U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

28
Brief review U = Q + W U, Q, W(W e +W f ), C v ( ) C p , H=U+PV Initial state A Final state B State function Path function Reversible process Irreversible process ( ) d V V V Q U C T T

description

Example 1: U = Q + W H2O(l,0℃)→H2O(l,50℃) System: Water W, Q, △U ? For the first case, Q=0, ()V, QV=△U=0, is it right? Why?

Transcript of U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Page 1: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Brief reviewU = Q + W

U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Initial state A Final state B

State function

Path function

Reversible process

Irreversible process

( )dV

V VQ UC TT

Page 2: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Example 1:

H2O( l, 0℃)→H2O( l, 50℃)System: Water

W, Q, U △ ? U = Q + W

For the first case, Q=0, ()V, QV= U=0, is it right? Why?△

Page 3: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Example 2:

Some air in a bicycle pump is compressed so that its volume decreases and its internal energy increases. 

If 25 J of work are done by the person compressing the air, and if 20 J of thermal energy leave the gas through the walls of the pump, what is the increase in the internal energy of the air?

U = Q + W

If psur=constant the whole pump as a system, Qp=△H=0?What happens if we release the pump?  How about the process happen reversibly?

Page 4: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Discussion 1: About the variation of internal energy dU, △U

At constant volume

Page 5: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

For ideal gas:

Page 6: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV
Page 7: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV
Page 8: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Good approximation for real gases under most conditions

For liquids and solids

So , for all substances without phase transformation

Page 9: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

dH, H△

Page 10: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV
Page 11: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV
Page 12: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

For all substances

Page 13: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Discussion 2: About Cv, Cp

2,mpC a bT cT

2,m / '/pC a b T c T or

Dependence of heat capacity on temperature for real substances

State properties Extensive function

Cv,m, Cp,m Intensive function

Page 14: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Example

Page 15: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV
Page 16: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Differential scanning calorimetry DSCDifferential thermal analysis DTA

Qualitative and quantitative analysis depending on heat capacity

Page 17: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

2.6 Relating Cp and Cv( ) ( )p pV VH UC CT T

( )( ) ( ) p VU PV UT T

( ) ( ) ( )p p VU V UpT T T

( ) ( ) ( ) ( )p pV TU U U VT T V T

( ) ( ) ( )p p pV TU V VC C pV T T

[ ( ) ]( ) pTU Vp V T

Page 18: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

For ideal gases( ) 0, TUV

( ) /pV nR pT

p VC C nR

By statistical mechanic CV,m CP,m

Monoatomic 3/2R 5/2R diatomic (or linear molecule ) 5/2R 7/2R polyatomic molecule(or nonlinear molecule) 6/2R=3R 4R

Page 19: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

real gas

For any substance other than an ideal gas

For liquids and solids ≈ 0

Page 20: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

( ) ( ) ( ) ( )p pV TU U U VT T V T

( , ), ( , )U U T V V V T p

d ( ) d ( ) dV TU UU T VT V

d ( ) d ( ) dp TV VV T pT p

d ( ) d ( ) [( ) d ( ) d ]pV T TU U V VU T T pT V T p

d ( ) ( ) d [( ) ( ) ( ) ]dT T V T pU V U U VU p TV p T V T

=( ) d [( ) ( ) ( ) ]dT V T pU U U Vp Tp T V T

( ) ( ) ( ) ( )p V T pU U U VT T V T

Page 21: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

2.7 Gay-Lussac-Joule experiment Q=0 W=0 ΔU=0 Constant energy process

dU=0, dT=0, dV≠0

dVVUdT

TUdU TV )()(

0)(

TVU

Ideal gases

Page 22: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Properties of ideal gases0)(

TVU

ΔH=ΔU + ΔPV =ΔU + nR( T2-T1)dP

PUdT

TUdU TP )()(

0)(

TPU

U is the function of T only, U(T)

VV TUC )(

( )P PHCT

U, H, Cv, Cp of ideal gases are only the function of T

Page 23: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

2.8 Adiabatic processes of ideal gasesdU Q W = 0W Q ( )

If W>0, U>0, △ △ T>0, T↑

If W<0, U△ <0, △ T<0, T↓

Free expansion: W=0 △U=0, H=0△

If wf=0 dU+pdV=0 dU=CVdT, p=nRT/V

C vdT = - dVVnRT

Page 24: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

, ,2 1 1

1 , 2 2

( 1)P m V m

V m

C CT V Vln ln lnT C V V

V

P

mV

mP

CC

CC

,

,

1

2

TT

= 1

2

1 )(

VV

C v,m ln(1

2

TT )=Rln(

2

1

VV

)

T1 V1 γ-1= T2 V2γ-1

1pV K 12TV K 1

3p T K

Adiabatic Process Equation

Page 25: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Comparing with other processesnpV K n= 0 (pressure constant),

1 (isothermal),

γ (adiabatic) ….

Page 26: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

A-B Isotherm

1

2

2

12

1

lnlnPPnRT

VVnRTpdVW

2

1

dV

VW p V

2

1

= dV

V

K VV

( )pV K 1 1

2 1= 1 1( )

(1 )K

V V

1 1 2 2pV p V K

2 2 1 1= 1p V pVW

2 1( )1

nR T T

A-C Adiabatic

P

V

C(P2,V2”) B(P2,V2)

A(P1,V1)

Page 27: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Example(a) The pump is operated quickly so the

compression of the air in the cylinder before the valve opens can be considered adiabatic.

At the start of a pump stroke, the pump cylinder contains 4.25 × 10-4 m3 of air at a

pressure of 1.01 × 105 Pa and a temperature of 23 °C. The pressure of air in the dinghy is 1.70 × 105 Pa.  When the valve is about to open, the volume of air in the pump is ?.

 γ for air = 1.4

 (b) Calculate the temperature of the air in the

pump when the valve is about to open.

 V2 = 2.94 x 10-4 m3 

T2 = 344 K

Page 28: U, Q, W(We+Wf), Cv( ) Cp, H=U+PV

Homework A: P88 3.2, 3.3 3.6 3.7 Y: P21 16 P25 23

Preparation for next class:

The working principle of an refrigerator

A : P 55-69 2.7-2.9

Y:33-47 1.10-1.12