Unconventional Superconductivity (The Phenomenon) and ...

22
Pedagogical Overview Unconventional Superconductivity (The Phenomenon) and Unconventional Superconductors (The Materials) Conventional Superconductivity Unconventional Superconductivity and Superconductors Some Personal Favorites

Transcript of Unconventional Superconductivity (The Phenomenon) and ...

Page 1: Unconventional Superconductivity (The Phenomenon) and ...

Pedagogical Overview

Unconventional Superconductivity (The Phenomenon) and Unconventional Superconductors (The Materials)

• Conventional Superconductivity • Unconventional Superconductivity and Superconductors • Some Personal Favorites

Page 2: Unconventional Superconductivity (The Phenomenon) and ...

The Essence of Superconductivity -- With the Benefit of Hindsight

! pi= "int #$( )% cm r$( ) = "int #$( )% cm r$( ) e&i

Internal  structure  of  a  pair  

•  q  =  2  •  Pairing  symmetry,  pair  size  •  Single  par6cle  excita6ons  •  Density  of  states  •  Material  parameters  of  GL  theory  •  The  mechanism    

 Microscopic  Specific  Proper-es  

ri  

e  

e  !"

!BCS•  

CM  wave  func5on  of  pair  

 

   

Macroscopic  Emergent  Proper-es  

•  GL  Order  parameter/GL  theory  •  R  =  0,  B  =  0,    •  Type  II  superconduc6vity  •  Josephson  effect  

! = !0 = hc / q

ith  pair  

Superconductivity arises when phases lock  !1 =!2 =!3 = ......!"..... =!

Page 3: Unconventional Superconductivity (The Phenomenon) and ...

Some History

Adapted  from  a  DoE  Report  

Pr(O-­‐F)FeAs  

BCS  Theory  

Conven6onal  Superconduc6vity  GL  Theory,  BCS,  Gorkov  and    Eliashberg  

Conven6onal  Era   Unconven6onal  Era  

Page 4: Unconventional Superconductivity (The Phenomenon) and ...

Key Results of BCS Theory

• Superconductivity arises when electrons bind into pairs and these pairs lock their mutual phases to form a macroscopic quantum state. • The single-particle excitations of a superconductor are comprised of a phase- coherent linear combinations of electrons and holes. • , which implies that if no other phases intervene, all normal metals will become superconductors as T -> 0. Here λ is the attractive interaction parameter (not necessarily the electron-phonon interaction). • Size of Cooper pair

Tc = !oe"1/#

(k !,"k #)

! ks = uk! k

e + vkei"! k

h

!

•k !

• ! k "

• !k "

•! "k #

(k !,"k #)$ ( %k !," %k #)FS  

In general, time reversed pairs (Anderson)

! " !vF / kTc

Page 5: Unconventional Superconductivity (The Phenomenon) and ...

The Triumvirate Defining Conventional Superconductivity A Complete Theory (BCS + Mechanism + Equations for the Material Parameters)

BCS  

Elisashberg  Ginzburg-­‐Landau  

Tc =!0e"1

#"µ*

µ*= µ

1+ µ !n !F"D

#$%

&'(

F(r) = d 3! r " # 2 + 1

2$ # 4 !2

2m*%i&% e*

!cA'

()*+,#

2

+ B2

8-./0

10

230

40

Page 6: Unconventional Superconductivity (The Phenomenon) and ...

Conventional Superconductivity

Unconventional Superconductivity

Even More Unconventional

Superconductivity Weak  coupling    λ  <<  1    

Strong  coupling    λ  >  1        Maximum  in  Tc  

Very  strong  coupling    λ  >>  1    Phase  fluctua5ons  –  Tc  à  0  

Mean  field  theory   Quantum  fluctua5ons  when  ξ  is  small  

Bose  metal  of  pairs?  

S-­‐wave    singlet  Time  reversed  pairs    

Higher  angular  momentum  pairing  

p,  d,  ……  pairing    

S-­‐wave  triplet  odd-­‐  frequency  pairing    Broken  TRS  pairs  –    s  +  is,    d  +  is,  etc  

Retarded  el-­‐ph  interac5on   Any  other  mechanism:  Electronic  interac5ons  -­‐-­‐

spin  or  charge  

Non-­‐Fermi  liquid  in  normal  state  

Quantum  cri5cal  points  Compe5ng  ordered  phases  

Anderson’s  theorem    Tc  independent  of  disorder  

Enhanced  coulomb  repulsion  due  to  disorder    

Disorder  driven  Superconductor/Insulator  

Transi5on  

Tc =!0e"1!

Tc = e!1

!!µ*

Tc =!0e"1

#"µ*"$µ*

Unconventional Superconductivity

!(k) = dk 3" V (k,k ')!(k ')

! " !vF / kTpTc = min T! ,Tp{ }

Page 7: Unconventional Superconductivity (The Phenomenon) and ...

Conventional Classic BCS and

Extensions

Unconventional Superconductivity

More Unconventional Superconductivity

Single band superconductivity

Weakly coupled bands/orbitals

Josephson effects in k space

Q = 0 pairing Finite Q pairing

Pair density waves  

Quasi-particles Phase coherent

superposition of e’s and h’s

SN proximity effect In the presence of a

Dirac point

Majorana Fermions

Earthly Other worldly

Unconventional Superconductivity

Page 8: Unconventional Superconductivity (The Phenomenon) and ...

Adapted  from  a  DoE  Report  

Pr(O-­‐F)FeAs  BC

S  Theory  

Conven6onal  Era   Unconven6onal  Era  

Unconven5onal  Superconduc5vity  Along  the  El-­‐Ph  Line  

Page 9: Unconventional Superconductivity (The Phenomenon) and ...

BaPb1-­‐xBixO3    

12K  

BaPb1-­‐xBixO3    

12K  

SEMICONDU

CTING  

SUPE

R-­‐C  

30K  

Ba1-­‐xKxBiO3    

Ba

Nega5

ve-­‐U  CDW

 

Phase Diagrams of the Superconducting Bismuthates

Nega5

ve-­‐U  CDW

   

Note similarity to the phase diagrams of the cuprate superconductors but where the ordered insulating state is in the charge sector

BaBiO3  

Pb  Doping   Ba

BiO3  

K  Doping  

Page 10: Unconventional Superconductivity (The Phenomenon) and ...

Charge-Disproportionated (Negative U) Superconductors (e.g., BaBiO3) A Failure of LDA Theory à A new class of correlated insulator

 

Bi4+   Bi4+   Bi4+   Bi4+   Bi4+  

Bi3+   Bi3+   Bi3+  Bi5+   Bi5+  

Metal  

Oxygen  

2Bi4+ (4s1)! Bi3+ (4s2 ) + Bi5+ (4s0 )and    

Oxygen  atoms  move  to  screen  charge  (Breathing  mode)  

Nega6ve  U  -­‐-­‐  Involves  both  charge  and    laZce  

Insulator  

e   e   e   e   e  

ee   ee   ee  U  

Superconductivity arises upon doping (Ba1-xKxBO3 and BaPb1-xBixO3)

Page 11: Unconventional Superconductivity (The Phenomenon) and ...

Tc0 =!0e"1

#"µ*

Tcd =!0e"1

!"µ*""µ*

Disorder in the High Tc Bismuthates

BaPb1-xBixO3

   

Neg

ativ

e-U

CD

W

Orth

orho

mbi

c

Orth

orho

mbi

c

Mon

oclin

ic

BaPb1-xBixO3

Tetra

gona

l/O

rthor

hom

bic

λ  =  el-­‐ph  interac6on  parameter  μ*  =  retarded  coulomb  repulsion  

•  Clean  limit  (BCS/Eliashberg):          

Conven5onal  theory  for  Tc  

•  Dirty  limit  (BCS/Eliashburg/Fukuyama):      

!µ * =  increase  in  μ*  due  to  disorder-­‐induced        localiza6on    

Measured  Tc  =  Tcd    and  independently  es6mated                  permits  es6mate  of  Tc0  !µ *

Disorder  ma^ers  in  region  of  highest  Tc  

Page 12: Unconventional Superconductivity (The Phenomenon) and ...

Heavy Fermions and Magnetic Mechanisms

Adapted  from  a  DoE  Report  

Pr(O-­‐F)FeAs  BC

S  Theory  

Conven6onal  Era   Unconven6onal  Era  

Page 13: Unconventional Superconductivity (The Phenomenon) and ...

Cuprates and Strong Correlation – A Mixed Blessing

Adapted  from  a  DoE  Report  

Pr(O-­‐F)FeAs  BC

S  Theory  

Conven6onal  Era   Unconven6onal  Era  

Page 14: Unconventional Superconductivity (The Phenomenon) and ...

In Nature the Transition Temperature Can Be “Astronomically” High

Alfred and Schmitt RMP 80 (2008)  

Quark-­‐Gluon  Plasma  

Color-­‐Flavor  Locked  Quark  Ma^er  

Page 15: Unconventional Superconductivity (The Phenomenon) and ...

With Some Experimental Evidence

Page 16: Unconventional Superconductivity (The Phenomenon) and ...

Local pairing,small unit cell and 3D (to minimize phase fluctuations), strong interactions, mean-field breakdown, not a single band.

Any Room Temperature Superconductor Will be Extremely Unconventional Σιζε οφ

Χοοπερ παιρσ

Room Temperature

Superconductor Room Temperature

Pairing  Temperature  TP  (K)  

Siz

e of

Coo

per P

air ξ

(Å)

Room Temperature

BCS Theory (vF const.) ! ! !vF / kTc

Page 17: Unconventional Superconductivity (The Phenomenon) and ...

If you want to find something unconventional, don’t look under the street light.

Page 18: Unconventional Superconductivity (The Phenomenon) and ...
Page 19: Unconventional Superconductivity (The Phenomenon) and ...

Empirical Guidance on Specific Interactions Material  Archetype  

Tc   Interac6on   Guidance  

Bismuthates (i.e., doped BaBiO3)

 

30K Charge + Lattice

Doped Negative U Insulator

Cs3C60  

40K Lattice + Correlation (charge)

El-Ph Covalent Bonds

MgB2  

40K Lattice El-Ph Covalent Bonds

Prediction

Fe-Based 50K Spin Antiferromagnetism Multiple orbitals

Cuprates 130K Spin

Doped Antiferromagnetic

Positive U Mott Insulator

Trace High Tc Anomalies

> Room Temperature

?   Shouldn’t Ignore

Electronic (charge and spin) interactions look good

Page 20: Unconventional Superconductivity (The Phenomenon) and ...

To Determine Tc There are Two Characteristic Temperatures to Consider

Superconductivity arises when electrons (or holes) form pairs and the quantum phases of these pairs order (lock) to form a coherent macroscopic quantum state with a single phase.

e e e  e  

e  e   e  e  

e  e   e  e  

e  e   e  e  

e  e   e  e  

! p = ! p ei"

! p!Pairs form

Pairing interaction

SC arises

Phase locking

! sc!

! pi

!i ! =!1 =!2 =!3 i i i

Each process has its own characteristic temperature

Phase locking

Macroscopic  quantum    state  

Page 21: Unconventional Superconductivity (The Phenomenon) and ...

Theoretical Guidance An always controversial subject

•  How  to  op5mize  the  el-­‐ph  mechanism  –  Modern  electronic  structure      calcula5ons    (It  is  clear  that  theory  could  have  predicted  the  high  Tc    superconduc5vity  of  Mg  B2)  

•  New  mechanisms    •  Electronic  structure  calcula5ons  as  a  tool  in  the  search  •  Strong  interac5ons,  but  honor  the  “Goldilocks  Principle”  

E.g.,  from  weak  coupled  BCS  (delocalized)  limit  to  strong  coupled  (local)  limit.    Typically  also  for  doping.    

Page 22: Unconventional Superconductivity (The Phenomenon) and ...

H = !t cm† cm" !U np#np$" ! t% cm

† cp"Berg,  Orgad  and  Kivelson  PRB  78,  094509  (2008)  

High Tc and High Pair Density Superconductor Using a Normal Metal/Negative-U Insulator Proximity Effect:

Normal  Metal  

Nega6ve-­‐U  Insulator  

Tc  

t!

…. And Maybe We Can Have Our Cake and Eat It Too