ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s...

13
In the format provided by the authors and unedited. Meckel's cartilage breakdown offers clues to mammalian middle ear evolution Neal Anthwal, Daniel J. Urban, Zhe XiLuo, Karen E. Sears, Abigail S. Tucker © 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. SUPPLEMENTARY INFORMATION VOLUME: 1 | ARTICLE NUMBER: 0093 NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 1

Transcript of ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s...

Page 1: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

In the format provided by the authors and unedited.

 

Meckel's  cartilage  breakdown  offers  clues  to  mammalian  middle  ear  evolution  

Supplementary  information    Neal  Anthwal,  Daniel  J.  Urban,  Zhe  Xi-­‐Luo,  Karen  E.  Sears,  Abigail  S.  Tucker    

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

SUPPLEMENTARY INFORMATIONVOLUME: 1 | ARTICLE NUMBER: 0093

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 1

Page 2: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  2  

 

 

Supplementary  Figure  S1  –  The  presence  of  Meckel’s  cartilage  in  postnatal  stages  of  

reptiles.  A  -­‐  Skeletal  prep  of  juvenile  chameleon.  B  -­‐  Histological  horizontal  section  of  mandible  

of  adult  gecko  P.pictus.B’  Haematoxylin  and  eosin  staining  of  boxed  section  in  B  to  show  

multinucleated  clast  cell  are  present  in  the  articular  bone,  but  absent  in  the  Meckel’s  cartilage.  C  -­‐  

Histological  frontal  section  of  mandible  of  adult  green  anole.  A  –  Articular;  D  –  Dentary;  MC  –  

Meckel’s  Cartilage;  SA  –  Surangular;  Q  –  Quadrate.  

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 2

SUPPLEMENTARY INFORMATION

Page 3: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  3  

 

Supplementary  Figure  S2-­‐  Clast  cell  inhibition  in  the  new  born  wildtype  mice  by  

intraperitonael  injection  of  Alendronate.  A:  At  postnatal  day  3  (P0)  control  treated  pups  

display  a  separation  of  the  Meckel’s  cartilage  and  malleus  by  wholemount  alcian  blue/alizarin  

red  staining.  Histological  staining  shows  that  TRAP+  clast  cells  are  present  around  the  Meckel’s  

cartilage,  as  well  as  in  the  alveolar  bone.  B:  Clast  cell  inhibition  by  injection  with  alendronate  at  

P0  results  in  a  prevention  of  Meckel’s  cartilage  breakdown  by  P3.  Histological  staining  shows  

that  TRAP+  clast  cells  are  absent  from  the  Meckel’s  region  at  P3  in  treated  pups,  although  a  few  

scantly  distributed  clast  cells  were  observed  in  the  alveolar  bone.  G  –  Gonial;  I  –  Incus;  M  –  

Malleus;  MC  –  Meckel’s  Cartilage;  St  –  Stapes;  Tymp  –  Ectotympanic  Ring.  

 

   

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 3

SUPPLEMENTARY INFORMATION

Page 4: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  4  

 

Supplementary  Figure  S3  –  Structural  relationship  of  Meckel’s  cartilage  to  the  gonial  

groove  of  malleus  and  the  Meckelian  groove  of  the  dentary  in  P17  opossum.    A-­‐G:  3D  

reconstruction  of  µCT  showing  the  gonial  trough  of  the  malleus,  and  Meckelian  groove  in  dentary  

accommodating  Meckel’s  cartilage  during  pouch  young  P17  stage.  H:  frontal  section  through  

gonial  region  of  middle  ear  of  P16  opossum  showing  the  gonial  trough  supporting  Meckel’s  

cartilage.  D  -­‐  Dentary;  G  –  Gonial;  M  –  Malleus;  MC  –  Meckel’s  Cartilage  T  –  Tympanic  ring.  

 

 

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 4

SUPPLEMENTARY INFORMATION

Page 5: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  5  

 

Supplementary  Figure  S4  -­‐  Separate  location  of  Meckel’s  cartilage  from  mandibular  

branch  of  the  trigemal  nerve  in  living  placentals  and  marsupials.    The  mandibular  canal  that  

carries  the  mandibular  branch  of  the  trigeminal  nerve  (V3),  is  separated  from  the  groove/canal  

that  carries  the  Meckel’s  cartilage.    This  corresponds  to  the  pattern  of  the  Meckelian  groove  and  

the  mandibular  foramen  in  extinct  mammaliaforms.    A-­‐C,  Picro-­‐sirius  red  /  alcian  blue  trichrome  

histological  staining  of  a  frontal  section  through  the  opossum  (A),  fruit  bat  (B)  and  mouse  (C)  

dentary.  D  –  Dentary;  MC  –  Meckel’s  Cartilage;  V3  –  Mandibular  (3rd)  branch  of  the  trigeminal  

nerve  (cranial  verve  V).  Scale  bar  =  100µm.  

 

   

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 5

SUPPLEMENTARY INFORMATION

Page 6: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  6  

 

Supplementary  Figure  S5-­‐  Variation  in  MC  breakdown  observed  in  Alendronate  treated  

opossum  pups.  Dorsal  view  of  µCT  reconstruction  of  middle  ear  region  of  control  treated  (A)  

and  alendronate  treated  (B)  opossums.  Distance  between  the  distal  edge  of  the  malleus  and  the  

proximal  edge  of  Meckel’s  cartilage  was  measured  and  presented  here  as  “Gap=x”.  

   

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 6

SUPPLEMENTARY INFORMATION

Page 7: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  7  

Supplementary  Figure  S6  –  Comparison  in  Meckel’s  cartilage  related  structures  of  the  

mandible  among  Mesozoic  mammals,  opossum,  and  the  c-­‐Fos  mutant  mice  with  prolonged  

retention  of  ossified  Meckel’s  cartilage  and  Meckelian  groove.    A  and  B,  Monodelphis  

domestica  (P17),  composite  image  of  both  the  jaw  and  the  middle  ear  structure,  with  Meckel’s  

cartilage  reconstructed  from  the  serial  histological  sections  (not  possible  to  image  by  CT  but  can  

be  seen  in  clear-­‐stain  and  in  serial  histological  sections)  and  the  ossified  incus,  malleus  and  

ectotympanic  and  dentary  (rendered  from  CT).    The  Meckel’s  cartilage  is  nestled  in  the  Meckelian  

groove  (A)  and  Meckelian  cartilage  is  removed  to  show  its  corresponding  Meckelian  groove  on  

the  mandible  (B).    C.  c-­‐Fos  mutant  mouse  (P21)  showing  the  Meckelian  groove  is  retained  well  

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 7

SUPPLEMENTARY INFORMATION

Page 8: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  8  

beyond  its  normal  resorption  immediately  after  P2  in  wildtypes  due  to  c-­‐Fos-­‐dependent  clast  

activities.    D.  Maotherium  (stereophotos  from  Ref  8)  with  in  situ  preservation  of  the  ossified  

Meckel’s  cartilage;  it  also  shows  a  gracile  Meckel’s  cartilage  corresponding  to  a  shallow  and  

gracile  Meckelian  groove  on  the  dentary,  an  example  of  a  thinner  cartilage  and  groove,  among  a  

wide  range  of  variation  of  the  both  structures.    E.  Eutriconodont  Juchilestes:  the  mandible  without  

the  ossified  Meckel’s  cartilage  37  and  Meckel’s  cartilage  (image  rendered  from  dataset  published  

by  Ref.  37)  reconstructed  into  the  Meckelian  groove.    This  shows  an  example  of  very  deep  

Meckelian  groove  and  relatively  stout  Meckel’s  cartilage.    F.  Repenomamus:  example  of  an  wide  

and  shallow  Meckelian  groove.    The  Meckelian  groove  and  mandibular  foramen  (posterior  

opening  of  mandibular  canal)  show  similar  topographic  relationship  in  Mesozoic  mammals  as  

their  counterparts  in  opossum  and  the  c-­‐Fos  mutant  mouse.  

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 8

SUPPLEMENTARY INFORMATION

Page 9: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  9  

Supplementary  Information  

Comparative  Morphology  of  the  Meckelian  Groove  

Our  new  observations  on  the  cellular  and  tissue-­‐level  mechanisms  for  MC  ossification  and  

breakdown  by  clast  cell  activity  in  therians,  alongside  other  genes  and  signaling  pathways  

revealed  in  the  last  decade  (reviewed  in  Refs11,32,38)  have  built  a  compelling  case  that  the  

developmental  potential  of  MC  ossification  is  deeply  conserved  in  extant  mammals.    This  new  

insight  from  molecular  genetics  of  development,  and  the  new  fossils  discovered  since  200139  

are  corroborating  each  other,  as  an  ossified  Meckel’s  cartilage  has  now  been  found  in  the  two  

major  clades  nested  within  the  crown  Mammalia.    Nonetheless,  the  fossilized  Meckel’s  

cartilages  of  these  Mesozoic  mammals  are  different  in  shape  from  those  in  embryos  and  

neonates  of  extant  mammals.  Their  unique  morphologies  7,8,15,40,41    and  their  very  wide  range  

of  size  variation  has  brought  into  question  the  identify  of  these  features  given  the  more  

limited  range  of  morphology  of  the  transient  Meckel’s  cartilage  in  extant  mammals.    Here  we  

offer  our  comparative  analyses  of  the  historical  alternative  hypotheses.  

 

Recently  Maier  and  Ruf  suggested  an  alternative  interpretation  of  the  ossified  “Meckel’s  

cartilage”  could  be  an  elongated  and  massive  gonial,  based  partly  upon  the  perceived  size  

discrepancy  of  the  larger  size  of  ossified  Meckel’s  in  some  Mesozoic  mammals,  for  example  

Repenomamus,  and  the  relatively  smaller  Meckel’s  cartilage  of  extant  amniotes5.      

There  is  a  wide  range  of  variation  in  the  thickness  of  the  Meckel’s  element  among  Mesozoic  

mammaliaforms.    The  thickness  of  Meckel’s  cartilage  is  only  about  0.3  mm  thick  (along  the  

widest  dimension)  for  Yanoconodon  and  Jeholodens41,  or  about  0.3  to  0.35  mm  in  

Zhangeotherium  and  Maotherium8.    The  more  robust  Meckel’s  cartilage  can  be  3  to  4  mm  thick  

(in  the  widest  dimensions)  for  Repenomamus  (the  largest  Mesozoic  mammal  known)7,39  and  1  

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 9

SUPPLEMENTARY INFORMATION

Page 10: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  10  

to  1.5  mm  for  Gobiconodon40.    This  element  is  also  very  thick  in  Spinolestes  26.    The  three  

mammals  with  thicker  Meckel’s  all  belong  to  the  Gobiconodontidae.    Their  larger  Meckel’s  

cartilage  is  autapomorphic  and  unique  to  the  gobiconodontid  clade26,  and  is  more  of  an  

exception  than  a  rule  for  the  more  inclusive  clade  of  eutriconodonts,  even  more  so  for  the  

whole  Mammalia.    In  the  more  basally  placed  eutriconodonts  Yanoconodon  and  Jeholodens,  the  

Meckel’s  cartilage  is  gracile,  and  thin  enough  to  be  within  the  size  range  of  the  transient  

Meckel’s  cartilage  reported  for  embryos  of  extant  mammals  5.    Thus  the  perceived  size  

difference  between  the  transient  cartilage  of  extant  mammals  and  Mesozoic  mammaliaforms  

is  not  conclusive.  

 

Our  histology  data  and  µCT  scans  (Fig.  3  and  Supplementary  Fig  S3)  show  that  Meckel’s  

cartilage  itself  becomes  ossified  in  the  c-­‐fos  null  mouse  and  that  in  all  cases  Meckel’s  is  nestled  

within,  but  is  distinct  from  the  gonial.    Importantly  the  gonial  in  both  the  mouse  and  opossum  

does  not  extend  into  the  dentary  and  therefore  does  not  make  the  groove  in  the  c-­‐fos  mutants  

or  in  P16  opossums.  In  the  opossum  the  gonial  appears  to  support  MC  posterior  to  the  dentary  

prior  to  function  of  the  forming  TMJ.  Separation  of  an  ossified  Meckel’s  cartilage  and  the  gonial  

part  of  the  malleus  is  also  preserved  in  Liaoconocon15.    This  rules  out  the  possibility  that  the  

entire  ossified  structure  connecting  the  mandible  to  the  middle  ear  in  the  Mesozoic  mammals  

would  be  a  hypertrophied  gonial.      

 

An  implicit  assumption  in  considering  the  ossified  Meckel’s  cartilage  to  be  a  hypertrophied  

and  elongate  gonial  is  that  in  normal  development  of  extant  mammals,  the  gonial  ossifies  but  

the  Meckel’s  cartilage  cannot.    However,  there  are  exceptions  in  extant  mammals  to  this  

pattern.    For  example  there  is  evidence  that  in  domestic  dog  Canis  familiaris,  the  Meckel’s  

cartilage  section  in  the  canine-­‐premolar  region  is  enclosed  by  and  co-­‐ossified  with  the  

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 10

SUPPLEMENTARY INFORMATION

Page 11: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  11  

dentary42,  as  is  lateral  incisor  region  of  Meckel’s  cartilage  in  humans43.  Further  more  

developmental  studies  have  shown  that  Meckel’s  cartilage  can  ossify  in  mouse  knock-­‐outs32,  

therefore,  in  agreement  with  our  data,  MC  has  the  potential  to  form  bone.  

 

In  the  historical  literature,  the  long  and  gracile  distal  extension  of  the  mandibular  middle  ear  

of  Morganucodon  was  interpreted  to  be  the  prearticular44,45  and  it  has  been  widely  accepted  

that  a  part  of  the  proximal  extremity  of  the  prearticular  is  homologous  to  the  gonial  element  of  

the  malleus  of  extant  mammals46.    In  the  wake  of  better  preserved  middle  ear  structure  in  

many  newer  fossils  of  spalacotherioids  (Zhangheotherium  and  Maotherium)  and  

eutriconodonts  (Jeholodens,  Yanoconodon,  Repenomamus,  and  Gobiconodon),  Kermack’s  

prearticular  has  been  re-­‐interpreted  to  be  the  ossified  Meckel’s  cartilage3,6,15,26,41.    The  “gonial  

interpretation”  of  the  ossified  Meckel’s  cartilage  in  eutriconodonts5  would  have  been  

consistent  with  Kermack’s  interpretation  of  a  long  prearticular  in  Morganucodon44,45  but  the  

latter  has  not  been  supported  by  more  recent  studies  (e.g.,  refs.  6,15).  

 

Since  the  1970’s,  there  has  been  no  debate  as  to  the  identity  of  the  Meckelian  groove  as  

abundant  fossils  have  revealed  the  so-­‐called  internal  mandibular  groove  actually  

accommodates  the  postdentary  bony  element  connected  to  the  middle  ear45,47.    But  in  the  

historical  literature,  Simpson  (1928)48  suggested  an  interpretation  that  the  mylohyoid  nerve  

and  artery  bundle  might  be  the  main  occupant  of  what  is  now  universally  accepted  to  be  the  

Meckelian  groove.    Some  contemporary  studies  have  used  the  Simpson’s  non-­‐committal  

morphological  term  “internal  mandibular  groove”,  but  interpreted  the  primary  occupant  of  

the  groove  to  be  the  Meckel’s  element.  Simpson’s  48  proposal  was  based  primarily  on  Homo  

sapiens  where  a  well-­‐defined  groove  for  the  mylohyoid  nerve  and  artery  extends  from  the  

mandibular  foramen  on  the  dentary.  A  similar  groove  is  also  present  in  the  dasypodid  

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 11

SUPPLEMENTARY INFORMATION

Page 12: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  12  

xenarthran  Priodontes48.    To  the  contrary,  our  anatomical  survey  shows  that  the  mylohyoid  

groove  seen  in  human  is  absent  in  all  prosimians  and  some  anthropoids;  it  is  independently  

derived  within  anthropoid  primates.  The  mylohyoid  groove  in  the  dasypodid  xenarthran  

Priodontes48  is  also  independently  derived  within  xenathrans,  the  majority  of  which  lack  this  

feature.  Our  histological  observation  (Supplementary  Fig  S4)  shows  that  Meckel’s  cartilage  is  

the  sole  occupant  of  the  Meckelian  groove,  and  that  the  nerve  and  artery  occupy  a  separate  

compartment  in  the  dentary  in  mouse,  fruit  bat,  and  opossum.  

 

Additional  References  

36.   Ealba,  E.  L.  et  al.  Neural  crest-­‐mediated  bone  resorption  is  a  determinant  of  species-­‐

specific  jaw  length.  Developmental  Biology  408,  151–63  (2015).  

37.   Gao,  C.-­‐L.  et  al.  A  new  mammal  skull  from  the  Lower  Cretaceous  of  China  with  

implications  for  the  evolution  of  obtuse-­‐angled  molars  and  ‘amphilestid’  eutriconodonts.  

Proceedings  of  the  Royal  Society  B:  Biological  Sciences  277,  237–246  (2010).  

38.   Oka,  K.  et  al.  The  role  of  TGF-­‐beta  signaling  in  regulating  chondrogenesis  and  

osteogenesis  during  mandibular  development.  Developmental  Biology  303,  391–404  (2007).  

39.   Li,  J.,  Wang,  Y.,  Wang,  Y.  &  Li,  C.  A  new  family  of  primitive  mammal  from  the  Mesozoic  of  

western  Liaoning,  China.  Chinese  Science  Bulletin  46,  782–785  (2001).  

40.   Li,  C.,  Wang,  Y.,  Hu,  Y.  &  Meng,  J.  A  new  species  of  Gobiconodon  (Triconodonta,  

Mammalia)  and  its  implication  for  the  age  of  Jehol  Biota.  Chinese  Science  Bulletin  48,  1129–

1134  (2003).  

41.   Luo,  Z.-­‐X.,  Chen,  P.,  Li,  G.  &  Chen,  M.  A  new  eutriconodont  mammal  and  evolutionary  

development  in  early  mammals.  Nature  446,  288–293  (2007).  

42.   Evans,  H.  E.  &  de  Lahunta,  A.  Miller’s  Anatomy  of  the  Dog.  (Elsevier,  2013).  

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 12

SUPPLEMENTARY INFORMATION

Page 13: ULEENTARY INORATION - Nature Research...2 Supplementary Figure S1 – The presence of Meckel’s cartilage in postnatal stages of reptiles. A - ‐ Skeletal prep of juvenile chameleon.

  13  

43. Shibata,  S.,  Sakamoto,  Y.,  Yokohama-­‐Tamaki,  T.,  Murakami,  G.  &  Cho,  B.  H.  Distribution  

of  matrix  proteins  in  perichondrium  and  periosteum  during  the  incorporation  of  Meckel’s  

cartilage  into  ossifying  mandible  in  midterm  human  fetuses:  an  immunohistochemical  study.  

The  Anatomical  Record  297,  1208–1217  (2014).

44.   Kermack,  K.  A.,  Mussett,  F.  &  Rigney,  H.  W.  The  skull  of  Morganucodon.  Zoological  

Journal  of  the  Linnean  Society  71,  1–158  (1981).  

45.   Kermack,  K.  A.,  Mussett,  F.  &  Rigney,  H.  W.  The  lower  jaw  of  Morganucodon.  Zoological  

Journal  of  the  Linnean  Society  53,  87–175  (1973).  

46.   Zeller,  U.  in  Mammal  Phylogeny;  Mesozoic  Differentiation,  Multituberculates,  

Monotremes,  Early  Therians,  and  Marsupials  (eds.  Szalay,  F.  S.,  Novacek,  M.  J.  &  McKenna,  M.  C.)  

95–107  (Springer  New  York,  1993).    

47.   Allin,  E.  F.  Evolution  of  the  mammalian  middle  ear.  Journal  of  Morphology  147,  403–

437  (1975).  

48.   Simpson,  G.  G.  Mesozoic  Mammalia,  XII;  the  internal  mandibular  groove  of  Jurassic  

mammals.  American  Journal  of  Science  15,  461–470  (1928).  

 

   

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE ECOLOGY & EVOLUTION | DOI: 10.1038/s41559-017-0093 | www.nature.com/natecolevol 13

SUPPLEMENTARY INFORMATION