UCI Aerosol Photochemistry Group::Sergey Nizkorodov...

12
S1 Supporting Information Efficient formation of light-absorbing polymeric nanoparticles from the reaction of soluble Fe(III) with C4 and C6 dicarboxylic acids Ashley Tran, Geoffrey Williams, Shagufta Younus, Nujhat N. Ali, Sandra L. Blair, Sergey A. Nizkorodov, and Hind A. Al-Abadleh * Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada Department of Chemistry, University of California, Irvine, California 92697, United States Journal: Environmental Science and Technology Prepared: July 19, 2017 Supplementary Data (12 pages) Additional Experimental Details................................................................................................... S2 Figure S1 ....................................................................................................................................... S3 Figure S2 ....................................................................................................................................... S4 Figure S3 ....................................................................................................................................... S5 Figure S4 ....................................................................................................................................... S6 Figure S5 ....................................................................................................................................... S7 Figure S6 ....................................................................................................................................... S8 Table S1 ........................................................................................................................................ S8 Figure S7 ....................................................................................................................................... S9 Figure S8 ..................................................................................................................................... S10 Figure S9 ..................................................................................................................................... S11 References ................................................................................................................................... S12

Transcript of UCI Aerosol Photochemistry Group::Sergey Nizkorodov...

Page 1: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S1

Supporting Information

Efficient formation of light-absorbing polymeric nanoparticles from the

reaction of soluble Fe(III) with C4 and C6 dicarboxylic acids

Ashley Tran,† Geoffrey Williams,† Shagufta Younus,† Nujhat N. Ali,‡ Sandra L.

Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†*

†Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada ‡Department of Chemistry, University of California, Irvine, California 92697, United States

Journal: Environmental Science and Technology

Prepared: July 19, 2017

Supplementary Data (12 pages) Additional Experimental Details ................................................................................................... S2 Figure S1 ....................................................................................................................................... S3 Figure S2 ....................................................................................................................................... S4 Figure S3 ....................................................................................................................................... S5 Figure S4 ....................................................................................................................................... S6 Figure S5 ....................................................................................................................................... S7 Figure S6 ....................................................................................................................................... S8 Table S1 ........................................................................................................................................ S8 Figure S7 ....................................................................................................................................... S9 Figure S8 ..................................................................................................................................... S10 Figure S9 ..................................................................................................................................... S11 References ................................................................................................................................... S12

Page 2: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S2

Additional Experimental Details For ATR-FTIR measurements, the particles were deposited onto a ZnSe crystal from a

water/ethanol slurry followed by drying overnight. Absorption spectra of these particles were

obtained by referencing to the clean and dry ZnSe crystal.

The TGA analysis was completed on a TGA Q50 V20.8 Build 34 instrument while

flowing nitrogen gas at 40 and 60 mL/min for balance and samples, respectively. The sample

was thermally equilibrated at 40ºC, followed by a temperature ramp at a rate of 10ºC min-1 up to

800ºC.

The TEM, SEM-EDS and EELS measurements were done at the Canadian Centre for

Electron Microscopy, McMaster University. The samples were ground using a mortar and

pestle. The powder was mixed with a solution of 50%/50% ethanol/DI water and sonicated for

10 min. TEM analysis was performed in a JEOL 2010F TEM/STEM operated at 200 kV. The

electron microscope was equipped with a Gatan imaging filtering (GIF) system for the

acquisition of the electron energy loss spectra (EELS).

The oxidation state composition of iron was analyzed by XPS in a Thermo-VG Scientific

ESCALab 250 microprobe with a monochromatic Al Ka X-ray source (1486.6 eV), operated

with a typical energy resolution of 0.4 - 0.5 eV full width at half-maximum. To correct for extra

charging, the binding energy curve in the Fe 2p region for each compound was calibrated against

the C 1s peak in the survey spectrum, which has a value of 284.8 eV per reference1.

Page 3: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S3

Figure S1. Difference spectra obtained by subtracting the absorbance of FeCl3 reactant standard solution (after accounting for dilution) from that collected for the unfiltered reaction solution after 120 min of reaction, as shown in Figure 2 in the main manuscript. The subtraction factor, s, was 1.1 for (a) and 1.2 for (b) according to this formula: D Absorbance = Absorbance of mixture – s × Absorbance of control FeCl3 solution shown in Figure 2.

0.20

0.15

0.10

0.05

0

Δ A

bsor

banc

e

600500400300200Wavelength (nm)

370

(a) Fe-polyfumarate slurry

0.20

0.15

0.10

0.05

0

Δ A

bsor

banc

e

600500400300200Wavelength (nm)

370

(b) Fe-polymuconate slurry

Page 4: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S4

(a)

(b)

(c)

(d)

Figure S2: Reported structures for polymers formed from (a) the reaction of aqueous phase FA with FeCl3 as patented by Apblett,2 (b) the reaction of aqueous phase FA with FeCl3 at 85°C forming MOF MIL-88A,3 (c) the reaction of cis,cis-muconic acid with excess dialcohol in the presence of Ti(IV) butoxide,4 (this structure shows an example of metal-catalyzed polymerization of muconic acid),4 and (d) Fe(II) fumarate reported in references.5,6

OO Fe O

OOO Fe O

O

x

O

O O

O

Fe-O clusters

OOH

O

OO

OO

OO

H

mn

OO Fe

OH2

OH

OO

OO Fe

OH2

OH

OO

x

Page 5: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S5

Figure S3. Digital images of unfiltered solutions following 1 h and 24 h reaction times between maleic and succinic acids with FeCl3 at pH 2.4, followed by filtration.

HOOH

O

O

Succinic acid (SA) C4H6O4

Maleic acid (MaA) cis-C4H4O4

pKa = 4.2, 5.6 pKa = 1.9, 6.2

Control Experiments

MaA 2.1 mM pH 7 (no Fe)

MaA:Fe (1:2) pH 2.4 (1 min)

O OOHHO

pH 2.4 (60 min)

pH 2.4 (24 h)

SA 2.1 mM pH 6 (no Fe)

SA:Fe (1:2) pH 2.4 (1 min)

pH 2.4 (60 min)

pH 2.4 (24 h)

Page 6: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S6

(a) Fe-polyfumarate

(b) Fe-polymuconate

Figure S4. Proposed chemical structure of (a) Fe-polyfumarate and (b) polymuconate formed in our studies based on the results of dry particle characterization detailed in the main text.

O

OFe

H2O

OH2

OO

Ox

OOH

O

O O

O

K+

OH2

Fe

H2O

OH2

O

OOH

O

O

K+

OH2

O

OFe

OH2O OH2

OHO

O

O

x

Fe

H2O OH2

OH

O

O

Page 7: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S7

Figure S5. Representative STEM-EDS images and elemental mapping (C, O, Cl, and Fe) of (a) Fe-polyfumarate, and (b) Fe-polymuconate particles.

700 nm

C Kα1,2 O Kα1

Fe Kα1 Cl Kα1

(a) Fe-polyfumarate

(b) Fe-polymuconate

300 nm

C Kα1,2 O Kα1

Fe Kα1 Cl Kα1

Page 8: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S8

Figure S6. TGA curves showing % weight loss due to thermal decomposition of standard reactant compounds (FA, MA, and FeCl3×6H2O) and Fe(II) fumarate in relation to Fe-polyfumarate and Fe-polymuconate. Table S1: Analysis of the TGA data (n.a. = not available) Reaction for thermal decomposition

% mass residual, (c1)

% Fe calculated from c1, (c2)

Calculated molar weight (g mol-1) from c2

Molar weight based on chemical formula (g mol-1)

FeCl3·6H2O(s) ® 0.5 Fe2O3 (s) + 4.5H2O (g) + 3HCl (g) (see ref. 7)

29.7

20.7

270.5

270.5

Fe(II)C4H2O4 ® 0.5 Fe2O3 (s) + C2H2 (g) + 2 CO(g) + 0.25 O2 (g) (see ref. 8)

46.9

32.8

170.7

169.9

Fe-fumarate (FeCxOyHz)® 0.5x Fe2O3 + gases

38.2 26.7 209.7 n.a.

Fe-muconate (FeCxOyHz)® 0.5x Fe2O3 + gases

35.4 24.8 225.8 n.a.

120

100

80

60

40

20

0

Wei

ght (

%)

800700600500400300200100Temperature (ºC)

29.7%35.4%38.2%46.9%

Fumaric acid (s) "standard" Muconic acid (s) "standard" FeCl3·6H2O (s) "standard" Fe(II)C4H2O4 (s) "standard"

Fe-polyfumarate (s) Fe-polymuconate (s)

Page 9: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S9

Figure S7. XPS spectra of the Fe 2p region for Fe-polyfumarate and Fe-polymuconate particles in relation to the standard compound, Fe(II) fumarate. Each binding energy curve was calibrated against the C 1s peak which has a fixed value of 284.8 eV per Ref. 1 to correct for charging. Spectra are offset for clarity.

5000

4000

3000

2000

1000

0

Cou

nts

(a.u

.)

735730725720715710705700Binding Energy (eV)

Fe-polyfumarate

Fe-polymuconate

Fe(II) fumarate

710.6 724.2

710.5 724.2

710.0 723.0713.9

(Alfa Aesar)

Fe 2p

Page 10: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S10

Figure S8. Representative EELS spectra (Background subtracted) for the oxygen K-edge of (a) standard Fe(II) fumarate, Fe-polyfumarate and Fe-polymuconate particles, and (b) standard fumaric and muconic acids particles.

36x103

30

24

18

12

6

0

Cou

nts

(a.u

.)

615600585570555540525Energy Loss (eV)

Fe-polyfumarate

Fe-polymuconate

Fe(II) fumarate(Alfa Aesar)

559.2

537

526.6

545.2

537

540

530 564.6

(a)O K-edge 8 x103

6

4

2

0

Cou

nts

(a.u

.)

615600585570555540525Energy Loss (eV)

Fumaric acid

Muconic acid

537

540

530 (reactant)

(reactant)

(b)O K-edge

Page 11: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S11

Figure S9: Mass-normalized absorption coefficient (MAC) plot for the reaction of 0.1 mM of (a) fumaric acid (FA), and (b) muconic acid (MA) with FeCl3 after 1, 60 and 120 min dark reaction at pH 3 (unfiltered solution). The final reaction mixture contain 1:2 molar ratio organic reactant:Fe. MAC values were calculated from Eq. (1) and were not corrected for the contribution from scattering by particles in solution.

10

8

6

4

2

0

MA

C (m

2 g-1

)

600550500450400350300Wavelength (nm)

(a)

Fe-polyfumarate 1 min 60 min 120 min

10

8

6

4

2

0

MA

C (m

2 g-1

)

600550500450400350300Wavelength (nm)

(b)

Fe-polymuconate 1 min 60 min 120 min

Page 12: UCI Aerosol Photochemistry Group::Sergey Nizkorodov ...aerosol.chem.uci.edu/publications/Irvine/2017_Tran_EST...Blair,‡ Sergey A. Nizkorodov,‡ and Hind A. Al-Abadleh†* †Department

S12

References: (1) Grosvenor, A.P.; Kobe, B.A.; Biesinger, M.C.; McIntyre, N.S., Investigation of multiplet

splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564-1574.

(2) Apblett, A.W., Iron coordination polymers for adsorption of arsenate and phosphate. The Board of Regents for Oklahoma State University, Patent, US 2013/0292338 A1, 2013; pp. 1-8

(3) Lin, K.-Y.A.; Chang, H.-A.; Hus, C.-J., Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine b in water. RSC Adv. 2015, 5, 32520-32530.

(4) Rorrer, N.A.; Dorgan, J.R.; Vardon, D.R.; Martinez, C.R.; Yang, Y.; Beckham, G.T., Renewable unsaturated polyesters from muconic acid. ACS Sustainable Chem. Eng. 2016, 4, 6867-6876.

(5) Kapor, A.J.; Nikolic, L.B.; Nikolic, V.D.; Stankovic, M.Z.; Cakic, M.D.; Ilic, D.P.; Mladenovic-Ranisavljevic, I.I.; Ristic, I.S., The synthesis and characterization of iron(II) fumarate and its inclusion complexes with cyclodextrins. Adv. Technol. 2012, 1, 7-15.

(6) Skuban, S.; Dzomic, T.; Kapor, A.; Cvejic, Z.; Rakic, S., Dielectric and structural properties of iron- and sodium-fumarates. J. Res. Phys. 2012, 36, 21-29.

(7) Kanungo, S.B.; Mishra, S.K., Thermal dehydration and decomposition of FeCl3.xH2O. J. Thermal Anal. 1996, 46, 1487-1500.

(8) Nikumbh, A.K.; Phadke, M.M.; Date, S.K.; Bakare, P.P., Missbauer spectroscopic and D.C. electrical conductivity study of the thermal decomposition of some iron(II) dicarboxylates. Thermochimica Acta 1994, 239, 253-268.