Ultrasound in random media - French National Centre for ...

47
Ultrasound in random media Arnaud Tourin

Transcript of Ultrasound in random media - French National Centre for ...

Page 1: Ultrasound in random media - French National Centre for ...

Ultrasound in random media

Arnaud  Tourin  

Page 2: Ultrasound in random media - French National Centre for ...

Director : Arnaud Tourin Deputy director : Rémi Carminati et Mickael Tanter Honorary director : Mathias Fink

http://www.institut-langevin.espci.fr

Page 3: Ultrasound in random media - French National Centre for ...

Director  of  ESPCI  (1925-­‐1946)      

Piezoelectricity    Pierre  and  Jacques  Curie  1880  

Paul Langevin (1872-1946)

quartz

Page 4: Ultrasound in random media - French National Centre for ...

Interdisciplinary approach of wave physics All kinds of waves : Acoustics, Water waves, Microwaves, Optics

Temporal shaping Spatial shaping

Liquid  crystals    SLM  

Femtosecond  Coherent  control  

Interferometry/detection

holography  

Time-­‐resolved  techniques  

Ultrasound Microwave

Optics

Page 5: Ultrasound in random media - French National Centre for ...

Fundamental and applied Research

Anderson  localiza>on,  

Random  lasers,  

QED,  

Wave  chaos,  

Time  reversal,…  

Medecine  and  Biology,  

Non  destruc>ve  tes>ng,  

Wireless  communica>ons,  

Defense  industry,  

Geophysics,…  

Page 6: Ultrasound in random media - French National Centre for ...

•  ECHOSENS (2001) 50 employees (Mongolia Pharm) > 2000 Fibroscan sold

•  SENSITIVE OBJECT (2003) 35 employees (Tyco)

•  SUPERSONIC IMAGINE (2005) 120 employees > 800 Aixplorer sold

•  TIME-REVERSAL COM (2008) 40 employees (Bull)

•  LLTECH (2008) 8 employees

Innovation and start-up companies

Page 7: Ultrasound in random media - French National Centre for ...

ℓ s < L < ℓ a ,ℓ φ

L Mesoscopic physics  with  ultrasound

Page 8: Ultrasound in random media - French National Centre for ...

Optical speckle

Courtesy Georg Maret

Page 9: Ultrasound in random media - French National Centre for ...

John  Page  

 University  of  Manitoba  

Ultrasound speckle

Page 10: Ultrasound in random media - French National Centre for ...

OUTLINE

Lecture  1  :  mesoscopic  physics  with  ultrasound

 ❒    The  ballis>c  and  coherent  waves  

 ❒    The  diffuse  (incoherent)  intensity  and  the  Diffusion  Approxima>on  

 ❒    Beyond  the  DA  :  the  weak  and  strong  localisa>on  regimes  

Lecture  2  :  controlling  ultrasound  in  disordered  media  

 ❒    Time  Reversal  focusing  in  mul>ple  scaTering  media  

 ❒    Broadband  wavefront  shaping  in  mul>ple  scaTering  media  

 ❒    A  matrix  method  for  imaging  through  a  mul>ple  scaTering  media    

 ❒    Imaging  changes  in  scaTering  media  from  Time  Reversal  of  the              Coda  wave  Difference  (TRECOD)

Page 11: Ultrasound in random media - French National Centre for ...

Experimental approach : measuring the S matrix

i

j

Transducer arrays

f ~ 500 kHz - 5 MHz λ ∼ mm

S ?

+ -

In optics, S. Popoff et al., Phys. Rev. Lett. 104, 100601 (2010)

Page 12: Ultrasound in random media - French National Centre for ...

Experimental approach : measuring the S matrix

!     Ψij(t),  ⟨Ψij(t)⟩,  ⟨∣Ψij(t)∣2⟩,  ∫Ψij2(t)dt,  ∑ij∫Ψi

2(t)dt,  ⟨Ψil(t) Ψ*im(t)⟩,…  

!     Distribu>on  of  transmission  eigenchannels  

B.  Gerardin’s  talk  on  Saturday  

Mello  and  Pichard,  Phys.  Rev.  B  40,  5276  (1989)  

Page 13: Ultrasound in random media - French National Centre for ...

128-­‐transducer  array  Pitch  :  0.42  mm  

Single  transducer  ν=3.2  MHz  λ=0.48  mm  

2D  random  sample  Diameter: 0.8 mm Density  :  19  rods  /  cm

Setup

Page 14: Ultrasound in random media - French National Centre for ...

0 10 Time (µs)

Water

Time (µs) 0 10

127

1

# tra

nsdu

cer

Am

plitu

de

The ballistic wave

Time (µs) 0 10

127

1

0 10 Time (µs)

L=7 mm

Am

plitu

de

# tra

nsdu

cer

Page 15: Ultrasound in random media - French National Centre for ...

L=15 mm

0 10 Time (µs)

127

1 0 10 Time (µs)

Am

plitu

de

The ballistic wave #

trans

duce

r L=30 mm

0 10 Time (µs)

127

1 0 10 Time (µs)

Am

plitu

de

# tra

nsdu

cer

Page 16: Ultrasound in random media - French National Centre for ...

0 225 Time (µs)

0 225 Time (µs)

L=70 mm A

mpl

itude

127

1

The diffuse wave #

trans

duce

r

Page 17: Ultrasound in random media - French National Centre for ...

Quantum wave Classical (acoustic) wave

The wave equation in a heterogeneous medium

Page 18: Ultrasound in random media - French National Centre for ...

single scattered wave

unscattered wave

The Born expansion

double scattered wave

The wave equation in a heterogeneous medium

Page 19: Ultrasound in random media - French National Centre for ...

ΔG(ω ,r,r0)+ k02G(ω ,r,r0) = σ(r)G(ω ,r,r0)+δ(r − r0)

G(ω ,r,r0) = G0(ω ,r − r0)+ G0(ω ,r − r1∫ )σ(r1 )G(ω ,r1,r0) dr1

The Dyson equation

G(ω ,r − r0) = G0(ω ,r − r0)+ G0(ω ,r − r1∫ )Σ(ω ,r1 − r2) G(ω ,r2 − r0) dr1dr2∫

Beer-­‐Lambert  

Icoh = Gω(r,r0)2∝ exp−

r − r0ℓ S

G(ω ,r − r0) =exp ike r − r04π r − r0

ke2 ≈ k0

2 −Σ(ω)

G(ω ,k) =1

k 2 − k02 −Σ(ω ,k)

= k02 − 4πnfISA

Page 20: Ultrasound in random media - French National Centre for ...

"  Foldy (1945) first order in n

"  Lax (1952) QCA

"  Percus, Yevick (1958) pair-correlation function

"  Waterman et Truell (1961) second order in n

"  Twersky (1962) pair-correlation function

"  Frisch (1968) diagrammatic expansion

"  Keller (1964) second order

"  Gubernatis (1965) CPA

"  Lagendijk et Tiggelen (1996) ISA

V. Mamou, A. Derode, A. Tourin, Phys. Rev E. 74, 036606 (2006)

Page 21: Ultrasound in random media - French National Centre for ...

Source Receiving array

How to build an estimator of the ensemble average ?

Page 22: Ultrasound in random media - French National Centre for ...

average on 80

Configurations

L=30 mm

0 10 Time (µs)

127

1 0 10

Time (µs)

Am

plitu

de

127

1

0 10 Time (µs)

Am

plitu

de

Time (µs) 10 0

The coherent wave #

trans

duce

r

# tra

nsdu

cer

Page 23: Ultrasound in random media - French National Centre for ...

127

1 Time (µs) 10 0

0 10 Time (µs)

Am

plitu

de

2 2.5 3 3.5 4 4.5 5

MHz

FT

# tra

nsdu

cer

The coherent wave

Page 24: Ultrasound in random media - French National Centre for ...

0

1

2

3

4

0 5 10 15 20 25 30 35

2,7 MHz, l = 8,3mm

3,2 MHz, l = 4mm

Log  [A

c(L)]  

The coherent wave

A. Tourin, A. Derode, A. Peyre and M. Fink J. Acoust. Soc. Am. 108 (2), 503-512 (2000)

1ℓ ext

=1ℓ S

+1ℓ a

Thickness  (mm)  

Page 25: Ultrasound in random media - French National Centre for ...

Scattering from a single inclusion

θ

σ =PS

dPinc /dS= 2π sinθ f (k,θ)

2dθ

0

π

Optical theorem

σ =4πk0

Im f (k0 ,0)

Scattering cross section

Page 26: Ultrasound in random media - French National Centre for ...

0

0,4

0,8

1,2

1,6

2

0 1 2 3 4 5 Frequency (MHz)

σ (m

m)

θ

Scattering from a single inclusion

Page 27: Ultrasound in random media - French National Centre for ...

→ σ = σrigid + σelastic+ interference

0

MHz 2 4 6 8

0

0.5

1

1.5

Scattering from a single inclusion

σ (m

m)

Page 28: Ultrasound in random media - French National Centre for ...

The dwell time

A. Derode, A. Tourin, M. Fink, Phys. Rev. E 64, 036605 (2001)

2.5   3   3.5  0.5  

1  

1.5  

2  

2.5  

3  

3.5  

MHz  

µs  

Group  delay  

experiment  

Theory  

Page 29: Ultrasound in random media - French National Centre for ...

Jia,  Caroli  and  Velicky,  PRL  (1999)  

Another  example  :  acousQc  propagaQon  in  granular  media  

♦λ  >  10d,  coherent  wave  E   ♦λ  ~  d,  diffuse  wave  S  

2 µs

Glass  beads    d:  600-­‐800  µm  

0.03 – 3 Mpa

BW:    20  kHz-­‐1MHZ  

First loading Reloading

Time  (µs)   Time  (µs)  

Page 30: Ultrasound in random media - French National Centre for ...

The coherent wave in a dry granular medium

♦  Effec>ve  medium  theory  

VP =p

(K + 4/3G)/⇢ VS =p

G/⇢

Keff (P ) =kn12⇡

(�Z)2/3✓6⇡P

kn

◆1/3

Geff (P ) =kn + 3/2kt

20⇡(�Z)2/3

✓6⇡P

kn

◆1/3

Goddard (1990); De Gennes (2001); Makse, Johnson, Schwartz (2000); Velicky, Caroli (2002); J.N. Roux (2000)

0 20 40 60 80 100 120 140 160 180 200450

500

550

600

650

700

750

800

850

900

950

Frequency (kHz)

Vite

sse

de P

hase

(m/s

)L1=9cm, L2=18cm

35kPa88kPa177kPa265kPa354kPa442kPa530kPa618kPa707kPa

Hertz  contact  

♦  Phase  speed  

Z  :  coordina>on  number  

P1/6  

Vphase  

VP,S(P ) / Z1/3P 1/6

P =∝ δ 3/ 2

Page 31: Ultrasound in random media - French National Centre for ...

The diffuse wave

0 225 Time (µs)

0 225 Time (µs)

L=70 mm A

mpl

itude

127

1

# tra

nsdu

cer

Page 32: Ultrasound in random media - French National Centre for ...

The Bethe Salpeter equation

G(r,r0 ;ω −Ω/2)G*(r,r0 ;ω +Ω/2) = G(r,r0 ;ω −Ω/2) G*(r,r0 ;ω +Ω/2) +

Iincoh ∝ Ψ(r; t)2

G(r,r1;ω −Ω/2) G*(r,r2,ω +Ω/2) U(r1,r2,r3 ,r4 )∫ G(r3,r0 ;ω −Ω/2)G*(r4 ,r0;ω +Ω/2) dr1dr2dr2dr4

ω , Ω

∂t+ v.∇+ loss

⎣ ⎢

⎦ ⎥ IV(r, t) = source + scatteringThe  BS  equa>on  is  a  transport  equa>on  

Page 33: Ultrasound in random media - French National Centre for ...

Boltzmann approximation # Transfer radiative equation for the specific intensity

∂Iincoh∂t

+Iincohτa

= DΔIincoh

Diffusion approximation # Diffusion equation

D =13VEℓ

*

The diffuse intensity

1Vp

∂Iu(r, t)∂t

+u∇Iu = −1lsIu(r, t)+ n dΩu'

dσdΩ

(u'∫ →u)Iu(r, t)+ source − loss

ℓ* =ℓ S

1−cosθ

Page 34: Ultrasound in random media - French National Centre for ...

Transmission of the diffuse wave

I(t) =e− t /τa

4πDte−m 2π 2Dt

(L+2z0 )2

m=1

∑ sinπmz0L + 2z0

⎝ ⎜

⎠ ⎟ sin

πm(z + z0)L + 2z0

⎝ ⎜

⎠ ⎟

T(L) =∝ℓ*

L

Dynamic  measurement  

StaQonary  measurement  

G =e2

hT

Ohm’s  law  

Landauer  formula  

L

z0 =π

4ℓ*

Page 35: Ultrasound in random media - French National Centre for ...

Time-of-flight distribution

Transmission of the diffuse wave

Time(µs)

0 100 200 300 400 500 600

ls = 4.2mm

A.  Tourin,  A.  Derode  and  M.  Fink,  «  MulQple  scaSering  of  sound  »  Waves  in  Random  Media  10,  R31-­‐R60  (2000)    

τD ∝L2

π 2D

@ 3.2 MHz

Page 36: Ultrasound in random media - French National Centre for ...

The backscattering cone

100 mm

128 éléments

EMISSION RECEPTION

M.P. van Albada and A. Lagendijk, Phys. Rev. Lett. 55, 2692 (1985) E. Wolf and G. Maret, Phys. Rev. Lett. 55, 2696 (1985)

A. Tourin, B. A. Van Tiggelen, A. Derode, P. Roux, M. Fink, Phys. Rev. Lett 79, 3637 (1997)

θ

Beyond the diffusion approximation

Page 37: Ultrasound in random media - French National Centre for ...

Inte

nsity

θ (degree) -10 -5 0 5 10

Speckle

One realisation

θ (degree) -10 -5 0 5 10

0

1

2

Averaging over 80 realisations In

tens

ity

The backscattering cone

Page 38: Ultrasound in random media - French National Centre for ...

i

j i

j

Speckle Coherent contribution

j

i

Incoherent contribution

The backscattering cone

Ladder  diagrams   Most-­‐crossed  diagrams  

Page 39: Ultrasound in random media - French National Centre for ...

φ °

t1=3 µs

0

1

2

t2=11 µs

0

1

2

t3=27 µs

0

1

2

-10 -5 0 5 10

The backscattering cone

Page 40: Ultrasound in random media - French National Centre for ...

D=3,2 mm²/µs

-2,5

-2

-1,5

-1

-0,5

0 0 1 2 3 4

ln(t) Ln

(kΔθ)

Dynamic CBE

Nor

mal

ised

inte

nsity

θ (degree)

0

1

2

-15 -10 -5 0 5 10 15

Stationary CBE

The backscattering cone

Page 41: Ultrasound in random media - French National Centre for ...

L

Weak localisation

D(L) L→∞⎯ → ⎯ ⎯ 0

Page 42: Ultrasound in random media - French National Centre for ...

Vanishing  of  the  diffusion  constant  

SC  theory  

Localized    wave  funcQons  

=    dense  pure  point  

spectrum  

Vanishing  of  the  conductance  (          )    

Anderson localization

T =ALW (ω)D(ω)

ℓ*

Scaling  theory  of  localizaQon  

? ?

Page 43: Ultrasound in random media - French National Centre for ...

The first experimental proof in 3D with ultrasound

See  John  Page’s  lecture    

A  signature  of  localiza>on  is  usually  sought  in  the  exponen>al  decrease  of  the  average  transmiTed  intensity.  But  absorp>on  has  always  been  a  major  obstacle  to  reaching  unambiguous  conclusions.  

An  alterna>ve  way  is  to  probe  the  dynamic  spreading  of  the  intensity  in  the  transverse  direc>on  

H.  Hu,  A.  Strybulevych,  J.H.  Page,  S.E.  Skipetrov  and  B.A.  van  Tiggelen  Nature  Phys.  4,  945  (2008)

Page 44: Ultrasound in random media - French National Centre for ...

Transverse localization

H. De Raedt, Ad Lagendijk, Pedro de Vries

« Transverse localization of light »

Phys. Rev. Lett. 62, 47 (1989)

x

y z

ω0

Lee,P. A. et al., Rev. Mod. Phys. 57, 287-337 (1985)

Page 45: Ultrasound in random media - French National Centre for ...

T. Schwartz, G. Bartal, S. Fishman, M. Segev, Nature 446, 52-55 (2007)

Intensity  distribuQon  at  the  laWce  output  (L=10  mm  propaga>on)  

hexagonal  lapce   15%  posi>onal  disorder  (average  over  100  

realiza>ons)  

Transverse localization of light

Page 46: Ultrasound in random media - French National Centre for ...

Transverse  localizaQon  of  sound  

A.  Bretagne,  M.  Fink  and  A.  Tourin  Phys.  Rev.  B  88,  100302  (2013)  

Low  disorder   Strong  disorder  

Strong  disorder  

Low  disorder  

Water  

Page 47: Ultrasound in random media - French National Centre for ...

 $  Next  lecture  :  

•  how  disorder  can  be  turned  into  an  ally  to  manipulate  waves  ?    

•  how  to  image  through  a  mul>ple  scaTering  media  ?