Understanding the Mechanical

download Understanding the Mechanical

of 31

Transcript of Understanding the Mechanical

  • 8/17/2019 Understanding the Mechanical

    1/31

    Understanding the Mechanical

    Properties of Filled Polyolefins

     J M Adams, C D Paynter & S Ritchie

  • 8/17/2019 Understanding the Mechanical

    2/31

    IntroductionPolylefins are the most

    used polymers today

    Use of a variety of 

    virgin polyolefin typesand additives generates

    wide property envelope

    ‘Green’ implicationsImpact Strength

       F   l  e  x  u  r  a

       l    M  o   d  u   l  u  s

    Filled grades

    Polymer  Market %

    PE 32

    PP 19

    PVC 16PUR 8

    PS 6

    PET 6

    PA 2

    PC 1

    Other 10

  • 8/17/2019 Understanding the Mechanical

    3/31

    Background

    Inorganic fillers affect composite properties:

    Polyme

    $/litre Filler $/litre

    PE 0.70 Fine 2.80

    PP 0.79 Ultrafine 14.50

    Increase:

    •Density

    •Thermal conductivity•Electrical conductivity

    •Stiffness

    Decrease:

    •Thermal expansion

    •Warpage•Surface finish

    •Colour

    •Tensile strength

    •Flammability

    It Depends:

    •Permeability

    Fillers are expensive but also:

    Remember the compounding cost!

    Inorganic fillers forfunctionality, not cost

    Filler (kt) 1972 1987 2002

    ATH 4 35 200

    Asbestos 60 6 0

    Carbonate 282 854 1200

    Kaolin 24 24 24

    Silica 13 8 6

    Talc 6 80 160

  • 8/17/2019 Understanding the Mechanical

    4/31

    Filler Particles

    Talc Kaolin

    Calcium Carbonate Bentonite1 μm

  • 8/17/2019 Understanding the Mechanical

    5/31

    Stiffness – 1 – Basic Data

    0 10 20 30 40 50

    0

    1

    2

    3

    4

    5

    6

    7

    Filler Loading (wt %)

       Y  o  u  n  g  s

       M  o   d  u   l  u  s

       (   G   P  a

       )

    calciumcarbonate

    kaolin

    talc

    mica

  • 8/17/2019 Understanding the Mechanical

    6/31

    Stiffness - 2

    What is the origin of the different stiffeningeffects shown by different fillers?

    Could be:• Aspect Ratio (Ec =Ef.Ø.MRF + Em(1-Ø); MRF= f(AR))

    • Delamination in processing (increasing AR)

    • Particle alignment in processing (increasing MRF)

    • Relative stiffness of filler particles

    • Interfacial properties

    • (Induced) polymer morphology

  • 8/17/2019 Understanding the Mechanical

    7/31

    Stiffness – 3 – Aspect Ratio

    20 40 60 80 100 120 140

    4.5

    5.5

    6.0

    6.5

    0

    5.0

    4.0

    3.5

    3.0

    kaolin

    talc

    Particle Aspect Ratio

       F   l  e  x  u  r  a   l

        M  o   d  u   l  u  s

       (   G   P  a   )

    40 wt% filled PP

    So, Aspect ratio is important.BUT it is not the only factor.

  • 8/17/2019 Understanding the Mechanical

    8/31

    Stiffness – 4 – Effects during Processing

    Delamination during processing does NOT happen. Trial with PP filled(40 wt%) with talc. AR before compounding/moulding = 29, and 27 afterwards.

    Depth (mm)2 4

       I  n

      t  e  n  s

       i  t  y

       R  a  t

       i  o

    FTIR – Orientation vs Depth

    0

    kaolin

    talc

    Talc-filled

    Kaolin-filled0

    1

    Orientation effects arethe SAME for differentplatey fillers.

  • 8/17/2019 Understanding the Mechanical

    9/31

    Stiffness – 5 – Modelling for Filler Modulus

    (Padawar & Beecher: Ec=Ef.Ø.MRF + Em(1-Ø)

    20 40 60 80 100 120 140

    4.5

    5.5

    6.0

    6.5

    0

    5.0

    4.0

    3.5

    3.0

    kaolin

    talc

    Particle Aspect Ratio

       F   l  e  x  u  r  a   l

        M  o   d  u   l  u  s

       (   G   P  a   )

    40 wt% filled PP

    Ef = 35 GPa

    Ef = 20 GPa

    Particle stiffness seems important.

    BUT, is this the (full) answer?

    T

    OT

    T O

  • 8/17/2019 Understanding the Mechanical

    10/31

    Stiffness – 6 – Interfacial Properties

       F   l  e  x  u  r  a   l 

       M  o   d  u   l  u  s

       (   G   P

      a   )

    2.5

    3.5

    4.5

      u  n  t  r  e  a  t  e   d

       W   i  t   h   A   H   T

       W   i  t   h   P   C   1   A

       W   i  t   h

       P   C   1   A   /   P   C   1   B

       W   i  t   h   3 -   A   P   S

       W   i  t   h

       P  o   l  y   b  o  n   d

       W

       i  t   h   3 -   A   P   S   +

       P  o

       l  y   b  o  n   d

    PP 40 wt% filled with kaolin

    The chemistry of the interfacedoes make a difference, BUT thereasons are not crystal clear.

  • 8/17/2019 Understanding the Mechanical

    11/31

    Stiffness – 7 – Polymer MicrostructureTrans-

    crystalline

    Spherulitic

    Youngs Modulus (GPa) 1.09 0.67

    Tensile Yield Strength (MPa) 25.0 18.6

    Elongation to Break (%) 4 >300

    Failure Energy (kJ m2) 28.0 28.5

    We know that

    for unfilled PP thepolymer microstructure

    is critical to performance.

    Optical

    Micrographs

    Spherulite

    Transcrystalline

    Region nearNucleating surface

    SpheruliticStucturein unfilled PP

  • 8/17/2019 Understanding the Mechanical

    12/31

    Stiffness – 8- NucleationModelling the shape of the DSC crystallisation curve => Nucleation Properties

    20 wt% filled PP crystallised at 135 oC

    Nf = NA1.5(filled) – NA

    1.5(unfilled)

    NA = [2√3 (δro /δt)2 tm

    2]-1

    temperature

       H  e  a   t  o  u   t  p  u   t

    tm

    Sample tm (min) Number ofnucleating sites per

    SA of filler Nf (x 106

    m-2)

    Unfilled PP 12.2 -

    PP + Calcium

    Carbonate

    3.2 65

    PP + StearicAcid coated

    Calcium

    Carbonate

    3.4 60

    PP + Talc 0.9 1300

    AND we know that fillers

    affect the crystallisationof the polymer (Example 1).

  • 8/17/2019 Understanding the Mechanical

    13/31

    Stiffness – 9 – Polymer Morphology

    Nucleation and crystalgrowth in PP much reduced

    by modification of the

    mineral surface

    Untreated Mineral

    Surface Treated with 3-APS

    Transcrystallisation

    Residual Spherulitic Growth

    AND we know that fillers

    affect the crystallisation of

    the polymer (Example 2).

  • 8/17/2019 Understanding the Mechanical

    14/31

    Stiffness – 10 – CrystallinitySample % Crystallinity

    (DSC)

    %

    Crystallinity

    (IR)

    CrystallinityIndex

    (XRD)

    α-phase

    Orientation

    Index (XRD)

    β-phase

    Index

    (XRD)

    Unfilled PP 60 68 3.7 0.88 0.05

    PP + 40 wt%

    Calciumcarbonate

    59 66 3.6 0.80 0.07

    PP + 40 wt%

    Stearatecoatedcalciumcarbonate

    60 68 4.0 0.83 0.12

    PP + 40 wt%

    Talc

    55 - 11.5 0.92 0.02

    AND we know that fillers affect the

    crystallisation of the polymer (Example 3).

  • 8/17/2019 Understanding the Mechanical

    15/31

    Stiffness – 11 - Summary

    Composite stiffness is determined by:

    •Filler loading•Stiffness of the filler

    •Aspect Ratio of the filler

    •Important effects from:(i) nucleation/crystallisation properties of fillers

    (ii) surface treatment which modifies these properties

  • 8/17/2019 Understanding the Mechanical

    16/31

    Impact – 1 - Background

    Impact strength

       S  t   i   f   f  n  e  s  s

     -   F   l  e  x

       M  o   d  u   l  u  s

    ‘Everyone knows’ that fillers thatgive high stiffness have poor impact

    properties

    Talc and clay filled PP

    0 40 80 120 160

    Aspect Ratio

       F  a   l   l   i  n  g

       W  t

       I  m  p  a  c  t

       S  t  r  e  n  g  t

       h   (   J   )

    0

    5

    10x

    x

    x

    x

    x

    x

    x   x

    x

    x

    ‘Everyone knows’ that this

    is a result of the high

    stresses at the edgesof a high AR inclusion

    (Higher AR = sharper edges)

  • 8/17/2019 Understanding the Mechanical

    17/31

    Impact – 2 – Key Information - 1

    Talc Calcium Carbonate

    0

    10

    20

    30

       C   h  a  r  p  y

       N  o  t  c   h  e   d

       I  m  p  a  c  t

       S  t  r  e

      n  g  t   h

       (   k   J  m

     -   2   )

    0 10 20 30 40   50 0   10   20   30 40 50

    Uncoated

    Coated

    •At loadings from 10-50 wt%, coated carbonate gives notched IS > unfilled.

    •Below 20 wt% loading talc gives notched IS = unfilled, but declines thereafter.

    •Even with excellent dispersion given by twin screw compounder, uncoatedcarbonate (low AR) performs as poorly as talc (which has high AR).

    Filler Loading (wt%) Filler Loading (wt%)

  • 8/17/2019 Understanding the Mechanical

    18/31

    Impact – 3 – Key Information - 2

    Talc Calcium Carbonate

    0

    0 10 20 30 40   50 0   10   20   30 40 50

    Uncoated

    Coated

    At loadings from 10-50 wt%:• coated carbonate gives un-notched IS >> unfilled.

    • uncoated carbonate gives un-notched IS = unfilled.• talc gives un-notched IS = 2* unfilled.

    Filler Loading (wt%) Filler Loading (wt%)

       F  a   l   l   i  n  g   W  e   i  g   h   t   I  m  p  a  c   t   S   t

      r  e  n  g   t   h   (   J   )

    5

    10

    15

  • 8/17/2019 Understanding the Mechanical

    19/31

    Impact – 4 – Important Factors• Particle shape – High AR = sharp edges => stress foci

    • Poor Particle Dispersion => aggregates => Griffith flaws

    • Crystallisation & Microstructure

    • Mechanics of crack propagation

    BUT REMEMBER that THE MOST IMPORTANT FACT is that

    PROPERTIES CAN IMPROVE when you add filler particles!

    Poor dispersion

  • 8/17/2019 Understanding the Mechanical

    20/31

    Impact – 5 – Unfilled PP

    Measured IS as a function of sampledistance from the gate and T.

    Deduced that High IS corresponds to:

    •Low crystallinity

    •High β-phase content•Low α-phase alignment

    Question:•Does this translate to the filled case?

    Distance from the gate (mm)

    Distance from the gate (mm)

    Distance from the gate (mm)

            β -  p

       h  a  s  e

       i  n   d

      e  x -

       B

          α

     -  p   h  a  s  e  o  r   i  e  n  t  a  t

       i  o  n

       i  n   d  e  x -

       A

       C  r  y  s  t  a   l

       l   i  n   i  t

      y   i  n   d  e  x -

       C

    220 oC

    0

    0

    080

    80

    80

    250 oC

    280 oC

    1

    2.2

    0

    0.25

    0.5

    0.7

  • 8/17/2019 Understanding the Mechanical

    21/31

    Impact – 6 – Nucleation/Crystallisation

    We do have data that demonstrate the importance of nucleation

    and crystallisation in determining the impact performance of filled

    polyolefins. Data for Polypropylene is given below.

    120 124 128 132 136

    Temperature of onset of crystallisation (oC)

       F  a   l

       l   i  n  g

       W  e   i  g   h  t   I  m  p  a  c  t

       S  t  r  e  n  g  t   h

       (   J   )

    0

    6

    12

    Unfilled PP

    Uncoated Carbonate

    Coated Carbonate

    1. Crystallisation does determine Impact Strength.

    2. Unfilled point is NOT on the line

    => Mechanism for good impact performance is different in filled and unfilled cases.

  • 8/17/2019 Understanding the Mechanical

    22/31

    Impact – 7 – Fracture Mechanics

    b

    w a

    Umes-Uke = G (b w Z)

    Z is a function of (a/w)

    (a)crack length

    plastic zone

    radius rp

    bwZ (mm2)

       F  a   i   l   e  n  e  r  g  y

       (   J   )

    Sample Notched IS(kJ/m2)

    Gc(kJ/m2)

    rp(mm)

    Unfilled PP 11.5±1.0 3.2 0.08

    Carbonate filled 9.5±2.0 3.1 0.26

    Coatedcarbonate filled 13.0±4.5 5.0 0.31

    Filled materials have:

    - higher Gc values

    - much bigger plastic (deformation) zones

  • 8/17/2019 Understanding the Mechanical

    23/31

    Impact – 8 – Critical Ligament Theory

    Interparticle Ligament Thickness

    0.1 μm 1 μm 10 μm

       I  z  o   d   I  m  p  a  c  t

       E  n  e  r  g  y

       (   J   /  m

       )

    0.1 μm 1 μm 10 μm

       F   W    I

      m  p  a  c  t

       S  t  r  e  n  g  t   h

       (   J   )

    Bartczak’s Critical Thickness

    0.6 μm particles

    0.9 μm particles

    0.75 μm particles

    We found no

    critical ligament thickness

  • 8/17/2019 Understanding the Mechanical

    24/31

    Impact - 9 – Instrumented Charpy Impact Test

    0

    50

    100

    150

    200

    250

    0.0 1.1 2.2 3.3 4.4

    Displacement (mm)

       L  o  a   d   (   N             )

    GT

    GIC

      GPP

    Piezoelectric load cell

    Striker

    Generalised curve

    Post peak energy

    ie

    plastic or ductile

    region

  • 8/17/2019 Understanding the Mechanical

    25/31

    Impact - 10 -Total energy results

    Perpendicular G1G2G3G4 G6G5

    Flow direction + molecular orientation

    0

    5

    10

    15

    20

    25

    30

    perpendicular g1 g2 g3 g4 g5 g6

    flow orientation and position in mould

          G      T    k   J

       /  m   2

    neat 5% cc 10% cc 30%cc 20%cc 25%cc5 vol% 10 vol% 30 vol%   20 vol%  25 vol%

    G1 G2 G3 G4 G5 G6

    Impact performance is

    very dependent upon:

    - flow & molecular orientation- position in the mould

    especially for filled materials.

  • 8/17/2019 Understanding the Mechanical

    26/31

    0

    50

    100

    150

    200

    250

    0.0 2.0 4.0 6.0

    displacement (mm)

       l  o  a   d   (   N   )

    25%-g1

    5%-g1

    Impact – 11 - Thin orientated injection moulded samples (G1)

    5 vol% filler

    25 vol% filler

    brittle

    ductile

    More highly filled system has the highest impact strength.

    The initiation energy remains constant BUT

    the post-peak energy absorption is increased by the increased filler volume.

  • 8/17/2019 Understanding the Mechanical

    27/31

    0

    50

    100

    150

    200

    250

     0  . 0  

     0  . 5  

    1  . 0  

    1  . 5  

    2  . 0  

    2  . 5  

     3  . 0  

     3  . 5  

    4  . 0  

    4  . 5  

    displacement (mm)

       l  o  a   d   (   N   )

    25%-g1

    25%-perpendicular 

    Impact - 12 - Impact properties as a function of flow orientation

    25 vol% filler (Perpendicular)

    25 vol% filler (G1)

    brittle

    ductile

    We see large differences between samples having different orientation:

    -the initiation of the crack is the same

    - but we lose almost all of the post-peak toughness when the flow andmolecular orientation is perpendicular to the direction of fracture.

  • 8/17/2019 Understanding the Mechanical

    28/31

    PP - 5 vol% Calcium Carbonate PP – 25 vol% Calcium Carbonate

    Impact – 13 - Fracture Surface

    The more ductile deformation in the 25% filled case can clearly be seen.

  • 8/17/2019 Understanding the Mechanical

    29/31

    Directly under 

    fracture surface

    100 m under 

    fracture surface

    400 m under 

    fracture surface

    Impact - 14 - SEM of the stress whitened plastc deformation

    zone - microtomed surface perpendicular to the crack face

    under the fracture surface

    PP – 20 vol% Calcium Carbonate

    Large scale voidingVoiding still present.

    Cavitation extends ~ 130 μminto the bulk, allowing plastic

    deformation and dissipationof energy.

    Voiding/cavitation does

    not extend this far into

    The bulk.

    F l S

  • 8/17/2019 Understanding the Mechanical

    30/31

    Final Summary

    Composite stiffness – critical properties:• Filler Loading

    • Stiffness of the filler

    • Aspect Ratio of the filler

    • (i) nucleation/crystallisation properties of fillers(ii) surface treatment which modifies these properties

    Impact Performance – governed by:

    • Filler loading• Processing conditions, which determine:

    (i) filler dispersion

    (ii) geometric/orientation effects

    • Aspect Ratio of the filler• (i) nucleation/crystallisation properties of fillers

    (ii) surface treatment which modifies these properties

    • Degree of plastic flow, determined by filler size and loading, and

    by the interparticle ligament geometry

  • 8/17/2019 Understanding the Mechanical

    31/31

    Acknowledgements• Imerys Minerals Ltd

    - Phil McGenity

    - Andy Riley

    - Mike Hancock • EU – Interreg – MNAA

    • Universities of Exeter & Bristol - MCSW