB,  Gb)  and  (gb,  gb,  gB,  gB),  fill  in  the  punnett  square:        

     

       

     

       

     

       

     

       

 2.  A  male  rabbit  with  the  genotype  GgBb  .  Determine  the  gametes  (sperm)  produced  by  this  rabbit.        A  female  rabbit  has  the  genotype  ggBB.  Determine  the  gametes  (eggs)  produced  by  this  rabbit.          Use  the  gametes  from  the  male  and  female  to  set  up  a  punnett  square  below.                              How  many  of  the  offspring  are  gray  with  black  eyes?  How  many  of  the  offspring  are  gray  with  red  eyes?  How  many  of  the  offspring  are  white  with  black  eyes?  How  many  of  the  offspring  are  white  with  red  eyes?  

Dihybrid  Crosses  WS    

 

3.  A  male  rabbit  with  the  genotype  GGbb  is  crossed  with  a  female  rabbit  with  the  genotype  ggBb.    What  are  the  possible  gametes  produced  by  the  male?      What  are  the  possible  gametes  produces  by  the  female?      Create  and  fill  in  a  punnett  square  for  the  possible  offspring.                            How  many  of  the  offspring  are  gray  with  black  eyes?  How  many  of  the  offspring  are  gray  with  red  eyes?  How  many  of  the  offspring  are  white  with  black  eyes?  How  many  of  the  offspring  are  white  with  red  eyes?    4.  An  aquatic  arthropod  called  a  Cyclops  has  antennae  that  are  either  smooth  or  barbed.  The  allele  for  barbs  is  dominant  (B).  In  the  same  organism,  resistance  to  pesticides  is  a  recessive  trait  (r).    A  Cyclops  that  is  resistant  to  pesticides  and  has  smooth  antennae  is  crossed  with  one  that  is  heterozygous  for  both  traits.  Show  the  genotypes  of  the  parents.    ______________  x  _______________    Set  up  a  punnett  square  for  the  cross.      

Pedigree  WS    

 

 Imagine  that  the  dark  shapes  are  individual  with  a  recessive  disease.  

1.    Using  the  letter  r,  what  would  the  genotype  of  someone  with  the  disease  have  to  be?              On  the  diagram  above,  label  all  of  the  dark  shapes  with  that  genotype.    2.    Using  the  letter  R,  what  are  the  two  genotypes  someone  with  a  white  shape  could  have?    3.    Label  the  genotypes  of  individuals  I1  ,II2  and  II3.    Remember  that  if  someone  has  the  disease,  they  had  to  get  a  recessive  gene  from  both  parents  and  that  a  parent  with  the  disease  has  to  pass  on  the  recessive  gene.  

   1.    If  you  look  at  the  offspring  of  the  second  line,  you  will  notice  that  one  of  their  kids  is  black.    You  can  use  this  to  tell  if  black  is  dominant  or  recessive.    Using  R/r,  what  is  the  genotype  of  black  shapes?  Label  all  of  the  black  shapes  in  the  diagram.    2.    Now  go  back  and  label  the  genotypes  of  the  parents  in  the  second  line.    3.    Look  at  the  middle  parents  in  the  third  line  and  label  their  genotypes.    How  do  you  know  their  genotypes?    Explain  in  two  sentences  below.      

Pedigree  WS    

 

On  the  question  below,  make  sure  you  look  for  parents  of  the  same  color  that  produce  a  child  that  is  an  opposite  color  and  label  that  child  as  being  recessive  before  answering  the  question.  

 

Since  the  polled  allele  is  dominant,  the  horned  allele  has  to  be  recessive.    Write  in  the  genotype  of  the  recessive  individuals  BEFORE  you  do  the  problem.  Use  N/n  

Pedigree  Lab    

 

                           

 

Pedigree  Lab    

 

                 

Unit  Five  Review  Sheet  Four    

 

What  are  the  genotypes  of  the  two  plants:        What  are  the  possible  gametes  of  the  two  plants:    1:    

                                 2:    Complete  a  punnett  square  for  the  cross  and  mention  the  resulting  RATIOS  of  the  phenotypes.    

     

       

     

       

     

       

     

       

Purple-­‐Starchy:                                                              Purple-­‐Sweet:                                                        Yellow-­‐Starchy:                                                                    Yellow-­‐Sweet: