U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages...

20
59: 205 – 224 12 Sept 2013 © Senckenberg Gesellschaft für Naturforschung, 2013. 205 ISBN 978-3-910006-37-9 | ISSN 1617-8467 U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif U-Pb-Alter und Morphologie von Zirkonen aus verschiedenen Graniten innerhalb des Sächsischen Granulitmassivs Anja Sagawe 1 , Andreas Gärtner 2 , Mandy Hofmann 2 and Ulf Linnemann 2 1 Senckenberg Naturhistorische Sammlungen Dresden, Öffentlichkeitsarbeit, Königsbrücker Landstraße 159, 01109 Dresden, Germany; [email protected]2 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, 01109 Dresden, Germany Revision accepted 19 June 2013. Published online at www.senckenberg.de/geologica-saxonica on 10 September 2013. Abstract The Saxonian Granulite Massif comprises various granitoid intrusions with different stages of deformation but of similar ages. However, there is only little knowledge about the magmatic source of these rocks. Combining the external and internal morphology of zircons and taking into consideration their Th-U values allows the differentiation of the granitoids into at least two groups of distinct evolution. Kurzfassung Innerhalb des Sächsischen Granulitgebirges treten verschiedene Granitoidintrusionen auf, welche sich zwar im Grad der Deformation unterscheiden, jedoch alle ähnliche Alter aufweisen. Über die magmatische Quelle dieser Gesteine ist bisher wenig bekannt. Durch die Kombination von Methoden, welche sowohl Merkmale der externen als auch internen Zirkonmorphologie verwenden, sowie durch die Berücksichtigung der Th/U-Verhältnisse dieser Zirkone, ist eine Unterteilung in mindestens zwei Gruppen granitoider Gesteine mit unter- schiedlicher Genese möglich. 1. Introduction The Saxonian Granulite Massif (SGM) was subject of numerous studies during the last 25 years (e.g. Gottes- mann 1987, von Quadt 1993, Reinhardt & Kleemann 1994, Kroner 1995, Baumann et al. 1997, Romer & Rötz- ler 2001, Rötzler et al. 2004, Rötzler & Romer 2010). Throughout this time, rocks of the SGM, mostly granu- lites, were predominantly investigated with focus on P-T-t evolution and geochronology. Zircon is known to vary broadly in its crystal habitus in response to the growing conditions of their environ- mental setting (Pupin 1980, Vavra 1994). Hence, the pre- sent study deals with the morphology of granitic zircons to gain knowledge about their formation and to differen- tiate several granitoid intrusions of almost the same age in the SGM (Nasdala et al. 1998, Gehmlich 2003). Due to its characteristics like the resistance to weath- ering (Mange & Maurer 1991) and crustal processes as well as the nature of its crystal lattice (Finch & Hancher 2003, Hoskin & Schaltegger 2003), zircon is one of the best studied igneous minerals. Numerous empirical in-

Transcript of U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages...

Page 1: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

59: 205 – 224

12 Sept 2013

© Senckenberg Gesellschaft für Naturforschung, 2013.

205ISBN 978-3-910006-37-9 | ISSN 1617-8467

U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

U-Pb-Alter und Morphologie von Zirkonen aus verschiedenen Graniten innerhalb des Sächsischen Granulitmassivs

Anja Sagawe 1, Andreas Gärtner 2, Mandy Hofmann 2 and Ulf Linnemann 2

1 Senckenberg Naturhistorische Sammlungen Dresden, Öffentlichkeitsarbeit, Königsbrücker Landstraße 159, 01109 Dresden, Germany; [email protected] — 2 Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, Königsbrücker Landstraße 159, 01109 Dresden, Germany

Revision accepted 19 June 2013. Published online at www.senckenberg.de/geologica-saxonica on 10 September 2013.

AbstractThe Saxonian Granulite Massif comprises various granitoid intrusions with different stages of deformation but of similar ages. However, there is only little knowledge about the magmatic source of these rocks. Combining the external and internal morphology of zircons and taking into consideration their Th-U values allows the differentiation of the granitoids into at least two groups of distinct evolution.

KurzfassungInnerhalb des Sächsischen Granulitgebirges treten verschiedene Granitoidintrusionen auf, welche sich zwar im Grad der Deformation unterscheiden, jedoch alle ähnliche Alter aufweisen. Über die magmatische Quelle dieser Gesteine ist bisher wenig bekannt. Durch die Kombination von Methoden, welche sowohl Merkmale der externen als auch internen Zirkonmorphologie verwenden, sowie durch die Berücksichtigung der Th/U-Verhältnisse dieser Zirkone, ist eine Unterteilung in mindestens zwei Gruppen granitoider Gesteine mit unter-schiedlicher Genese möglich.

1. Introduction

The Saxonian Granulite Massif (SGM) was subject of numerous studies during the last 25 years (e.g. Gottes-mann 1987, von Quadt 1993, Reinhardt & Kleemann 1994, Kroner 1995, Baumann et al. 1997, Romer & Rötz-ler 2001, Rötzler et al. 2004, Rötzler & Romer 2010). Throughout this time, rocks of the SGM, mostly granu-lites, were predominantly investigated with focus on P-T-t evolution and geochronology. Zircon is known to vary broadly in its crystal habitus in response to the growing conditions of their environ-

mental setting (Pupin 1980, Vavra 1994). Hence, the pre-sent study deals with the morphology of granitic zircons to gain knowledge about their formation and to differen-tiate several granitoid intrusions of almost the same age in the SGM (Nasdala et al. 1998, Gehmlich 2003). Due to its characteristics like the resistance to weath-ering (Mange & Maurer 1991) and crustal processes as well as the nature of its crystal lattice (Finch & Hancher 2003, Hoskin & Schaltegger 2003), zircon is one of the best studied igneous minerals. Numerous empirical in-

Page 2: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

206

vestigations revealed a systematic variation of zircon morphology for the main types of granitoids (Pupin & Turco 1972, 1975, Pupin 1976, 1980, 1990). It has to be remarked that a classification sensu Pupin (1980) consid-ers only external zircon morphology. An extension of this method was established by Vavra (1994), who addition-ally used cathodoluminescence-imaging (CL) of internal zircon structures to identify former morphotypes.

2. Geological setting

The SGM is one part of the allochthonous domain of the Saxo-Thuringian Zone, situated at the north-western margin of the Bohemian Massif. The massif has an el-liptic dome-like structure with a core predominantly consisting of felsic, very fine-grained granulites with

inclusions of mafic granulites, garnet-pyroxenites and garnet-serpentinites. High-temperature shear zones sepa-rate the granulites in the core from deformed and partly transformed granulites at its margin and from a Palaeo-zoic schist cover of metasedimentary rocks in the roof as well (Fig. 1; Reinhardt & Kleemann 1994, Kroner 1995). Peak of metamorphism for the granulites is defined at 340 – 341 Ma, with U/Pb- and Pb/Pb-zircon ages ranging between 320 Ma and 485 Ma (von Quadt 1993, Vavra & Reinhardt 1997, Baumann et al. 1997, Vavra et al. 1998, Kröner et al. 1998, Romer & Rötzler 2001, Rötzler et al. 2004). Apart from the granulites and meta-sedimentary rocks, several granites occur within the SGM. In general, four main types of granites can be distinguished accord-ing to their degree of deformation: i) Mittweida granite body, ii) Berbersdorf granite body, iii) granite gneisses (the so-called Lagergranite) and iv) smaller granitic dykes (Gottesmann 1987). Whereas the Mittweida gran-ite is undeformed, the Berbersdorf granite is moderately to strongly deformed and the granite gneisses are very

Fig. 1. Simplified geological map of the SGM based on Pietzsch (1962) with indicated sample localities.

Abb. 1. Vereinfachte geologische Karte des SGM basierend auf Pietzsch (1962) mit eingetragenen Fundorten.

Page 3: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

207

GEOLOGICA SAXONICA — 59: 2013

strongly deformed. Granites of the smaller dykes can show every degree of deformation (Gottesmann 1987). Previous studies report apparent ages of 333 ± 5 Ma (Nas-dala et al. 1998) and 337 ± 5 Ma (Gehmlich 2003) for the Mitt weida granite.

3. Samples and methods

In this case study, we compare zircons from i) the large granitic intrusion of Mittweida [GrMit], from ii) a small dyke from Penig [Gr3] and from iii) a granite to gran-ite gneiss from a sill, collected near Hermsdorf in the Fürstenwald [Gr4] (Fig. 1; for coordinates of each sam-ple, see results below). The main objective was the dif-ferentiation of these three granitic samples using other characteristics than U-Pb dating due to their almost iden-tical intrusion ages (Early Carboniferous, Viséan). After crushing 1 – 2 kg of the unweathered sample material in a jaw crusher, material was sieved for the fraction from 45 – 400 µm. Heavy mineral separation was achieved from this fraction using LST (lithium heteropolytungstate in water) prior to magnetic separa-tion in the Frantz isomagnetic separator. Final selection of zircon grains was achieved by hand-picking under a binocular microscope (ZEISS Stemi 2000-C). Sub-sequently, zircons of all sizes and morphological types were selected and put on a tape. The grains were coated with carbon followed by the sputtering with an alloy of gold and palladium. Afterwards, back scattered electron-imaging (BSE) was performed via scanning electron microscope SEM (ZEISS Evo 50). Last steps included mounting and polishing prior to CL-imaging. For sta-tistical reasons, at least 200 grains per sample were in-vestigated with respect to their morphology sensu Pupin (1980) and Vavra 1994. Due to roundness or fracturing not every grain could be exactly classified. Zones showing monophase growth patterns were preferentially selected for placement of laser abla-tion spots for isotope analyses in order to avoid mixed U-Pb ages resulting from different late- to postmagmatic or metamorphic influences. Measurements for U, Th and Pb took place at the Senckenberg Naturhistorische Sammlungen Dresden, Museum für Mineralogie und Geologie, Sektion Geochronologie, and were carried out via LA-ICP-MS (Laser Ablation with Inductively Cou-pled Plasma Mass Spectrometry) techniques. A Thermo-Scientific Element 2 XR instrument coupled to a New Wave UP-193 Excimer Laser System was used (for data, see Tab. 1). For ablation, the mounts were put into a teardrop-shaped, low volume laser cell produced by Ben Jähne (Dresden, Germany), which enables sequential sampling of heterogeneous grains (e.g. growth zones) during time-resolved data acquisition. Single measure-ment of one spot contained approximately 15 s back-

ground acquisition followed by 30 s data acquisition. Depending on grain size and structure, spot sizes ranged between 15 µm and 35 µm. Further specifications on the settings of the instrument are available in Tab. 1. If nec-essary, correction of common-Pb was carried out, based on the interference- and background-corrected 204Pb signal and a model Pb composition (Stacey & Kramers 1975). Judgement of necessity for correction depended on whether the corrected 207Pb/206Pb value lay outside the internal errors of the measured ratios. Interpretation with respect to the obtained ages was done for all grains within a range of 90 – 110% of concordance (e.g. Mein-hold et al. 2011). Discordant analyses were generally in-terpreted with caution, even if they define a discordia. Finally, raw data were corrected for background signal, common-Pb, laser induced elemental fractionation, in-strumental mass discrimination, depth- and time-depen-dant elemental fractionation of Pb/Th and Pb/U by use of an Excel® spreadsheet program developed by Axel Gerdes (Frankfurt am Main, Germany). Measurement of

Table 1. Settings for the instruments used in the laboratory of the Senckenberg Naturhistorische Sammlungen Dres-den, Museum für Mineralogie und Geologie, Sektion Geochronologie – Excimer Laser, New Wave, UP 193 and ICP-MS, Thermo Fisher, Element 2 XR.

Tabelle 1. Einstellungen der Instrumente im Labor der Sencken-berg Naturhistorischen Samm lungen Dresden, Museum für Mineralogie und Geo logie, Sektion Geochronolo-gie – Excimer Laser, New Wave, UP 193 und ICP-MS, Thermo Fisher, Element 2 XR.

ICP-MS Finnigan Element 2 XR

Forward Power 1390 W

Gas flow rate 15.0 l min –1 (plasma)1.07 l min –1 (aux)

Scan mode E-scan

Scanned masses 202, 204, 206, 207, 208, 232, 235, 238,

Mass resolution 300

Dead time 18 ns

Oxide UO+/U+ < 1%

Dwell time 4 ms

Settling time ≤ 1 ms/amu

Number of scans 1500

Background 15 s

Ablation time 30 s

Integration time 1.4 s (= 25 scans)

Laser system UP193 New Wave193 nm, excimer

Nominal spot diameter 25 – 35 µm (unknowns)35 µm (standard)

Carrier gas 0.25 l min –1 He 1.1 l min –1 Ar

Laser settings 10 Hz, 55% LP

Drill speed (DS) / Raster scan speed (RSS)

~ 0.5 µm/s (DS)

Cell volume c. 3 cm3

Sensitivity 6 × 10 6 counts/pg U

Page 4: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

208

Th/U ratios was carried out parallel to U-Pb determina-tion with the same combination of instruments. Reported uncertainties were propagated by quadratic addition of the external reproducibility obtained from the standard zircon GJ-1 (~ 0.6% and 0.5 – 1.0% for the 207Pb/206Pb and 206Pb/238U, respectively) during individual analytical sessions and the within-run precision of each analysis. Visualisation of concordia diagrams (2 σ error ellipses) and concordia ages (95% confidence level) was achieved using Isoplot/Ex 2.49 (Ludwig 2001). Frequency as well as relative probability plots were generated via AgeDis-play (Sircombe 2004). For zircons with ages older than 1 Ga, 207Pb/206Pb ages were taken for interpretation, for younger grains, the 206Pb/238U ages were used for inter-pretation. For further details on analytical protocol and data processing, see Gerdes & Zeh (2006). Calculating the Th/U ratio helps to characterise the different granitoides. Due to stability of the Th-U system

it is possible to use the ratios of both, concordant as well as discordant grains, to reveal differences between the granitoid samples (Hoskin & Schaltegger 2003).

4. Results

4.1. GrMit, monzo- to syenogranite, large intrusive body: 50°59’14.63” N; 13°00’00.89” E

A total of 214 zircons of sample GrMit were studied. Of all grains, 180 can be classified according to the diagram

Fig. 2. Summarised results of all analyses conducted on zircons from samples GrMit, Gr3 and Gr4: a, Calculated concordia ages of each sample, which are interpreted to date the intrusion; b, Th/U ratios of all concordant and discordant zircons of each sample; c, Fre-quency distribution pattern of morphotypes of each sample according to Pupin (1980); d, BSE-images of typical zircon grains of each sample; e, CL-images of typical zircon grains of each sample.

Abb. 2. Zusammenfassung der Ergebnisse aller Analysen an Zirkonen der Proben GrMit, Gr3 und Gr4: a, Berechnete Konkordia-Alter für jede Probe, welche als Intrusionsalter interpretiert werden; b, Th/U Verhältnisse aller konkordanten und diskordanten Zirkone der jeweiligen Probe; c, Häufigkeitsverteilung der Morphotypen innerhalb einer jeden Probe nach Pupin (1980); d, BSE-Bilder von für die jeweilige Probe typischen Morphotypen; e, CL-Bilder von typischen Zirkonen einer jeden Probe.

Page 5: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

209

GEOLOGICA SAXONICA — 59: 2013

of Pupin (1980). The majority of zircons show S24 and S25 morphology, subpopulations form a path including S9, S14 and S19 morphotypes (Fig. 2c, d). Only few grains display typical features of magmatic zircon, such as well-developed and undisturbed growth zoning (Corfu et al. 2003). Most of the zircon grains exhibit either lo-cal recrystallisation or convolute zoning, pointing to late- to post-magmatic influences (Corfu et al. 2003), or they show features indicating metamorphic overprint like sec-tor and fir-tree zoning or total homogenisation. A number of 35 of the 148 zircon grains (152 spots) analysed for age determination display concordant ages ranging between 325 ± 8 Ma and 482 ± 11 Ma (Tab. 2). The vast majority of ages cluster around 335 Ma, with a calculated concordia age of 335 ± 2 Ma (Fig. 2a). Older grains are rare and dis-play ages between 347 Ma and 482 Ma. Obtained Th/U values of all measured zircons as well as concor dant grains are between 0.03 and 4.33, while roughly 90% of them have values smaller than 1 (Fig. 2b).

4.2. Gr3, microgranite, small dyke: 50°55’51.23” N; E12°41’24.69” E

Sample Gr3 contained 291 zircons of which 231 are definable according to Pupin (1980), mostly cluster-ing around S25 morphotype. A minor concentration is characterised by the S7 type (Fig. 2c, d). Additionally, a notable amount of grains displays a broad variation of morphotypes. The zircons of this sample largely show internal textures related to magmatic growth (Corfu et al. 2003), but more than half of them display some late- to post magmatic growth characteristics. The remaining zircon grains indicate metamorphic overprint of different stages (Fig. 2e). U-Pb measurements of 108 zircons (119 spots) yield 45 concordant ages between 320 ± 8 Ma and 488 ± 12 Ma (Tab. 3). Most of the concordant zircons are grouped around 334 Ma with a resulting calculated con-cordia age of 334 ± 2 Ma (Fig. 2a). Few older grains have ages between 342 Ma and 488 Ma. The Th/U values vary from 0.03 – 2.31 for all grains, while almost 90% of them are below 1, which is the same for concordant zircons (Fig. 2b).

4.3. Gr4, granite to granite gneiss, large intrusive body: 51°04’41.38” N; 12°53’05.19” E

This sample contained 253 zircon grains, of which 226 can be classified according to Pupin (1980). They predominantly plot around P2 – P5 morphotypes (Fig. 2c, d). The internal textures of zircons from this sam-ple are mostly represented by undisturbed concentric growth zones, suggested to be related to magmatic crys-

tal growth (Corfu et al. 2003). Nevertheless, there are several grains showing characteristics of metamorphic overprint (Fig. 2e). 17 of 127 zircon grains (138 spots) yield concordant ages. The youngest concordant grain is dated at 300 ± 6 Ma, the oldest grain analysed reveals an age of 389 ± 9 Ma. Most of the concordant grains lie between 330 Ma and 336 Ma, resulting in a concordia age of 334 ± 2 Ma (Fig. 2a, Tab. 4). The Th/U ratio range stands at between 0.05 and 2.06 for all analysed grains and between 0.08 and 1.29 for concordant grains, while the vast majority of them yield values smaller than 0.5 with a distinctive peak at ca. 0.1 (Fig. 2b).

5. Discussion

The calculated U-Pb zircon ages for the three analysed granitoid rocks range between 334 ± 2 Ma and 335 ± 2 Ma, which is equal within the errors. All zircon grains young-er than 330 Ma are interpreted as slightly discordant, and thus are possibly affected by post-intrusive events. Older inherited grains are rare and yield ages between 342 Ma and 488 Ma, while the age distribution pattern of them is nearly the same in samples Gr3 and GrMit. In contrast, sample Gr4 does not contain zircons older than 400 Ma. As neither intrusion age, nor inheritance of older grains differs significantly between the analysed samples, other characteristics of zircons have to be investigated to re-veal possible variations concerning the origin of the in-trusions. Due to this, 758 zircon grains of the three samples were investigated with respect to their morphology sensu Pupin (1980). The percentage of definable grains with respect to their morphotypes varies between 79% in Gr3 and 89% in Gr4. Samples GrMit and Gr3 show quite sim-ilar distribution patterns with comparable percent ages and a broad diversity of morphotypes. These obtained variations are typical for S-type granitoids (Pupin 1980, Belousova et al. 2005). Nevertheless, both samples have different maxima within the fields of S24/S25 (GrMit) and S25/S7 (Gr3). A specific feature of sample Gr3 is a noteworthy amount of extremely shortened zircon crys-tals. Gr4 has a completely different pattern (Fig. 2c), forming a characteristic path according to Pupin (1980). In this sample, the majority of the grains plots within the fields P3 and P4. The adjacent fields P2 and P5 also comprise a high percentage of zircons. Typically, alka-line and hyperalkaline I-type granitoids are represented by such a distribution pattern (Pupin 1980, Belousova et al. 2005). Taking into consideration the mentioned differ-ences within the distribution pattern of morphotypes, we can clearly distinguish between samples Gr3 and GrMit on the one hand and Gr4 on the other. The analysis of the internal morphology according to Vavra (1994) and Corfu et al. (2003) is a second char-

Page 6: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

210

acteristic studied in addition to the U-Pb zircon ages. Within samples Gr3 and GrMit, there are only few grains showing typical features of magmatic zircons like well-developed and undisturbed growth zoning (Corfu et al. 2003). Zircon grains with characteristics pointing to late- to post-magmatic phenomena, such as local recrystallisa-tion or convolute zoning (Corfu et al. 2003), dominate in these samples. A third group of zircon grains in Gr3 and GrMit is characterised by larger areas of recrystallisation and overgrowth, as well as features typical for zircons of high-grade metamorphic rocks like fir-tree sector zon-ing or overgrowths with radial sector zoning (Vavra et al. 1998, Corfu et al. 2003). This mixture of undisturbed magmatic and however influenced grains is interpreted to result from different melt sources. Thus, both of the gran-itoids Gr3 and GrMit probably contain zircons from the surrounding high-grade metamorphic granulites and pos-sibly further (meta-) sedimentary sources. Sample Gr4 shows a completely different distribution pattern with a majority of undisturbed magmatic grains and few zircons characterised by late- or post-magmatic influences. The magmatic grains do not give hints to any evidence for a former external morphology according to Vavra (1994) or Köksal et al. (2008). Crystals with attributes of meta-morphism are rare. This is in accordance to the hypo-thesised I-type character of this sample, which is deduced from morphotype analysis. Although it is described as the most deformed rock (granite gneiss) of the investi-gated samples (Gottesmann 1987), the deformation did not seem to have a major effect on the internal morpho-logy of the zircon grains. Additionally, the small amount of grains with inclusions of xenocrysts or xenocrystic cores occuring in sample Gr4 is not a peculiarity. These are observed in an equating quantity also within the other two samples. The last studied characteristic of the zircons, the Th/U ratio, corroborates the already supposed classification of the samples. While Gr3 and GrMit show a scattered dis-tribution of Th/U values, interpreted as a potential sign of several magmatic sources, Gr4 is dominated by zircons with very low Th/U ratios (Fig. 2b), most likely indicat-ing an origin from only one magmatic source. Very low Th/U ratios seem to be characteristically for altered and newly grown zircons as well (e.g. Vavra et al. 1996, Zeh et al. 2010). With reference to the results, we can distinguish be-tween two potential groups of granitoids. The first group is represented by the samples Gr3 and GrMit. They con-tain zircons with broad variation of external morpholo-gies and an internal morphology dominated by late- to post-magmatic or metamorphic phenomena, accompa-nied by a wide range of Th/U values. This group is in-terpreted to originate from melts, which at least partially contain significant amounts of zircons from sedimentary and metamorphic sources, and thus can be classified as S-type granitoids (Clemens 2003, Köksal et al. 2008). Caused by the high grade of metamorphism of the rocks adjacent to the granitoids, there is no constraint about the maximum depositional age of the potential proto-

liths (Clemens 2003). The second group is characterised by sample Gr4. The predominance of magmatic grains, which do not show different earlier external morpholo-gies sensu Vavra (1994), as well as the strictness of the path formed by the morphotypes point to a mantle source (Pupin 1980) of the magma and do not give any evidence for rapid changes in chemical conditions (Vavra 1994, Köksal et al. 2008). In contrast to the investigations of Gehmlich (2003), within this study, the granite of Mittweida (sample GrMit) does not show an alkaline path peculiar to alka-line granitoids. This is probably due to different sample localities within this large granitic body. Consequently, the granitic intrusion of Mittweida probably did not only melt sedimentary rocks, but also magmatites.

6. Conclusions

We suppose that morphotypological investigations ac-cording to Pupin (1980) in combination with studies of the internal morphology introduced by Vavra (e.g. 1990, 1994) and measurements of the Th/U ratios in zircons can help to distinguish between the nearly synchronous intruded granitoid bodies of the SGM. As suggested by this case study, the analysed rocks units are most likely derived from melts of different origin and thus can be subdivided into S- and I-type granitoids.

7. References

Baumann, N.; Pilot, J.; Werner, C.-D.; Todt, W. (1997): Zur Geo-chronologie und Isotopengeochemie des Sächsischen Granulit-gebirges. – Terra Nostra, 97: 19 – 22, Berlin.

Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y. (2005): Zircon Crys-tal Morphology, Trace Element Signatures and Hf Isotope Com po sition as a Tool for Petrogenetic Modelling: Examples From Eastern Australian Granitoids. – Journal of Petrology, 47: 329 – 353, Oxford.

Clemens, J.D. (2003): S-type granitic magmas – petrogenetic is-sues, models and evidence. – Earth Science Reviews, 61: 1 – 18, Amsterdam.

Finch, R.J.; Hanchar, J.M. (2003): Structure and chemistry of zir-con and zircon-group minerals. – In: Hanchar, J.M.; Hoskin, W.O. (Eds., 2003): Zircon: Reviews in Mineralogy & Geo-chemistry, 53: 1 – 25, Washington.

Gehmlich, M. (2003): Die Cadomiden und Varisziden des Saxo-thuringischen Terranes – Geochronologie magmatischer Ereig-nisse. – Freiberger Forschungshefte, C 500: 1 – 129, Leipzig.

Gerdes, A.; Zeh, A. (2006): Combined U-Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: Comparison with SHRIMP and new constraints for the provenance and age of

Page 7: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

211

GEOLOGICA SAXONICA — 59: 2013

an Armorican metasediment in Central Germany. – Earth and Planetary Science Letters, 249: 47 – 61, Amsterdam.

Gottesmann, B. (1987): Petrographic studies of Granite Gneisses and Granites from the Saechsisches Granulitgebirge. – Zentral-instituts für Isotopen- und Strahlenforschung, Mitteilungen, 133: 309 – 336, Leipzig.

Hoskin, P.W.O.; Schaltegger, U. (2003): The Composition of Zir-con and Igneous and Metamorphic Petrogenesis. – In: Han-char, J.M.; Hoskin, P.W.O. (Eds., 2003): Zircon: Reviews in Mineralogy & Geochemistry, 53: 1 – 25, Washington.

Köksal, S.; Cemal Göncüoglu, M.; Toksoy-Köksal, F.; Möller, A.; Kemnitz, H. (2008): Zircon typologies and internal structures as petrogenetic indicators in contrasting granitoid types from central Anatolia, Turkey. – Mineralogy and Petrology, 93: 185 – 211, Berlin, Heidelberg.

Kröner, A.; Jaeckel, P.; Reischmann, T.; Kroner, U. (1998): Further evidence for an early Carboniferous (~340 Ma) age of high-grade metamorphism in the Saxon granulite complex. – Geolo-gische Rundschau, 86: 751 – 766, Berlin.

Kroner, U. (1995): Postkollisionale Extension am Nordrand der Böh mischen Masse – Die Exhumierung des Sächsischen Gra-nu litgebirges. Freiberger Forschungshefte, C 457: 1 – 114, Leip-zig.

Ludwig, K.R. (2001): User’s manual for Isoplot/Ex rev. 2.49. – Ber keley Geochronology Center Special Publication, 1a: 1 – 56, Berkeley.

Mange, M.A.; Maurer, H.F.W. (1991): Schwerminerale in Farbe. – 1 – 148, Stuttgart (Enke).

Meinhold, G.; Morton, A.C.; Fanning, C.M.; Frei, D.; Howard, J.P.; Phillips, R.J.; Strogen, D.; Whitham, A.G. (2011): Evi-dence from detrital zircons for recycling of Mesoproterozoic and Neoproterozoic crust recorded in Paleozoic and Mesozoic sandstones of southern Lybia. – Earth and Planetary Science Letters, 312: 164 – 175, Amsterdam.

Nasdala, L.; Pidgeon, R.T.; Wofl, D.; Irmer, G. (1998): Metamic-ti zation and U-Pb isotopic discordance in single zircons: a combined Raman microprobe and SHRIMP ion probe study. – Mineralogy and Petrology, 62: 1 – 27, Vienna.

Pietzsch, K. (1962): Geologie von Sachsen. – 1 – 870, Berlin (Deut-scher Verlag der Wissenschaften).

Pupin, J.-P. (1976): Signification des caractéres morphologiques du zircon commun des roches en pétrologie. Base de la méthode typologique. – 1 – 394, Nice (upublished doctoral thesis, Nice University).

Pupin, J.-P. (1980): Zircon and Granite Petrology. – Contributions to Mineralogy and Petrology, 73: 207 – 220, Berlin, Heidelberg.

Pupin, J.-P. (1992): Les zircons des granites océaniques et continen-taux: couplage typologie - géochimie des éléments en traces. – Bulletin de la Société Géologique de France, 163: 495 – 507, Paris.

Pupin, J.-P.; Turco, G. (1972): Une typologie originale du zircon accessoire. – Bulletin de la Société Française de Minéralogie et de Cristallographie, 95: 348 – 359, Paris.

Pupin, J.-P.; Turco, G. (1975): Typologie du zircon accessoire dans les roches plutoniques dioritiques, granitiques et syenitiques: Facteurs essentials determinant les variations typologiques. – Pét rologie, 1: 139 – 156, Paris.

Reinhardt, J.; Kleemann, U. (1994): Extensional unroofing of gra n-ulitic lower crust and related low-pressure, high-temperature

metamorphism in the Saxonian Granulite Massif, Germany. – Tectonophysics, 238: 71 – 94, Amsterdam.

Rötzler, J.; Romer, R.L.; Budzinski, H.; Oberhänsli, R. (2004): Ul-trahigh-temperature high-pressure granulites from Tirschheim, Saxon Granulite Massif, Germany: P-T-t path and geotectonic implications. – European Journal of Mineralogy, 16: 917 – 937, Stuttgart.

Rötzler, J.; Romer, R.L. (2010): The Saxon Granulite Massif: a key area fort the geodynamic evolution of Variscan central Eu rope. – In: Linnemann, U.; Romer, R.L. (Eds.) (2010): Pre-Me so zoic Geology of Saxo-Thuringia. – 233 – 252, Stuttgart (Schwei zer bart).

Romer, R.L.; Rötzler, J. (2001): P-T-t Evolution of Ultrahigh-Tem-perature Granulites from the Saxon Granulite Massif, Ger-many. Part II: Geochronology. – Journal of Petrology, 42: 2015 – 2032, Oxford.

Sircombe, K.N. (2004): AGEDISPLAY: an EXCEL workbook to evaluate and display univariate geochronological data using binned frequency histograms and probability density distribu-tions. – Computers & Geosciences, 30: 21 – 31, Amsterdam.

Stacey, J.S.; Kramers, J.D. (1975): Approximation of terrestrial lead isotope evolution by a two-stage model. – Earth and Plane tary Science Letters, 26: 207 – 221, Amsterdam.

Vavra, G. (1990): On the kinematics of zircon growth and its petro-genetic significance: a cathodoluminescence study. – Contri-bu tions to Mineralogy and Petrology, 106: 90 – 99, Berlin, Hei-del berg.

Vavra, G. (1994): Systematics of internal zircon morphology in ma-jor Variscan granitoid types. – Contributions to Mineralogy and Petrology, 117: 331 – 344, Berlin, Heidelberg.

Vavra, G.; Gebauer, D.; Schmid, R. (1996): Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (South-ern Alps): an ion microprobe (SHRIMP) study. – Contribu-tions to Mineralogy and Petrology, 122: 337 – 358, Berlin, Heidelberg.

Vavra, G.; Reinhardt, J. (1997): Which processes are dated by U/Pb zircon ages of high-grade metamorphic rocks? Zircon gen-esis in various lithologies and structural levels of the Saxonian Granulite Massif. – Terra Nostra, 97: 190 – 192, Berlin.

Vavra, G.; Reinhardt, J.; Todt, W.; Pidgeon, R.T. (1998): Dating the exhumation of a hot core complex (Saxonian Granulite Mas-sif) – old prejudices and new perspectives of U-Pb dating of zircons and monazites. – Freiberger Forschungshefte, C 471: 226 – 228, Leipzig.

Quadt, A. von (1993): The Saxonian Granulite Massif: new aspects from geochronological studies. – Geologische Rundschau, 82: 516 – 530, Berlin.

Zeh, A.; Gerdes, A.; Barton Jr., J.; Klemd, R. (2010): U – Th – Pb and Lu – Hf systematics of zircon from TTG’s, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): Constraints for the formation, recycling and metamor-phism of Palaeoarchaean crust. – Precambrian Research, 179: 50 – 68, Amsterdam.

Page 8: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

212

Ap

pen

dix

Tabl

e 2.

U-P

b-Th

dat

a of

zirc

ons

from

sam

ple

GrM

it, n

= 3

5 of

152

mea

sure

d sp

ots

on 1

48 z

ircon

gra

ins

with

in 9

0 – 11

0% c

onco

rdan

ce, m

onzo

- to

sye

nogr

anite

, lar

ge in

trusi

ve b

ody

near

Mitt

wei

da,

50° 5

9′ 14

.63″

N; 1

3° 00

′ 00.

89″

E.

Tabe

lle 2

. U-T

h-Pb

-Dat

en d

er Z

irkon

e au

s Pro

be G

rMit,

n =

35

von

152

Mes

spun

kten

auf

148

Zirk

onkö

rner

n in

nerh

alb

90 –

110%

Kon

kord

anz,

Mon

zo- b

is S

yeno

gran

it au

s ein

em g

roße

n In

trusi

vkör

per n

ahe

Mitt

wei

da, 5

0° 59

′ 14.

63″

N; 1

3° 00

′ 00.

89″

E.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

a168

075

2936

196

0.05

1364

0.05

341

2.3

0.39

193

2.9

0.05

322

1.7

0.81

335

833

68

338

3899

a239

602

1202

730.

0734

50.

0596

72.

20.

4197

43.

90.

0510

23.

20.

5637

48

356

1224

275

155

a325

265

494

380.

8115

60.

0535

12.

11.

0308

43.

90.

1397

13.

30.

5433

67

719

2022

2456

15

a474

8016

011

0.48

181

0.05

349

2.6

0.98

242

3.5

0.13

320

2.4

0.74

336

969

518

2141

4116

a520

383

1086

630.

3325

70.

0546

92.

20.

3796

46.

80.

0503

46.

50.

3234

37

327

1921

115

016

3

a613

1923

823

840.

2326

0.03

113

3.1

2.55

298

6.6

0.59

482

5.8

0.48

198

612

8749

4495

844

a724

135

345

260.

5810

90.

0464

54.

01.

2108

720

.90.

1890

520

.50.

1929

311

806

123

2734

338

11

a871

509

683

770.

4864

0.06

636

2.3

2.51

954

3.5

0.27

538

2.7

0.64

414

912

7826

3337

4312

a912

835

325

240.

4727

70.

0619

42.

20.

4789

16.

10.

0560

85.

60.

3738

78

397

2045

512

585

a10

4060

950

346

0.53

920.

0561

72.

61.

6689

010

.30.

2154

810

.00.

2535

29

997

6829

4716

212

a11

3467

085

458

0.35

225

0.05

693

2.2

0.40

233

7.7

0.05

125

7.3

0.29

357

834

323

252

169

141

a12

9145

411

8510

80.

1090

0.05

490

2.4

1.63

410

3.2

0.21

588

2.1

0.76

345

898

320

2950

3312

a13

6590

370

210.

3912

301

0.05

295

2.4

0.38

839

3.2

0.05

320

2.1

0.74

333

833

39

337

4899

a14

4593

163

256

0.72

105

0.05

297

2.9

1.37

108

7.1

0.18

773

6.5

0.41

333

987

742

2722

106

12

a15

1282

531

019

0.32

195

0.04

778

2.5

0.86

331

5.7

0.13

105

5.1

0.44

301

763

227

2112

9014

a16

3100

171

110.

7257

760.

0536

42.

50.

3934

94.

20.

0532

03.

40.

5933

78

337

1233

877

100

a17

2525

829

024

0.56

610.

0449

42.

31.

6725

010

.40.

2699

210

.20.

2228

36

998

6933

0616

09

a18

6663

354

220.

6479

50.

0542

13.

70.

4640

75.

70.

0620

94.

30.

6534

012

387

1867

792

50

a19

6832

372

200.

2612

769

0.05

163

2.4

0.37

783

3.5

0.05

307

2.5

0.69

325

832

510

332

5698

a20

1996

758

339

0.57

238

0.05

108

2.5

0.80

919

6.2

0.11

490

5.7

0.41

321

860

229

1878

102

17

a21

6223

366

200.

2611

094

0.05

311

2.2

0.40

993

5.0

0.05

598

4.5

0.44

334

734

915

452

101

74

a22

2275

132

70.

2441

490.

0517

82.

40.

3910

04.

50.

0547

73.

80.

5332

58

335

1340

386

81

a23

1031

750

431

0.64

1117

0.05

137

2.4

0.46

606

5.9

0.06

580

5.3

0.42

323

838

819

800

112

40

a24

1535

2714

2314

70.

1157

0.05

197

2.4

2.26

571

4.4

0.31

619

3.7

0.54

327

812

0232

3551

579

a25

2176

875

852

0.64

208

0.05

592

2.3

0.80

393

5.7

0.10

427

5.2

0.40

351

859

926

1701

9521

a26

1362

277

437

0.05

2920

0.05

030

2.4

0.39

050

3.4

0.05

631

2.4

0.71

316

833

510

464

5468

a27

6664

282

190.

6543

20.

0564

92.

00.

5850

74.

10.

0751

23.

50.

4935

47

468

1510

7271

33

a28

2952

751

042

0.58

116

0.05

526

3.0

1.25

855

10.9

0.16

520

10.5

0.27

347

1082

764

2510

177

14

a29

494

212

1.36

745

0.05

136

6.5

0.46

069

12.2

0.06

506

10.3

0.53

323

2038

540

776

217

42

Page 9: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

213

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 2

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

a30

4448

278

160.

3783

150.

0529

52.

10.

3872

03.

40.

0530

42.

70.

6233

37

332

1033

060

101

a31

1253

342

150.

0310

430

0.04

775

2.8

0.07

799

17.2

0.01

185

16.9

0.17

301

876

13-6

081

1754

-5

a32

767

453

0.71

1445

0.05

335

2.8

0.39

096

7.5

0.05

315

7.0

0.37

335

933

522

335

158

100

a33

725

434

1.89

1353

0.05

339

3.2

0.39

080

6.0

0.05

308

5.1

0.54

335

1133

517

332

115

101

a34

1321

856

1.65

2441

0.04

711

3.1

0.35

052

9.1

0.05

396

8.5

0.35

297

930

524

370

192

80

a35

3522

206

120.

1165

910.

0596

22.

30.

4354

74.

00.

0529

83.

20.

5837

38

367

1232

874

114

a36

3658

231

140.

5168

250.

0533

62.

40.

3917

23.

70.

0532

52.

80.

6533

58

336

1133

964

99

a37

3743

136

746

1.03

480.

0686

23.

62.

9942

87.

70.

3164

86.

80.

4742

815

1406

6135

5310

512

a38

913

483

0.96

1708

0.05

358

2.8

0.39

376

7.4

0.05

330

6.9

0.38

336

933

722

342

156

98

a39

1538

744

0.14

2667

0.04

975

3.5

0.39

676

10.6

0.05

784

10.0

0.33

313

1133

931

524

220

60

a40

1465

768

2.66

2743

0.05

335

2.6

0.39

121

5.2

0.05

319

4.5

0.51

335

933

515

337

101

100

b152

2519

816

1.23

820

0.05

662

2.7

0.53

713

8.2

0.06

880

7.8

0.32

355

943

730

893

161

40

b294

207

4152

207

0.03

6046

0.05

354

2.3

0.39

237

2.5

0.05

315

1.2

0.89

336

733

67

335

2710

0

b370

1924

813

0.20

877

0.05

134

2.6

0.38

152

8.2

0.05

390

7.8

0.32

323

832

823

367

176

88

b492

846

30.

6991

60.

0544

42.

80.

3823

06.

60.

0509

46.

00.

4334

29

329

1923

813

814

4

b539

0814

89

0.24

7212

0.06

007

2.7

0.44

823

4.1

0.05

412

3.2

0.65

376

1037

613

376

7110

0

b622

1110

88

0.89

4196

0.05

563

2.5

0.40

308

4.9

0.05

255

4.2

0.51

349

934

415

310

9611

3

b759

1121

915

0.69

704

0.05

715

2.9

0.53

692

5.0

0.06

814

4.1

0.58

358

1043

618

873

8541

b859

1128

320

0.53

294

0.06

325

3.0

0.59

427

5.1

0.06

814

4.1

0.59

395

1247

420

873

8545

b912

5260

84.

3323

450.

0535

02.

90.

3926

75.

60.

0532

34.

80.

5233

69

336

1633

910

999

b10

505

252

2.48

1066

0.05

562

5.5

0.35

565

14.7

0.04

637

13.7

0.37

349

1930

940

1732

920

45

b11

1811

815

0.07

3269

0.06

864

2.3

0.52

460

6.6

0.05

543

6.2

0.35

428

942

823

430

138

100

b12

4426

222

120.

1753

90.

0536

52.

90.

4178

65.

10.

0564

84.

20.

5733

710

355

1547

192

71

b13

1046

512

0.15

1927

0.03

829

3.3

0.28

707

7.0

0.05

437

6.1

0.48

242

825

616

386

137

63

b14

6182

010

2073

0.29

113

0.04

870

3.8

0.37

561

9.0

0.05

594

8.2

0.42

307

1132

425

450

183

68

b15

1285

023

615

0.36

166

0.05

328

2.6

0.39

100

14.4

0.05

322

14.2

0.18

335

833

542

338

322

99

b16

1827

951

833

0.74

296

0.05

202

2.3

0.36

767

6.9

0.05

126

6.5

0.34

327

731

819

252

150

130

b17

5616

910

8083

0.27

103

0.05

507

2.9

1.11

161

4.7

0.14

641

3.7

0.62

346

1075

926

2304

6415

b18

6603

012

5611

20.

0818

20.

0667

83.

60.

4953

75.

30.

0538

03.

90.

6841

714

409

1836

387

115

b19

5933

237

130.

5613

410.

0462

93.

60.

3502

46.

60.

0548

75.

60.

5429

210

305

1840

712

572

b20

8329

815

1985

0.28

850.

0346

92.

51.

0489

67.

30.

2192

96.

90.

3422

05

728

3929

7511

17

b21

1925

935

624

0.76

112

0.04

249

4.5

1.10

530

18.7

0.18

868

18.2

0.24

268

1275

610

527

3129

910

b22

3250

105

40.

3013

80.

0287

756

.90.

7387

690

.00.

1862

469

.60.

6318

310

356

248

927

0911

497

b23

8214

512

2991

0.11

102

0.05

934

2.8

0.46

034

11.4

0.05

627

11.0

0.24

372

1038

437

463

245

80

b24

3722

185

110.

2868

510.

0589

92.

40.

4395

46.

10.

0540

45.

60.

4037

09

370

1937

312

599

b25

2179

843

233

0.93

230

0.05

344

2.8

0.39

258

6.5

0.05

327

5.8

0.43

336

933

619

341

132

99

Page 10: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

214

Tabl

e 2

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

b26

1076

643

529

0.73

546

0.05

257

2.6

0.37

124

7.6

0.05

122

7.1

0.34

330

832

121

251

164

132

b27

919

452

0.04

1521

0.04

750

2.8

0.39

473

8.1

0.06

027

7.6

0.34

299

833

824

613

164

49

b28

3343

754

741

0.54

127

0.05

497

2.6

0.39

017

7.0

0.05

147

6.5

0.37

345

933

420

262

149

132

b29

8142

256

190.

5437

30.

0629

12.

50.

4858

68.

90.

0560

28.

50.

2839

310

402

3045

318

987

b30

1423

4934

615

40.

9030

0.21

172

2.8

15.5

3345

5.4

0.53

212

4.6

0.52

1238

3228

4953

4333

6829

b31

5572

208

150.

0964

610.

0775

82.

30.

6105

53.

50.

0570

82.

70.

6548

211

484

1449

559

97

b32

3123

152

638

0.91

116

0.04

338

3.4

0.33

584

14.8

0.05

615

14.5

0.23

274

929

439

458

321

60

b33

5968

513

5510

00.

0913

50.

0561

23.

00.

4001

45.

60.

0517

14.

70.

5435

210

342

1627

310

712

9

b34

1845

9318

2815

20.

0634

0.03

204

2.5

2.19

757

3.6

0.49

748

2.6

0.69

203

511

8026

4234

395

b35

1953

725

0.61

342

0.06

244

3.2

0.65

319

17.9

0.07

587

17.6

0.18

390

1251

075

1092

353

36

b36

3607

208

191.

9124

860.

0535

92.

50.

4265

64.

70.

0577

23.

90.

5433

78

361

1451

987

65

b37

2658

146

121.

2647

00.

0552

13.

80.

4789

47.

80.

0629

26.

80.

4934

613

397

2670

514

549

b38

3004

159

90.

2052

590.

0574

42.

50.

4165

93.

80.

0526

02.

90.

6636

09

354

1131

265

116

b39

1469

360

538

0.67

1057

0.05

179

2.6

0.46

982

4.1

0.06

579

3.2

0.64

326

839

114

800

6741

b40

1826

359

440

0.72

429

0.05

437

2.4

0.38

556

4.4

0.05

143

3.7

0.54

341

833

113

260

8513

1

b41

7405

792

571

0.11

760.

0520

63.

40.

4267

19.

20.

0594

48.

50.

3732

711

361

2858

318

556

b42

1629

117

817

0.18

129

0.07

408

2.7

1.78

573

5.4

0.17

483

4.6

0.51

461

1210

4035

2604

7718

b43

1119

633

721

0.74

559

0.05

321

2.5

0.38

943

10.2

0.05

309

9.9

0.24

334

833

430

332

225

101

b44

5423

050

446

0.53

770.

0519

42.

41.

7177

26.

90.

2398

46.

50.

3532

68

1015

4531

1910

310

b45

8453

557

459

0.29

520.

0506

03.

32.

3860

18.

60.

3419

97.

90.

3831

810

1238

6336

7212

19

b46

1958

7111

3011

20.

1233

0.04

252

3.0

2.94

578

7.8

0.50

247

7.2

0.39

268

813

9461

4248

106

6

b47

3257

240

532

0.28

139

0.06

196

3.2

1.48

426

4.6

0.17

374

3.3

0.69

388

1292

429

2594

5615

b48

1265

332

021

0.69

645

0.05

306

2.3

0.39

112

5.0

0.05

346

4.4

0.47

333

833

514

348

9996

b49

7429

181

110.

6268

70.

0543

62.

50.

5377

54.

30.

0717

43.

40.

5934

18

437

1597

970

35

b50

878

61

1.25

600.

0629

710

.12.

7704

012

.20.

3191

06.

90.

8339

439

1348

9635

6510

611

b51

7675

119

91.

3222

80.

0479

43.

30.

3850

79.

10.

0582

58.

50.

3630

210

331

2653

918

656

b52

1057

919

713

0.13

718

0.06

592

2.6

0.51

421

5.8

0.05

658

5.2

0.44

412

1042

120

475

116

87

b53

1746

912

012

0.78

780.

0569

02.

51.

8379

327

.90.

2342

727

.80.

0935

79

1059

203

3081

444

12

b54

7327

736

0.70

179

0.05

745

3.1

1.13

811

11.6

0.14

367

11.2

0.27

360

1177

265

2272

193

16

b55

563

141

1.11

471

0.04

014

3.8

0.27

841

12.7

0.05

030

12.1

0.30

254

924

928

209

280

121

b56

2492

418

314

0.49

119

0.05

682

5.5

0.46

373

16.0

0.05

919

15.0

0.34

356

1938

753

574

326

62

b57

4438

038

325

0.54

166

0.04

626

2.5

0.34

822

6.3

0.05

459

5.8

0.40

292

730

317

396

130

74

b58

967

211

0.27

1820

0.06

273

3.2

0.45

919

7.0

0.05

309

6.2

0.45

392

1238

423

333

141

118

b59

2991

828

523

0.65

130

0.05

743

4.0

1.18

372

4.6

0.14

950

2.2

0.88

360

1479

326

2340

3815

b60

7983

627

930

0.36

500.

0686

63.

80.

6329

914

.70.

0668

714

.20.

2642

816

498

6083

429

651

c115

437

338

220.

5910

60.

0473

12.

20.

3922

89.

80.

0601

39.

60.

2329

87

336

2960

820

749

Page 11: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

215

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 2

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

c240

343

626

450.

4514

60.

0542

72.

41.

1968

84.

70.

1599

54.

00.

5134

18

799

2624

5568

14

c312

196

469

300.

6210

960.

0535

02.

30.

3912

66.

80.

0530

46.

40.

3433

68

335

2033

014

410

2

c453

306

623

420.

4270

0.03

723

13.0

0.27

234

22.0

0.05

305

17.8

0.59

236

3024

549

331

403

71

c512

5327

808

102

0.29

450.

0736

11.

90.

5064

017

.40.

0498

917

.30.

1145

88

416

6119

040

324

1

c648

1022

415

0.68

5323

0.05

748

2.3

0.42

781

4.9

0.05

398

4.3

0.46

360

836

215

370

9797

c734

0016

010

0.54

6329

0.05

769

2.0

0.42

898

4.7

0.05

393

4.2

0.42

362

736

214

368

9598

c810

364

227

210.

7918

50.

0720

12.

51.

1207

512

.70.

1128

812

.50.

1944

811

763

7118

4622

624

c917

419

268

250.

9099

0.06

291

3.0

1.42

721

9.1

0.16

455

8.6

0.33

393

1190

056

2503

145

16

c10

1978

438

029

0.54

192

0.06

087

3.3

0.47

575

8.6

0.05

669

7.9

0.38

381

1239

528

480

175

79

c11

1418

734

0.29

2647

0.05

321

2.5

0.39

140

7.7

0.05

335

7.3

0.33

334

833

522

344

165

97

c12

4850

963

353

0.71

750.

0471

82.

21.

5888

65.

20.

2442

64.

80.

4129

76

966

3331

4876

9

c13

5400

250

160.

5413

750.

0543

81.

90.

4432

98.

20.

0591

38.

00.

2334

16

373

2657

217

460

c14

5029

267

170.

6494

440.

0531

21.

90.

3904

24.

60.

0533

14.

20.

4133

46

335

1334

296

98

c15

4910

414

8510

70.

0929

20.

0488

72.

50.

3637

84.

90.

0539

94.

20.

5130

88

315

1337

195

83

c16

2145

346

428

0.26

184

0.05

092

2.1

0.38

215

8.6

0.05

443

8.4

0.24

320

632

925

389

188

82

c17

7240

240

160.

7946

20.

0547

72.

10.

6346

64.

20.

0840

33.

60.

5034

47

499

1712

9370

27

c18

684

241

0.25

1029

0.05

245

3.0

0.47

650

11.4

0.06

589

11.0

0.26

330

939

638

803

231

41

c19

1619

754

338

0.57

850.

0596

62.

90.

4734

18.

90.

0575

58.

40.

3337

411

394

2951

318

573

c20

2575

341

140

0.77

930.

0675

82.

51.

6127

29.

80.

1730

99.

50.

2542

210

975

6325

8815

816

c21

2787

145

235

0.43

109

0.05

183

2.4

1.34

189

6.4

0.18

779

5.9

0.38

326

886

438

2723

9712

c22

1411

630

925

0.81

212

0.05

903

2.4

0.47

596

8.4

0.05

848

8.1

0.29

370

939

528

548

177

67

c23

9011

303

220.

7640

10.

0580

41.

70.

4120

021

.30.

0514

821

.20.

0836

46

350

6526

248

813

9

c24

1665

848

337

0.93

234

0.05

312

2.7

0.77

982

7.1

0.10

646

6.6

0.38

334

958

532

1740

120

19

c25

8949

293

200.

6531

50.

0517

42.

40.

6869

220

.30.

0962

920

.10.

1232

58

531

8715

5437

821

c26

1019

453

934

0.63

6276

0.05

440

1.9

0.41

527

2.6

0.05

536

1.8

0.72

342

635

38

427

4080

c27

8026

219

180.

8630

70.

0624

82.

20.

8698

38.

90.

1009

78.

70.

2539

18

635

4316

4216

124

c28

6718

651

267

0.73

450.

0609

52.

83.

1133

516

.30.

3704

416

.10.

1738

110

1436

134

3793

244

10

c29

——

——

——

——

——

——

0—

——

——

c30

1281

763

445

0.45

2887

0.06

653

2.2

0.51

990

3.7

0.05

667

2.9

0.61

415

942

513

479

6587

c31

8791

238

220.

0314

622

0.09

940

1.9

0.82

318

2.7

0.06

007

1.9

0.70

611

1161

012

606

4210

1

c32

2719

156

90.

1350

120.

0596

42.

10.

4456

83.

60.

0542

02.

90.

5937

38

374

1137

964

98

c33

1413

743

928

0.45

268

0.05

313

2.3

0.39

046

9.5

0.05

330

9.2

0.24

334

833

527

342

208

98

c34

1059

220

917

0.15

209

0.07

329

2.6

0.53

458

18.0

0.05

290

17.9

0.14

456

1143

566

324

405

141

c35

2781

151

110.

9654

770.

0559

02.

50.

3923

35.

40.

0509

04.

80.

4635

18

336

1623

611

114

8

c36

4282

129

100.

8647

40.

0581

42.

60.

7617

35.

20.

0950

24.

50.

5136

49

575

2315

2885

24

c37

1699

916

0.41

2549

0.06

189

3.1

0.47

594

7.6

0.05

578

6.9

0.41

387

1239

525

443

154

87

Page 12: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

216

Tabl

e 2

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

c38

2386

112

80.

8444

220.

0587

22.

00.

4348

54.

10.

0537

13.

60.

4936

87

367

1335

981

103

c39

2368

118

70.

3441

600.

0607

32.

00.

4529

15.

60.

0540

95.

30.

3638

07

379

1837

511

810

1c4

044

4312

89

0.61

579

0.06

084

2.3

0.48

804

8.7

0.05

818

8.4

0.26

381

940

429

537

184

71

c41

2760

106

70.

6144

910.

0568

12.

40.

4797

85.

20.

0612

54.

60.

4635

68

398

1764

899

55

c42

5472

131

80.

2049

40.

0615

03.

30.

4215

211

.20.

0497

110

.70.

2938

512

357

3418

224

921

2

c43

1636

734

927

0.82

263

0.05

763

2.4

0.84

224

8.0

0.10

600

7.6

0.30

361

862

038

1732

140

21

c44

5505

223

120.

2010

293

0.05

531

2.0

0.40

715

3.7

0.05

338

3.1

0.54

347

734

711

345

7110

1c4

520

827

286

190.

3618

20.

0566

52.

30.

4558

96.

40.

0583

66.

00.

3635

58

381

2154

313

165

c46

3710

133

80.

2955

460.

0552

92.

40.

4081

93.

90.

0535

43.

00.

6234

78

348

1135

269

99c4

716

0860

40.

5714

950.

0533

62.

40.

3921

45.

10.

0533

04.

50.

4733

58

336

1534

210

298

c48

1012

635

422

0.56

1893

00.

0554

92.

10.

4084

72.

90.

0533

92.

10.

7134

87

348

934

547

101

c49

7702

168

131.

0547

30.

0552

52.

10.

6216

24.

10.

0816

03.

50.

5134

77

491

1612

3669

28

c50

3425

104

70.

7263

500.

0575

62.

00.

4262

13.

20.

0537

02.

40.

6336

17

360

1035

955

101

c51

1058

302

0.31

1905

0.06

130

2.2

0.47

456

7.0

0.05

615

6.7

0.31

384

839

423

458

148

84

c52

2383

684

0.18

4544

0.05

440

2.2

0.39

291

5.9

0.05

239

5.5

0.38

341

733

617

302

125

113

c53

2608

920

017

1.08

950.

0527

62.

70.

3582

311

.80.

0492

511

.40.

2333

19

311

3216

026

820

8

c54

1943

413

313

0.81

950.

0620

72.

01.

7432

15.

10.

2036

94.

70.

3938

87

1025

3328

5676

14

c55

4029

313

018

1.32

450.

0633

92.

83.

3231

34.

70.

3802

23.

80.

5839

611

1486

3738

3358

10

c56

3728

896

0.75

6306

0.05

838

2.4

0.42

676

6.6

0.05

302

6.1

0.37

366

936

120

330

139

111

c57

5124

392

0.84

162

0.02

885

4.2

0.58

718

7.0

0.14

761

5.6

0.60

183

846

927

2318

968

c58

1451

0022

654

0.56

260.

0880

33.

07.

2433

66.

80.

5967

96.

10.

4454

416

2142

6245

0088

12

c59

1112

080

70.

9011

70.

0540

52.

71.

3169

15.

10.

1767

04.

30.

5333

99

853

3026

2271

13

c60

1667

011

210

0.78

123

0.06

735

2.6

0.57

129

16.3

0.06

152

16.1

0.16

420

1145

962

658

346

64

Page 13: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

217

GEOLOGICA SAXONICA — 59: 2013

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

a153

3022

814

0.27

578

0.06

010

2.1

0.66

204

5.2

0.07

989

4.8

0.40

376

851

621

1194

9432

a225

093

1565

810.

2427

800.

0529

22.

10.

3894

33.

00.

0533

72.

10.

7133

27

334

934

448

97

a341

931

2745

179

0.09

1390

70.

0548

63.

00.

4032

53.

80.

0533

12.

40.

7834

410

344

1134

254

101

a475

0546

625

0.23

1416

60.

0566

81.

90.

4156

63.

30.

0531

92.

70.

5835

57

353

1033

761

106

a524

0315

19

0.43

4523

0.05

822

2.3

0.42

837

4.4

0.05

337

3.8

0.51

365

836

214

344

8610

6

a622

9313

210

0.85

3806

0.06

760

2.2

0.56

466

8.4

0.06

058

8.1

0.26

422

945

531

624

175

68

a744

462

2186

139

0.13

732

0.06

116

2.0

0.45

755

3.4

0.05

426

2.7

0.59

383

738

311

382

6110

0

a841

0126

416

0.89

1568

0.05

613

2.1

0.43

347

4.9

0.05

601

4.4

0.43

352

736

615

453

9878

a927

1515

69

0.13

4910

0.06

071

2.3

0.46

114

4.8

0.05

509

4.2

0.48

380

838

515

416

9391

a10

1523

387

459

0.82

2270

0.05

803

2.8

0.43

390

3.6

0.05

423

2.2

0.79

364

1036

611

380

5096

a11

1653

775

844

0.24

407

0.05

695

2.1

0.41

857

6.8

0.05

330

6.4

0.31

357

735

520

342

146

104

a12

——

——

——

——

——

——

——

——

——

a13

1756

122

70.

5733

030.

0532

52.

90.

3913

64.

60.

0533

03.

60.

6333

410

335

1334

281

98

a14

173

101

0.29

280

0.06

485

5.0

– 0.

3967

026

4.3

– 0.

0443

726

4.2

0.02

405

20–

513

– 10

23—

——

a15

7139

256

230.

0311

869

0.09

749

2.1

0.81

065

3.0

0.06

031

2.1

0.70

600

1260

314

615

4698

a16

564

392

0.10

1061

0.05

455

2.7

0.40

084

7.5

0.05

329

7.0

0.37

342

934

222

341

158

100

a17

432

261

0.09

769

0.05

811

3.1

0.45

359

11.1

0.05

662

10.7

0.28

364

1138

036

477

236

76

a18

231

161

0.29

464

0.06

453

4.8

0.44

583

13.0

0.05

011

12.1

0.37

403

1937

441

200

280

202

a19

9800

127

7211

10.

1490

0.01

942

9.4

0.71

183

9.6

0.26

585

1.9

0.98

124

1254

641

3282

304

a20

1721

953

0.58

1066

0.01

919

23.6

0.69

656

68.5

0.26

321

64.3

0.34

123

2953

733

632

6610

124

a21

450

353

2.31

858

0.05

316

2.8

0.39

101

12.0

0.05

334

11.7

0.24

334

933

535

343

264

97

a22

3477

250

150.

8465

700.

0532

62.

00.

3901

53.

80.

0531

23.

30.

5233

56

334

1133

474

100

a23

996

00.

8517

40.

0656

98.

20.

5182

616

.80.

0572

214

.60.

4941

033

424

6050

032

282

a24

170

131

0.20

348

0.05

483

4.7

0.37

403

14.8

0.04

947

14.1

0.32

344

1632

342

170

328

202

a25

1582

120

70.

3229

760.

0563

62.

40.

4147

86.

70.

0533

86.

30.

3635

38

352

2034

514

210

2

a26

3527

205

170.

1166

180.

0910

02.

20.

6750

44.

10.

0538

03.

50.

5356

112

524

1736

379

155

a27

1140

845

0.30

1002

0.05

646

3.5

0.40

702

8.9

0.05

229

8.2

0.39

354

1234

727

298

188

119

a28

2214

166

90.

5122

840.

0561

32.

10.

4123

84.

70.

0532

94.

20.

4535

27

351

1434

196

103

a29

5604

173

90.

2299

0.03

706

2.1

1.06

635

7.5

0.20

868

7.2

0.28

235

573

740

2895

116

8

a30

4141

172

160.

7448

230.

0837

02.

90.

6983

14.

80.

0605

13.

80.

6151

815

538

2062

282

83

a31

1077

714

0.42

2032

0.05

682

2.5

0.41

818

6.4

0.05

338

5.9

0.39

356

935

519

345

134

103

a32

2666

187

110.

2748

350.

0578

82.

70.

4417

25.

40.

0553

54.

70.

4936

39

371

1742

610

585

a33

967

645

0.61

1747

0.06

871

2.3

0.52

526

8.0

0.05

544

7.6

0.29

428

1042

928

430

170

100

a34

2193

151

100.

5639

840.

0631

33.

10.

4804

95.

70.

0552

04.

80.

5439

512

398

1942

010

794

Tabl

e 3.

U-P

b-Th

dat

a of

zirc

ons f

rom

sam

ple

Gr3

, n =

45

of 1

19 m

easu

red

spot

s on

108

zirc

on g

rain

s with

in 9

0 – 11

0% c

onco

rdan

ce, m

icro

gran

ite, s

mal

l dyk

e ne

ar P

enig

, 50°

55′ 5

1.23

″ N

; 12°

41′ 2

4.69

″ E.

Tabe

lle 3

. U-T

h-Pb

-Dat

en d

er Z

irkon

e au

s Pro

be G

r3, n

= 4

5 vo

n 11

9 M

essp

unkt

en a

uf 1

08 Z

irkon

körn

ern

inne

rhal

b 90

– 11

0 %

Kon

kord

anz,

Mik

rogr

anit

aus e

inem

kle

inen

Gan

g na

he P

enig

, 50°

55′5

1.23

″ N;

12° 4

1′ 24

.69″

E.

Page 14: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

218

Tabl

e 3

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

a35

1346

106

60.

3625

180.

0527

83.

30.

3901

95.

70.

0536

24.

60.

5833

211

335

1635

510

493

a36

5193

888

980

0.64

127

0.06

455

2.6

0.70

816

4.1

0.07

957

3.2

0.62

403

1054

417

1186

6334

a37

1970

4112

342

672

0.03

508

0.05

279

2.4

0.38

651

2.9

0.05

310

1.5

0.84

332

833

28

333

3510

0

a38

802

553

0.39

1497

0.05

569

3.5

0.41

041

10.0

0.05

345

9.3

0.35

349

1234

930

348

211

100

a39

1803

696

0.49

2796

0.09

022

4.6

0.81

989

12.0

0.06

591

11.0

0.38

557

2460

856

804

231

69

a40

1669

100

50.

4131

610.

0531

63.

10.

3899

96.

20.

0532

05.

30.

5033

410

334

1833

812

199

a41

1701

675

0.47

1997

0.07

865

2.6

0.61

135

5.8

0.05

638

5.2

0.45

488

1248

423

467

115

104

a42

1604

666

1.62

2767

0.06

781

3.9

0.54

313

9.9

0.05

809

9.1

0.39

423

1644

036

533

198

79

a43

402

212

3.20

770

0.06

556

4.7

0.47

135

12.5

0.05

215

11.6

0.38

409

1939

242

292

265

140

a44

5265

946

847

0.97

580.

0610

33.

60.

3715

412

.30.

0441

611

.70.

2938

213

321

34-1

0228

9-3

75

a45

3588

169

130.

5855

260.

0676

414

.91.

0587

674

.00.

1135

272

.50.

2042

261

733

486

1856

1310

23

a46

9586

337

170.

1423

370.

0533

82.

20.

3923

74.

90.

0533

14.

40.

4433

57

336

1434

299

98

a47

3295

131

80.

3160

080.

0662

52.

20.

5021

53.

80.

0549

83.

10.

5841

49

413

1341

170

101

a48

1081

052

126

0.21

1592

60.

0528

92.

00.

3844

32.

40.

0527

21.

50.

8033

26

330

731

733

105

a49

6962

247

160.

4612

401

0.06

313

2.1

0.49

006

4.0

0.05

630

3.4

0.53

395

840

513

464

7585

a50

6294

013

7918

0.23

450.

0006

319

5.8

0.02

949

195.

80.

3417

93.

61.

004

830

5936

7156

0

a51

663

161

0.36

334

0.04

545

14.7

-0.8

0012

234.

3-0

.127

6823

3.9

0.06

287

41-1

635

-237

6-

--

a52

5633

139

100.

5630

10.

0614

43.

40.

8885

58.

20.

1048

87.

50.

4138

413

646

4017

1213

722

a53

8200

181

131.

2840

10.

0547

82.

30.

4047

68.

90.

0535

98.

60.

2634

48

345

2635

419

497

a54

2716

146

724

0.70

143

0.03

806

3.6

0.28

157

9.5

0.05

366

8.8

0.38

241

925

221

357

198

68

a55

4830

110

2944

0.17

900.

0252

57.

90.

7849

59.

50.

2254

85.

20.

8416

113

588

4330

2083

5

a56

1014

1875

962

0.42

450.

0431

32.

92.

2830

15.

30.

3839

24.

40.

5627

28

1207

3838

4766

7

a57

5718

935

234

1.08

510.

0489

62.

52.

2530

77.

80.

3337

97.

40.

3230

87

1198

5736

3511

48

a58

6206

939

840

0.89

510.

0540

83.

02.

5975

15.

10.

3483

54.

20.

5934

010

1300

3837

0064

9

a59

2808

174

649

0.14

2252

0.05

320

3.5

0.39

072

5.2

0.05

327

3.9

0.66

334

1133

515

340

8998

a60

1326

325

116

0.86

339

0.05

374

2.9

0.39

619

14.1

0.05

347

13.8

0.21

337

1033

942

349

313

97

b140

472

6299

860.

0529

50.

0115

13.

80.

0879

38.

50.

0553

97.

60.

4474

386

742

816

917

b215

7537

2067

178

0.12

370.

0376

11.

92.

3408

32.

90.

4514

42.

20.

6623

84

1225

2140

9032

6

b374

387

1518

860.

2749

0.02

779

4.6

1.24

293

6.1

0.32

436

4.1

0.75

177

882

035

3591

635

b432

242

728

591.

3010

40.

0525

22.

41.

4433

84.

80.

1993

04.

10.

5033

08

907

2928

2067

12

b523

526

1118

730.

7325

30.

0523

92.

60.

7817

612

.00.

1082

211

.70.

2232

98

586

5517

7021

319

b610

988

842

480.

7674

600.

0462

92.

60.

3531

13.

70.

0553

22.

70.

6929

27

307

1042

560

69

b790

2868

542

1.27

3315

0.05

085

2.5

0.37

627

3.5

0.05

366

2.4

0.72

320

832

410

357

5590

b821

314

1545

640.

2738

60.

0332

54.

50.

3809

15.

90.

0830

83.

80.

7621

19

328

1712

7175

17

b940

035

1523

610.

5277

0.02

483

2.7

0.85

814

5.7

0.25

064

5.0

0.48

158

462

927

3189

795

b10

8867

396

240.

9645

20.

0530

22.

30.

3882

98.

30.

0531

18.

00.

2833

38

333

2433

418

110

0

Page 15: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

219

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 3

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

b11

4505

721

2913

90.

1328

50.

0475

52.

70.

6996

14.

30.

1067

13.

40.

6329

98

539

1817

4462

17

b12

8263

401

220.

2941

50.

0530

62.

20.

3874

07.

60.

0529

57.

30.

2933

37

332

2232

716

610

2

b13

5742

711

8675

0.39

530.

0310

84.

11.

3508

98.

00.

3152

36.

90.

5119

78

868

4835

4710

66

b14

5033

017

7765

0.26

840.

0203

53.

50.

6448

76.

40.

2298

85.

40.

5413

04

505

2630

5186

4

b15

4375

626

9118

80.

2078

70.

0309

74.

80.

2206

55.

20.

0516

72.

00.

9219

79

202

1027

145

73

b16

1517

696

560

0.98

1015

0.05

323

2.1

0.38

898

4.5

0.05

299

4.0

0.47

334

733

413

329

9010

2

b17

3394

811

4752

0.66

720.

0270

92.

30.

9900

56.

30.

2650

95.

80.

3717

24

699

3232

7791

5

b18

4203

111

0173

0.38

990.

0459

93.

10.

3493

411

.00.

0550

910

.50.

2929

09

304

2941

623

570

b19

3454

920

9013

50.

1451

60.

0452

25.

30.

3447

15.

50.

0552

91.

40.

9728

515

301

1442

431

67

b20

2573

228

6215

10.

1694

00.

0381

22.

40.

3513

33.

50.

0668

52.

50.

6924

16

306

983

352

29

b21

1662

413

0482

0.67

3352

0.05

617

2.1

0.41

392

2.8

0.05

345

1.9

0.75

352

735

28

348

4210

1

b22

2654

012

1813

70.

2231

40.

0993

32.

40.

7942

06.

30.

0579

95.

90.

3761

014

594

2952

912

911

5

b23

6288

487

200.

6044

40.

0371

13.

40.

4195

26.

20.

0819

95.

10.

5523

58

356

1912

4510

119

b24

4072

313

9662

0.36

890.

0213

99.

80.

6223

517

.60.

2110

614

.50.

5613

613

491

7129

1423

55

b25

2284

912

4177

0.33

440

0.04

923

3.4

0.60

035

5.2

0.08

845

4.0

0.65

310

1047

720

1392

7622

b26

1864

692

567

0.83

401

0.05

283

2.5

0.38

950

8.0

0.05

347

7.6

0.31

332

833

423

349

172

95

b27

1267

8612

5121

30.

4939

0.09

266

2.6

5.20

770

6.8

0.40

764

6.3

0.37

571

1418

5460

3937

9515

b28

8601

626

371.

0770

80.

0527

33.

10.

3860

25.

90.

0530

95.

00.

5233

110

331

1733

311

410

0

b29

3219

618

4569

0.26

216

0.02

647

2.2

0.18

294

10.4

0.05

012

10.1

0.22

168

417

116

201

235

84

b30

1593

870

435

0.94

158

0.03

603

3.1

0.77

583

10.5

0.15

616

10.1

0.29

228

758

348

2414

171

9

b31

1812

412

3778

0.65

1693

0.05

934

2.3

0.47

434

4.2

0.05

797

3.5

0.55

372

839

414

529

7870

b32

1633

611

3141

0.28

149

0.02

516

5.5

0.51

567

7.3

0.14

863

4.7

0.76

160

942

225

2330

817

b33

2895

524

8011

00.

0892

10.

0460

42.

00.

3434

13.

80.

0540

93.

30.

5229

06

300

1037

574

77

b34

8720

530

280.

1146

30.

0532

81.

90.

3891

88.

50.

0529

88.

30.

2333

56

334

2432

818

810

2

b35

1884

411

2057

0.62

188

0.04

071

3.9

0.74

995

10.7

0.13

362

9.9

0.37

257

1056

848

2146

174

12

b36

2280

140

90.

2138

860.

0681

52.

30.

5515

05.

60.

0586

95.

10.

4242

510

446

2055

611

176

b37

3179

156

110.

1739

200.

0746

32.

50.

5846

75.

00.

0568

24.

40.

4946

411

467

1948

496

96

b38

4650

329

170.

4116

340.

0505

92.

30.

4280

95.

60.

0613

75.

10.

4131

87

362

1765

210

949

b39

1901

9011

0.56

3312

0.12

017

1.8

0.95

267

4.4

0.05

750

4.0

0.42

732

1367

922

511

8814

3

b40

879

323

0.68

1397

0.09

025

3.8

0.78

869

9.5

0.06

338

8.7

0.40

557

2059

043

721

184

77

b41

833

663

1.08

470

0.04

705

31.4

-1.3

6152

214.

3-0

.209

8921

2.0

0.15

296

91-

--

--

b42

2398

213

6271

0.19

1356

0.05

382

2.6

0.39

374

4.6

0.05

306

3.8

0.56

338

933

713

331

8610

2

b43

3539

176

110.

1363

480.

0638

41.

90.

4926

44.

10.

0559

63.

60.

4639

97

407

1445

181

88

b44

3475

145

90.

0960

650.

0639

62.

60.

5054

75.

30.

0573

24.

60.

4940

010

415

1850

410

179

b45

6852

395

271.

3245

000.

0598

54.

00.

4813

94.

70.

0583

42.

40.

8637

515

399

1654

352

69

b46

6842

249

161.

0254

30.

0552

32.

00.

4225

64.

40.

0554

93.

90.

4634

77

358

1343

287

80

Page 16: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

220

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

a110

307

774

491.

2919

426

0.05

342

2.2

0.39

187

3.2

0.05

320

2.3

0.68

335

733

69

337

5399

a250

986

4138

790.

2211

70.

0134

52.

30.

3329

92.

70.

1795

91.

50.

8386

229

27

2649

263

a381

153

5909

156

0.08

145

0.01

923

2.6

0.40

773

3.7

0.15

380

2.6

0.70

123

334

711

2389

445

a419

110

1371

890.

2419

980.

0535

32.

20.

4551

53.

10.

0616

62.

30.

6933

67

381

1066

249

51

a536

264

2621

150

0.10

1496

0.04

550

2.1

0.39

409

2.5

0.06

281

1.4

0.84

287

633

77

702

3041

a617

203

1078

650.

8557

50.

0535

12.

50.

4122

63.

90.

0558

83.

00.

6333

68

351

1244

767

75

a763

054

4513

180

0.09

260

0.03

136

2.5

0.23

883

4.4

0.05

523

3.6

0.58

199

521

79

422

8047

a891

1856

832

1.26

701

0.04

755

2.4

0.35

119

6.7

0.05

357

6.3

0.35

299

730

618

353

142

85

a915

865

1231

860.

2380

150.

0528

52.

80.

3906

53.

30.

0536

11.

70.

8533

29

335

935

539

94

a10

9328

342

82.

0614

70.

0062

419

.70.

1349

420

.90.

1567

87.

10.

9440

812

926

2421

120

2

a11

1207

758

032

0.82

271

0.04

475

3.5

0.67

339

8.4

0.10

914

7.6

0.42

282

1052

335

1785

138

16

a12

5776

308

150.

4926

00.

0440

82.

80.

6643

74.

80.

1093

03.

90.

5827

88

517

1917

8870

16

Tabl

e 4.

U-P

b-Th

dat

a of

zirc

ons

from

sam

ple

Gr4

, n =

17

of 1

38 m

easu

red

spot

s on

127

zirc

on g

rain

s w

ithin

90 –

110%

con

cord

ance

, gra

nite

to

gran

ite g

neis

s, la

rge

intru

sive

bod

y ne

ar M

ittw

eida

, 51

° 04′

41.3

8″ N

; 12°

53′ 0

5.19

″ E.

Tabe

lle 4

. U-T

h-Pb

-Dat

en d

er Z

irkon

e au

s Pro

be G

r4, n

= 1

7 vo

n 13

8 M

essp

unkt

en a

uf 1

27 Z

irkon

körn

ern

inne

rhal

b 90

– 11

0 %

Kon

kord

anz,

Gra

nit b

is G

rani

tgne

is a

us e

inem

aus

ein

em g

roße

n In

trusi

vkör

per

nahe

Mitt

wei

da, 5

1° 04

′ 41.

38″

N; 1

2° 53

′ 05.

19″

E.

Tabl

e 3

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

b47

1228

762

537

0.45

1857

0.04

871

2.5

0.33

871

3.2

0.05

043

2.0

0.79

307

829

68

215

4514

3

b48

5117

218

141.

4093

100.

0532

72.

00.

3914

54.

40.

0532

93.

90.

4733

57

335

1334

188

98b4

929

3314

58

0.55

5555

0.05

302

2.8

0.38

823

4.3

0.05

311

3.2

0.66

333

933

312

334

7310

0b5

059

1017

611

1.06

506

0.04

969

1.9

0.54

078

6.1

0.07

894

5.9

0.30

313

643

922

1171

116

27

b51

4635

177

121.

4913

650.

0534

92.

60.

3926

212

.10.

0532

311

.80.

2133

68

336

3533

926

799

b52

8402

297

181.

3452

50.

0509

53.

30.

4023

16.

70.

0572

75.

90.

4932

010

343

2050

212

964

b53

1339

722

818

0.18

262

0.07

568

2.6

0.60

663

5.5

0.05

814

4.9

0.47

470

1248

121

535

107

88

b54

1934

784

0.47

3398

0.05

323

2.6

0.39

010

6.1

0.05

315

5.6

0.42

334

833

418

335

126

100

b55

1485

756

032

0.63

3159

0.05

326

2.1

0.39

437

3.0

0.05

371

2.2

0.68

334

733

89

359

5093

b56

3852

100

60.

1867

360.

0638

12.

70.

5048

03.

50.

0573

72.

30.

7639

910

415

1250

651

79

b57

4290

225

521

0.88

450.

0363

95.

62.

0137

36.

80.

4013

13.

80.

8323

013

1120

4739

1456

6

b58

5195

181

90.

2797

180.

0532

42.

60.

3932

24.

20.

0535

73.

30.

6233

49

337

1235

374

95b5

978

2928

916

0.79

1455

90.

0530

62.

90.

3936

93.

80.

0538

12.

50.

7733

39

337

1136

355

92b6

032

06

00.

3251

00.

0550

04.

60.

4447

914

.00.

0586

613

.20.

3334

516

374

4555

428

962

Page 17: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

221

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 4

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

a13

2883

723

0816

00.

1352

280.

0521

72.

00.

4006

32.

40.

0557

01.

30.

8332

86

342

744

030

74

a14

7053

146

8314

20.

1112

10.

0236

04.

40.

1743

78.

50.

0535

97.

30.

5215

07

163

1335

416

442

a15

3894

229

5520

20.

1024

736

0.05

699

1.9

0.41

546

2.0

0.05

288

0.7

0.93

357

735

36

323

1711

0

a16

——

——

——

——

——

——

——

——

——

a17

1439

299

333

0.55

424

0.02

800

4.8

0.31

435

5.1

0.08

142

1.8

0.93

178

827

813

1232

3614

a18

1287

095

969

0.98

1517

0.05

993

2.3

0.43

718

3.2

0.05

290

2.3

0.70

375

836

810

325

5211

6

a19

3867

229

1618

90.

0819

300.

0582

42.

00.

4206

42.

40.

0523

81.

20.

8636

57

357

730

227

121

a20

1590

512

6585

0.35

4567

0.05

357

2.4

0.39

213

3.0

0.05

309

1.8

0.79

336

833

69

333

4210

1

a21

1649

798

948

0.31

992

0.04

677

2.4

0.45

183

4.2

0.07

007

3.5

0.56

295

737

913

930

7232

a22

1260

099

132

0.38

217

0.02

754

3.4

0.45

329

5.1

0.11

936

3.8

0.66

175

638

016

1947

699

a23

1431

998

659

0.63

445

0.04

370

4.1

0.51

059

5.4

0.08

473

3.6

0.75

276

1141

919

1309

6921

a24

1471

884

636

1.24

119

0.02

942

5.3

0.76

271

12.4

0.18

805

11.3

0.42

187

1057

656

2725

186

7

a25

2311

216

2596

0.63

1039

0.05

284

2.3

0.38

809

3.7

0.05

326

2.9

0.63

332

833

311

340

6698

a26

6497

564

270.

5811

698

0.04

952

2.1

0.38

038

3.5

0.05

571

2.8

0.60

312

632

710

441

6371

a27

——

——

——

——

——

——

——

——

——

a28

2513

119

70.

7315

600.

0563

34.

40.

5341

46.

80.

0687

75.

20.

6435

315

435

2489

210

840

a29

1764

415

4175

0.65

2368

0.03

971

3.5

0.31

431

4.1

0.05

741

2.1

0.86

251

927

810

507

4650

a30

2004

817

7294

0.41

3081

0.04

453

2.7

0.32

927

3.4

0.05

363

2.1

0.80

281

828

99

356

4779

a31

5905

840

7223

70.

0872

60.

0475

81.

90.

3449

42.

50.

0525

81.

50.

7830

06

301

631

135

96

a32

3711

331

0614

10.

1047

00.

0352

02.

50.

2619

83.

40.

0539

82.

30.

7422

36

236

737

051

60

a33

3923

332

3619

30.

1041

30.

0518

91.

90.

3872

74.

70.

0541

34.

30.

4032

66

332

1337

696

87

a34

3425

732

7719

60.

0816

900.

0534

12.

30.

3895

53.

20.

0529

02.

20.

7133

57

334

932

450

103

a35

3546

327

7472

0.11

109

0.01

772

2.6

0.46

475

3.2

0.19

021

1.9

0.80

113

338

811

2744

324

a36

1414

412

6989

0.47

6843

0.05

631

1.9

0.42

380

2.6

0.05

458

1.7

0.74

353

735

98

395

3989

a37

3398

917

2111

60.

1714

30.

0506

92.

61.

0662

83.

60.

1525

72.

50.

7331

98

737

1923

7542

13

a38

2621

422

6610

90.

1182

80.

0401

32.

10.

3972

22.

80.

0717

91.

80.

7625

45

340

898

037

26

a39

2307

216

3293

0.17

1112

0.04

602

3.0

0.41

496

4.8

0.06

540

3.7

0.63

290

935

214

787

7837

a40

3598

028

2111

60.

0840

10.

0338

84.

00.

4172

34.

90.

0893

12.

90.

8121

58

354

1514

1156

15

a41

2288

014

1568

0.16

332

0.03

746

3.4

0.49

168

4.4

0.09

521

2.7

0.78

237

840

615

1532

5115

a42

5976

015

1396

0.35

102

0.04

168

2.3

1.08

948

5.0

0.18

956

4.4

0.45

263

674

827

2738

7310

a43

2386

319

1570

0.13

477

0.03

207

2.2

0.36

314

3.3

0.08

212

2.5

0.66

204

431

59

1248

4916

a44

2224

614

3267

0.14

595

0.03

627

2.1

0.35

320

2.9

0.07

062

1.9

0.75

230

530

78

946

3924

a45

3494

619

2710

30.

1163

20.

0426

32.

10.

3091

73.

00.

0526

02.

10.

7126

96

274

731

148

86

a46

3933

722

9799

0.09

261

0.03

582

1.9

0.50

577

4.9

0.10

242

4.5

0.39

227

441

617

1668

8314

a47

1965

211

3243

0.15

453

0.02

940

2.4

0.34

360

3.5

0.08

477

2.5

0.68

187

430

09

1310

4914

a48

1723

198

448

0.59

1039

0.04

513

3.0

0.42

309

4.0

0.06

800

2.6

0.75

285

835

812

868

5433

Page 18: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

222

Tabl

e 4

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

a49

1755

683

052

0.47

3670

0.05

318

2.4

0.40

869

3.2

0.05

574

2.1

0.76

334

834

810

442

4776

a50

1070

4815

8982

0.15

500.

0240

72.

71.

1108

03.

50.

3346

52.

30.

7715

34

759

1936

3835

4

a51

2393

210

5669

0.12

8161

0.05

430

2.0

0.40

938

2.5

0.05

468

1.5

0.81

341

734

87

399

3385

a52

543

202

3.48

903

0.05

595

5.2

0.46

984

10.2

0.06

091

8.8

0.51

351

1839

134

636

189

55

a53

3186

198

061

0.25

335

0.05

231

2.9

0.69

036

4.1

0.09

571

2.9

0.71

329

953

317

1542

5521

a54

3701

311

4960

0.12

312

0.04

177

2.3

0.56

278

4.2

0.09

771

3.5

0.55

264

645

315

1581

6617

a55

3016

410

0373

0.12

893

0.06

239

2.0

0.45

448

2.6

0.05

283

1.7

0.76

390

738

08

321

3812

1

a56

7889

627

4315

30.

0688

70.

0482

02.

60.

4562

22.

80.

0686

61.

10.

9230

38

382

988

822

34

a57

4052

885

049

0.14

256

0.04

239

2.2

0.32

509

4.5

0.05

562

3.9

0.50

268

628

611

437

8661

a58

2865

196

760

0.15

3403

0.05

443

2.3

0.43

252

2.9

0.05

764

1.7

0.80

342

836

59

516

3866

a59

9099

277

160.

3817

050.

0549

62.

40.

4501

75.

10.

0594

04.

50.

4834

58

377

1658

298

59

a60

1947

953

831

0.71

1077

0.04

784

2.3

0.35

652

3.5

0.05

405

2.5

0.68

301

731

09

373

5781

b118

782

1153

670.

6887

00.

0479

72.

20.

3420

24.

40.

0517

13.

80.

4930

26

299

1127

288

111

b247

772

4074

920.

0717

30.

0163

12.

50.

3006

63.

60.

1337

22.

60.

6810

43

267

921

4746

5

b345

401

2097

110

0.11

190

0.04

077

3.7

0.30

177

4.8

0.05

369

3.1

0.77

258

926

811

358

7072

b446

441

2901

148

0.09

588

0.04

365

2.8

0.33

019

3.8

0.05

487

2.6

0.74

275

829

010

407

5868

b567

726

5210

276

0.08

1616

0.04

164

1.9

0.35

362

2.9

0.06

160

2.1

0.68

263

530

78

660

4540

b648

692

1631

150

0.31

123

0.06

166

3.0

0.44

363

5.9

0.05

218

5.0

0.52

386

1137

318

293

114

132

b718

610

1012

630.

3535

70.

0470

02.

00.

6234

64.

40.

0962

03.

90.

4529

66

492

1715

5274

19

b827

737

1849

970.

1253

50.

0409

72.

90.

4506

93.

20.

0797

81.

30.

9125

97

378

1011

9226

22

b950

893

3872

228

0.18

1835

0.06

036

2.5

0.44

067

2.7

0.05

295

1.0

0.93

378

937

18

326

2311

6

b10

3115

323

3914

30.

1119

910.

0479

42.

40.

4042

12.

70.

0611

51.

10.

9130

27

345

864

524

47

b11

4139

029

1419

40.

0917

390.

0564

92.

10.

4094

12.

30.

0525

61.

10.

8935

47

348

731

024

114

b12

2588

920

7298

0.12

286

0.03

964

2.0

0.55

845

5.2

0.10

217

4.8

0.39

251

545

119

1664

8915

b13

3930

452

5113

00.

0555

00.

0215

72.

70.

2327

03.

10.

0782

41.

40.

8813

84

212

611

5329

12

b14

6618

947

2010

60.

0718

70.

0170

13.

20.

1239

05.

00.

0528

53.

90.

6310

93

119

632

289

34

b15

1907

611

8667

0.65

938

0.04

894

2.1

0.36

360

3.4

0.05

388

2.7

0.61

308

631

59

366

6084

b16

6248

139

5612

90.

0717

00.

0264

82.

60.

4954

63.

90.

1357

02.

90.

6616

84

409

1321

7350

8

b17

4115

210

140.

3521

500.

0654

51.

90.

5410

74.

20.

0599

53.

70.

4640

98

439

1560

281

68

b18

8957

218

5113

50.

1252

0.04

077

2.3

1.83

990

4.4

0.32

730

3.7

0.52

258

610

6029

3604

577

b19

1800

946

233

1.29

257

0.05

060

2.5

0.35

187

14.1

0.05

043

13.8

0.18

318

830

638

215

321

148

b20

7339

926

0610

30.

1168

0.02

171

2.0

0.80

264

2.4

0.26

811

1.2

0.85

138

359

811

3295

194

b21

2597

020

4665

0.15

293

0.02

557

3.3

0.35

898

4.3

0.10

184

2.7

0.77

163

531

112

1658

5010

b22

3295

738

9896

0.20

851

0.02

459

4.6

0.17

254

4.7

0.05

088

1.1

0.97

157

716

27

235

2667

b23

1433

195

361

1.02

4399

0.05

562

2.2

0.43

776

3.0

0.05

708

2.0

0.75

349

836

99

495

4471

b24

1852

811

8786

0.17

997

0.05

805

2.1

0.48

760

3.5

0.06

092

2.8

0.60

364

740

312

636

6157

Page 19: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

223

GEOLOGICA SAXONICA — 59: 2013

Tabl

e 4

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

b25

1304

163

537

1.38

372

0.04

534

3.3

0.53

986

5.1

0.08

635

3.9

0.65

286

943

818

1346

7521

b26

3669

022

6265

0.14

125

0.02

024

2.2

0.48

566

2.6

0.17

402

1.4

0.84

129

340

29

2597

235

b27

1749

685

243

1.10

376

0.03

818

2.5

0.47

764

4.6

0.09

074

3.9

0.53

242

639

615

1441

7517

b28

2239

113

8260

0.53

441

0.04

130

2.4

0.30

568

3.5

0.05

368

2.5

0.69

261

627

18

358

5873

b29

4830

915

5164

0.17

800.

0237

02.

40.

7597

03.

30.

2325

32.

30.

7115

14

574

1530

7037

5

b30

8732

739

1916

10.

0818

00.

0323

43.

10.

2170

95.

30.

0486

84.

40.

5820

56

199

1013

210

315

5

b31

2607

116

2286

0.37

4232

90.

0534

03.

10.

3951

13.

50.

0536

61.

50.

9133

510

338

1035

733

94

b32

1368

173

354

1.10

914

0.06

286

2.0

0.61

116

5.2

0.07

051

4.8

0.39

393

848

420

943

9942

b33

6410

015

4784

0.13

790.

0292

12.

70.

9279

55.

90.

2304

25.

20.

4618

65

667

2930

5583

6

c124

529

1383

610.

1251

40.

0356

82.

80.

2649

24.

40.

0538

53.

30.

6522

66

239

936

574

62

c224

666

924

470.

4118

10.

0377

42.

30.

6753

74.

00.

1297

83.

40.

5623

95

524

1720

9559

11

c342

731

1805

840.

1015

80.

0352

62.

50.

7406

03.

90.

1523

33.

10.

6322

35

563

1723

7252

9

c445

760

1883

770.

0921

70.

0318

13.

20.

2456

95.

30.

0560

14.

10.

6120

26

223

1145

392

45

c566

531

3537

191

0.08

715

0.04

428

3.5

0.32

148

3.9

0.05

266

1.7

0.90

279

928

310

314

3889

c650

042

3684

108

0.07

352

0.02

318

2.7

0.30

429

3.1

0.09

523

1.5

0.88

148

427

07

1533

2810

c787

672

4694

142

0.11

900.

0195

22.

80.

6013

84.

80.

2234

93.

90.

5912

53

478

1830

0662

4

c832

961

1839

108

0.10

1455

0.04

651

2.7

0.38

879

3.2

0.06

063

1.8

0.83

293

833

39

626

3947

c945

804

1962

940.

1324

40.

0401

12.

50.

6071

14.

90.

1097

74.

20.

5025

46

482

1917

9676

14

c10

3088

612

6866

0.13

206

0.04

041

3.6

0.66

382

4.1

0.11

915

2.0

0.87

255

951

717

1944

3613

c11

1528

286

050

0.88

1160

0.05

004

3.1

0.45

911

4.7

0.06

655

3.5

0.66

315

938

415

824

7338

c12

1366

280

242

0.18

1319

00.

0555

92.

60.

4187

63.

60.

0546

32.

50.

7234

99

355

1139

756

88

c13

1317

767

036

1.08

700

0.04

473

2.4

0.43

691

4.5

0.07

084

3.8

0.54

282

736

814

953

7730

c14

1642

890

955

0.64

2400

0.04

690

2.6

0.38

070

3.7

0.05

887

2.6

0.71

295

832

810

562

5653

c15

3762

126

4585

0.31

558

0.03

005

3.2

0.32

476

3.6

0.07

837

1.7

0.89

191

628

69

1156

3317

c16

6852

231

190.

5255

970.

0803

63.

00.

7769

73.

80.

0701

22.

40.

7849

814

584

1793

249

53

c17

4140

930

7710

40.

0733

20.

0289

82.

80.

3866

53.

30.

0967

71.

90.

8318

45

332

915

6335

12

c18

5828

339

200.

7910

644

0.05

366

2.7

0.40

664

3.3

0.05

496

1.9

0.82

337

934

610

411

4382

c19

1644

474

833

0.58

1142

0.03

794

3.8

0.34

269

4.3

0.06

550

2.0

0.88

240

929

911

791

4330

c20

2941

715

9610

50.

1154

70.

0524

92.

70.

5849

73.

90.

0808

32.

80.

7033

09

468

1512

1756

27

c21

6278

320

180.

7414

800.

0503

12.

80.

4625

55.

90.

0666

95.

20.

4831

69

386

1982

810

838

c22

3300

191

130.

7360

980.

0622

32.

50.

4675

44.

50.

0544

93.

70.

5538

99

389

1539

184

99

c23

3060

822

8495

0.09

702

0.03

471

2.8

0.35

621

3.3

0.07

444

1.7

0.85

220

630

99

1053

3421

c24

2512

214

0084

0.52

815

0.05

301

2.3

0.38

834

3.8

0.05

313

3.0

0.62

333

833

311

334

6810

0

c25

4256

514

2077

0.22

150

0.03

777

2.4

0.80

437

4.7

0.15

446

4.0

0.51

239

659

921

2396

6810

c26

5150

735

0084

0.07

150

0.01

649

5.2

0.34

490

5.7

0.15

169

2.3

0.91

105

530

115

2365

404

c27

2532

512

6670

0.18

325

0.04

077

4.6

0.54

603

5.7

0.09

713

3.4

0.80

258

1244

221

1570

6416

Page 20: U-Pb ages and morphology of zircons from different ... · PDF fileA. Sagawe et al. U-Pb ages and morphology of zircons from diflerent granites within the Saxonian Granulite Massif

A. Sagawe et al.: U-Pb ages and morphology of zircons from different granites within the Saxonian Granulite Massif

224

a

with

in-r

un b

ackg

roun

d-co

rrec

ted

mea

n 20

7 Pb

sign

al in

cou

nts p

er se

cond

b U

and

Pb

cont

ent a

nd T

h/U

ratio

wer

e ca

lcul

ated

rela

tive

to G

J-1

and

are

accu

rate

to a

ppro

xim

atel

y 10

%.

c

corr

ecte

d fo

r bac

kgro

und,

mas

s bia

s, la

ser i

nduc

ed U

-Pb

frac

tiona

tion

and

com

mon

Pb

(if d

etec

tabl

e, se

e ana

lytic

al m

etho

d) u

sing

Sta

cey

and

Kra

mer

s (19

75) m

odel

Pb

com

posi

tion.

207

Pb/23

5 U ca

lcul

ated

usi

ng

207 P

b/20

6 Pb/

(238 U

/206 P

b ×

1/13

7.88

). Er

rors

are

pro

paga

ted

by q

uadr

atic

add

ition

of w

ithin

-run

err

ors (

2SE)

and

the

repr

oduc

ibili

ty o

f GJ-

1 (2

SD).

d R

ho is

the

erro

r cor

rela

tion

defin

ed a

s err

206 P

b/23

8 U/e

rr20

7 Pb/

235 U

.

Tabl

e 4

cont

inue

d.

Nam

e(s

pot)

207 Pb

a

(cps

)

207 Pb

a

(cps

)Pb

b

(ppm

)Th

b /U20

6 Pbc /20

4 Pb20

6 Pbc /23

8 U2 σ

(%)

207 Pb

c /235 U

2 σ

(%)

207 Pb

c /206 Pb

2 σ

(%)

Rhod

206 Pb

/238 U

± 2 σ

(Ma)

207 Pb

/235 U

± 2 σ

(Ma)

207 Pb

/206 Pb

± 2 σ

(Ma)

conc

(%)

c28

4000

629

1717

70.

0834

430.

0530

42.

80.

3880

63.

10.

0530

71.

40.

8933

39

333

933

232

100

c29

3790

118

6067

0.15

171

0.02

185

3.6

0.39

932

4.5

0.13

256

2.7

0.80

139

534

113

2132

477

c30

5898

924

7583

0.15

760.

0193

24.

00.

6477

97.

00.

2431

25.

80.

5612

35

507

2831

4092

4

c31

7590

233

220.

0312

571

0.10

303

2.4

0.86

111

3.8

0.06

062

2.9

0.63

632

1463

118

626

6310

1

c32

5074

041

2994

0.06

141

0.01

935

2.7

0.14

419

6.5

0.05

404

6.0

0.41

124

313

78

373

134

33

c33

6409

333

150.

3571

00.

0427

44.

30.

4830

69.

90.

0819

89.

00.

4327

011

400

3312

4517

622

c34

4051

290

150.

3176

450.

0535

72.

70.

3933

24.

00.

0532

52.

90.

6833

69

337

1234

067

99

c35

3508

236

130.

6963

210.

0514

53.

00.

3941

14.

50.

0555

53.

30.

6832

310

337

1343

574

74

c36

2811

115

6373

0.18

293

0.03

657

2.6

0.50

615

4.5

0.10

038

3.7

0.57

232

641

616

1631

7014

c37

1113

567

936

0.27

4099

0.05

515

2.2

0.40

811

3.5

0.05

367

2.7

0.63

346

834

810

357

6197

c38

2941

722

3185

0.19

470

0.03

479

2.5

0.27

036

3.9

0.05

635

3.0

0.64

220

524

38

466

6647

c39

1926

310

9065

0.49

3446

0.05

041

2.3

0.36

892

2.8

0.05

307

1.6

0.83

317

731

98

332

3595

c40

3531

919

6412

10.

1016

700.

0510

82.

50.

3742

22.

90.

0531

41.

60.

8332

18

323

833

537

96

c41

7172

142

7411

30.

0616

20.

0205

03.

30.

4028

54.

30.

1425

22.

80.

7713

14

344

1322

5848

6

c42

9314

390

190.

5185

80.

0466

62.

30.

4814

93.

70.

0748

42.

90.

6329

47

399

1210

6458

28

c43

4633

926

2913

50.

1261

30.

0386

03.

10.

4106

73.

30.

0771

71.

20.

9424

48

349

1011

2623

22

c44

4211

633

380.

7224

0.49

141

7.2

46.0

5405

8.9

0.67

971

5.3

0.80

2577

154

3911

9346

8877

55

c45

5333

817

0999

0.11

288

0.04

266

3.1

0.60

866

4.1

0.10

347

2.7

0.76

269

848

316

1687

4916

c46

1249

152

133

1.16

3911

0.05

359

2.6

0.42

965

3.3

0.05

815

2.0

0.79

337

836

310

535

4463

c47

2101

787

055

0.23

2745

0.05

302

2.3

0.38

930

3.3

0.05

326

2.4

0.68

333

733

410

340

5598

c48

1689

652

0.99

118

0.02

117

26.3

0.41

997

35.9

0.14

388

24.5

0.73

135

3535

611

422

7442

26

c49

1666

067

925

0.61

467

0.03

002

5.7

0.35

020

7.0

0.08

459

4.0

0.82

191

1130

519

1306

7915

c50

3264

412

9075

0.09

2085

0.05

260

2.3

0.38

533

3.2

0.05

313

2.2

0.74

330

833

19

334

4999