TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG...

64
Energy Biomethane GHG Beyond Paris COP21 CO 2 Climate Targets 2050 NECP Net-zero Bio-energy Wind Solar Hydro Hydrogen Methane Carbon Capture Europe Power-to-gas Sector coupling Decarbonised economy Renewable energy Distributed Energy Carbon budget Electricity Hybrid System Gas Global Ambion TYNDP 2020 SCENARIO REPORT Naonal Trends Scenarios

Transcript of TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG...

Page 1: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

European Network ofTransmission System Operators

for Electricity

Energy

Biomethane

GHG

Beyond

Paris

COP21

CO2

Climate Targets

2050NECP

Net-zero

Bio-energy

WindSolar

Hydro

Hydrogen

Methane

Carbon Capture

Europe

Power-to-gas

Sector coupling

Decarbonised economy

Renewable energy

Distributed Energy

Carbon budget

Electricity

Hybrid System

Gas

Global Ambition

TYNDP 2020SCENARIO REPORT

National Trends

Scenarios

Page 2: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

Contents

Foreword 3

1 Introduction 4

2 Purpose of the scenario report 6

3 Highlights 8

4 Special Focus: Pathways towards a decarbonised economy 94.1 NationalTrends–thecentralpolicyscenarioalignedwithdraftNECPs 94.2 COP21scenarios–acarbonbudgetapproach 104.3 Sector-Coupling–anenablerfor( full )decarbonisation 12

5 Scenario description and storylines 13

6 Scenario Results 176.1 Demand 186.2 Supply 256.3 SectorCoupling:CapacityandGenerationforP2GandP2L 336.4 ReductioninoverallEU28CO₂Emissionsandnecessarymeasures 34

7 Electricity Costs 37

8 Benchmarking 408.1 FinalElectricityDemand 418.2 Gasdemand 438.3 Renewablegassupply 458.4 Energyimports 468.5 CarbonCaptureandStorage 478.6 Conclusion 47

9 Fuel Commodities and Carbon Prices 48

10 Stakeholder feedback and how it shaped the scenarios 4910.1 StorylineConsultation 5110.2 DraftScenarioReportConsultation 53

11 Improvements in 2020 Scenarios 5511.1 Moresustainability-orientedScenarios( carbonbudget ) 5611.2 TotalEnergyScenarios( Top-down ) 5611.3 ElectricityDemand 5611.4 GasDemand 5711.5 ElectricityGeneration 5711.6 GasSupply 5811.7 P2GandP2L 5811.8 DataVisualisationPlatform 58

12 Next Steps 59

Glossary 60

List of Figures & Tables 62

Imprint 63

Page 3: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 3

We are delighted to present to you the electricity and gas joint Scenario Report,

thesecondreportofitskindtoinvolveENTSO-EandENTSOGworkingcloselytogethertodevelopthreescenariosforEurope.Scenarioworkisthefirstimportantsteptocapturetheinteractionsbetweenthegasandelectricitysystemsandisthereforeparamounttodeliv-erthebestassessmentoftheinfrastructureinahybridsystem.ThejointworkalsoprovidesabasistoallowassessmentfortheEuropeanCommission’sProjectsofCommonInterest(PCI)listforenergy,asENTSOGandENTSO-EprogresstodeveloptheirTen-YearNetworkDevelopmentPlans(TYNDPs).

Theoutcomesoftheworkpresented, illustratestheuniquepositionofthegasandelectricityTSOstoprovidequantitativeandqualitativeoutput:Intotalalmost90TSOs,coveringmorethan35countries,contributedtotheprocess.ThecombinedexpertiseandmodellingcapabilitiesenabledENTSO-EandENTSOG’sjointworkinggrouptobuildasetofambitiousandtechnicallyrobustscenarios.

Stakeholdercollaborationandfeedbackhasbeenanimmenselyimportantelementoftheprocessandwillcontinuetobeinfutureeditions.ThepublicationofthedraftScenarioReporton12November2019wasfollowedbyanexternalStakeholderWorkshopon5Decemberandanextensivepublicconsultation.ENTSOGandENTSO-EhavefinalisedtheirScenarioReportconsideringthefeedbackandrecommendationsofmorethan40externalstakeholders.

AcoreelementofENTSO-EandENTSOG’sscenariobuild-ingprocesshasbeentheuseofsupplyanddemanddatacollectedfrombothgasandelectricityTSOstobuildbot-tom-upscenarios.ThisapproachisusedfortheNational TrendsScenario,thecentralpolicyscenarioofthisreport,recognisingnationalandEUclimatetargets,notablytheNationalEnergyandClimatePlans(NECPs).Inviewofthe1.5°CtargetoftheParisAgreement,ENTSOshavealsodevelopedtheGlobal AmbitionandDistributed Energy Scenariosusingatop-downapproachwithafull-energyperspective.

AsENTSO-EandENTSOGlooktothefuture,itisevidentthatinnovation,integrationandefficiencyarekeytomeetingEuropeanenergyconsumers’needs,whilstalsoachievingEUdecarbonisationgoals.Bothgasandelectricitynetworksconnectcountriesandleadtoregionalandpan-Europeansolidarityandeconomiesofscale,whileensuringelectricityandgasaredeliveredreliablytocustomersthroughouttheyear,includingpeakdemandsituations.Bothnetworksplayakeyroleinsupportingtheuptakeofnewtechnologiesandmeetingdecarbonisationchallenges.Energyconversionprojectsmustprogress:Power-to-Gas,forexample,allowselectricityfromrenew-ablestobetransformedintorenewablegases,tobestoredandtransportedviathegasinfrastructure.

Integrationoftheelectricityandgassectorcanoptimisetheassessmentandusageofbothgrids,whilstcontinuingtomeettheEuropeanenergypolicyobjectivesofsustainability,securityofsupplyandcompetitiveness.Ahybridenergyinfrastructure–consistingofasystemofinterconnectedelectricityandgassystems–ascross-borderenergycarrierswillresultinflexibility,storageandsecurityofsupply.

Theintegrityofthenetworkdevelopmentprocessisreliantonacomprehensive,reliableandcontrastedsetofpossibleenergyfutures–thecollaborativeeffortsofENTSO-EandENTSOG,energyindustries,NGOs,NationalRegulatoryAuthoritiesandMemberStateshaveshownthecommit-menttoensurethisisthecase.ThedevelopmentoftheScenariosoutlinedinthisreportwillallowtheTYNDPstoperformasoundassessmentofEuropeaninfrastruc-turerequirements.WelookforwardtoworkingwithyouagainaswefollowthenextimportantstepsintheTYNDPprocess.

Foreword

Jan Ingwersen General Director ENTSOG

Laurent Schmitt Secretary-General ENTSO-E

Page 4: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

4 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

What is this report about?

TheTYNDP2020FinalScenarioReportdescribespossibleEuropeanenergyfuturesupto2050.Scenarios are not forecasts;theysetoutarangeofpossiblefuturesusedbytheENTSO-EandENTSOGtotestfutureelectricityandgasinfrastructureneedsandprojects.Thescenariosare

ambitiousastheydeliveralowcarbonenergysystemforEuropeby2050.ENTSO-EandENTSOGhavedevelopedcrediblescenariosthatareguidedbytechnicallysoundpathways,whilereflectingcountrybycountryspecifics,sothatapanEuropeanlowcarbonfutureisachieved.

Forward-looking scenarios to study the future of gas and electricity

Regulation( EU )347/2013requiresthattheENTSO-EandENTSOGusescenariosfortheirrespectiveTen-YearNetworkDevelopmentPlans( TYNDPs )2020.ENTSO-EusescenariostoassesselectricitysecurityofsupplyfortheENTSO-EMid-TermAdequacyForecast( MAF ).

AllscenariosheadtowardsadecarbonisedfutureandhavebeendesignedtoreduceGHGemissionsinlinewithEUtargetsfor2030ortheUnitedNationsClimateChangeConference2015( COP21 )ParisAgreementobjectiveofkeepingtemperaturerisebelow1.5°C.

Introduction1

Page 5: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 5

Why do ENTSOG and ENTSO-E build scenarios together?

1 https://www.entsog.eu/sites/default/files/2019-06/190408_WGSB_Scenario%20Building%202020_Final%20Storyline%20Report.pdf

2 https://www.entsos-tyndp2020-scenarios.eu/visualisation-platform/

3 https://www.entsos-tyndp2020-scenarios.eu/wp-content/uploads/2020/06/TYNDP_2020_Scenario_Building_Guidelines_Final_Report.pdf

ThejointscenarioreportisabasistowardsaninterlinkedmodelofENTSO-EandENTSOG.TYNDP2018wasthefirsttimeENTSOGandENTSO-Ecooperatedjointlyonscenariodevelopment.Therearestrongsynergiesandco-dependencybetweengasandelectricityinfrastructures,itisincreasinglyimportanttounderstandtheimpactsasEuropeanpolicyseekstodeliveracarbon-neutralenergysystemby2050.

JointscenariosallowENTSOGandENTSO-Etoassessfutureinfrastructureneedsandprojectsagainstthesamefutureoutlooks.Theoutcomesfromthejointscenariosprovidedecisionmakerswithbetter information,astheyseektomakeinformedchoicesthatwillbenefitallEuropeanconsumers.CombiningtheeffortsfromgasandelectricityTSOsgiveENTSOGandENTSO-Eanopportunitytotapintocross-sectoralknowledgeandexpertisethatwouldotherwisebemissing.Jointworkingprovidesaccesstoabroaderrangeofstakeholderswhoareactivelyparticipatingintheenergysector.

First step towards the 2020 edition of electricity and gas TYNDPs

ThejointscenariobuildingprocesshasthreestorylinesforTYNDP2020.National Trendsisthecentralpolicyscenar-ioofthisreport,designedtoreflectthemostrecentEUmemberstateNationalEnergyandClimatePlans( NECP ),submittedtotheECinlinewiththerequirementtomeetcurrentEuropean2030energystrategytargets.National Trendsrepresentsapolicyscenariousedintheinfra-structureassessmentphaseofENTSOG'sandENTSO-E'srespectiveTen-YearNetworkDevelopmentPlans( TYNDP )2020,withamorein-depthanalysisascomparedtotheotherscenarios.

Inaddition,ENTSO-EandENTSOGhavecreatedtwoscenariosinlinewiththeCOP21targets( Distributed EnergyandGlobal Ambition )withtheobjectivetounder-standtheimpactoninfrastructureneedsagainstdifferentpathwaysreducingEU-28emissionstonet-zeroby2050.ThethreescenariostorylinesdevelopedinconsultationwithstakeholdersaredetailedextensivelyinENTSOGandENTSO-EStorylinesReport 1releasedinMay2019.Distrib-utedEnergyhasbeenfurtheradaptedonthe2040–2050timehorizontakingintoaccountstakeholderfeedbackandtoensurehigherdifferentiationwiththeotherCOP21Scenario,GlobalAmbition.

Visualise and download scenarios data

ThejointscenariopackageprovidesanextensivedatasetresourcethatisusedfortheENTSOTYNDPandisthebasisforotherstudies.ScenarioinformationcontainedinthisreportisprovidedinEU-28termsunlessstatedoth-erwise.ThetechnicaldatasetssubmittedtotheTYDNPprocessandavailabletodownloadextendbeyondtheEU-28countries,includingcountriessuchasNorway,Switzerland,Turkey.

ENTSOGandENTSO-Einvitestakeholderstousethescenariodatasetsfortheirownstudies.Alldatafromthescenarioscanbeaccessedviathevisualisationplatform 2.

WhereasDistributed EnergyandGlobal Ambitionhavebeenbuiltasfull-energyscenarioswithaperspectiveuntil2050,National TrendsisbasedonelectricityandgasrelateddataalignedwithNECPsanddevelopeduntil2040.

Methodology in details

Thedevelopmentofthescenariosbuildsonstorylinesandamethodologytotranslatethestorylinesintoparam-etersandeventuallyfigures.TheTYNDP2020ScenarioBuildingGuidelines 3providesfulltransparencyonhow

thescenariosareelaboratedandhowthedevelopmentofdifferentdemandtechnologies,generationandconversioncapacities,renewablesharesandallotherparametersareconsidered.

Page 6: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

6 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

What is the purpose of the scenarios and how should they be used?

AsoutlinedinRegulation( EU )347/2013,ENTSOGandENTSO-EarerequiredtousescenariosasthebasisfortheofficialTenYearNetworkDevelopmentPlans( createdeverytwoyearsbyENTSO-EandENTSOG )andforthecalculationofthecost-benefitanalysis( CBA )usedtode-termineEUfundingforelectricityandgasinfrastructureProjectsofCommonInterest( PCI ).Thescenariosweredesignedspecificallyforthispurpose.Wherepossible,theyhavebeenderivedfromofficialEUandmember-statedatasources,andareintendedtoprovideanimpartialquantita-tivebasisforinfrastructureinvestmentplanning.

Thescenariosareintendedtoprojectthelong-termen-ergydemandandsupplyforENTSOG’sandENTSO-E’sTenYearNetworkDevelopmentPlandevelopmentwithinthecontextoftheongoingEnergyTransition.Theyaredesignedinsuchawaythattheyspecificallyexplorethose

uncertaintieswhicharerelevantforgasandelectricityinfrastructuredevelopment.Assuch,theyprimarilyfocusonaspectswhichdeterminetheinfrastructureutilisation.Furthermore,thescenariosdrawextensivelyonthecurrentpoliticalandeconomicconsensusandattempttofollowalogicaltrajectorytoachievefutureenergyandclimatetargets.

Thescenariosshouldprovidetheuserwithinsightintotheenergysystemofthefutureandtheroleofelectricityandgascarriersinthisenergysystem.Usersareabletodeterminetheeffectsofchangesinsupplyanddemandontheenergysystem.TheEuropeanandglobalperspectivesforthesescenariosenabletheusertotracksupplyanddemanddevelopmentsgeographicallyaswellastemporallyandtogaingreaterinsightintothechallengesfacingener-gyinfrastructureduringtheEnergyTransition.

Purpose of the scenario report2

Page 7: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 7

What isn’t the purpose of the scenarios?

TheWorkingGroupScenarioBuildinghasgonetogreatlengthstobuildonthe2020ScenarioReportandtoin-creaseitsambitions,especiallyinconsideringexternalfac-torssuchastheEnergyTransitionandthedecarbonisationoftheEuropeanenergysystemonenergyinfrastructure.Nonetheless,itisimportanttorecognisethatthescopeofthesescenariosremainsfocusedonprovidingsufficientinputdatatomodelfutureinfrastructureneeds.

TheWorkingGroupScenarioBuildinghavesoughttoavoidmakingpoliticalstatementswiththesescenariosand,asfaraspossible,toanchorkeyparametersinwidelyaccepteddataandassumptions.TheNationalTrendsscenarioexistswithinaninputframeworkprovidedbyofficialdatasets( suchasPRIMES )andofficialenergypolicies( theNECPsoftheEUmemberstates ).ThegoaloftheWorkingGroupScenarioBuildinghasbeentomaintainaneutralperspec-tivetotheseinputs.

Whilethetop-downscenarioshavegreaterroomforin-novationtomeetmoreambitiousdecarbonisationoftheEnergysystemupto2050,itisnottheintentionoftheWorkingGroupScenarioBuildingtousethesescenariostopushpoliticalagendasattachedtotheuseornon-useofspecificenergycarriersortechnologies.ThemainfocusoftheTYNDPScenarioReportisthelong-termdevelopmentofenergyinfrastructure.Assuch,thedifferencesbetweenthetwotop-downscenarios( GlobalAmbitionandDis-tributedEnergy )arepredominantlyrelatedtopossiblevariationsindemandandsupplypatterns.

Tothisend,allthescenariosintheTYNDP2020ScenarioReportremaintechnologyandenergy-carrierneutral.Theenergymixdeployedineachofthesescenarioshasbeendesignedtoreflectabroadconsensuswithintheenergy

industryandcorrelatestoalargeextentwithofficialliter-ature–mostprominentlywiththeEU’sownLong-TermStrategyscenarios.

Wherethescenarioshaveincorporatedparametersde-finedbyexternalanalysis( suchasthecalculationofacarbonbudgetbyClimateActionNetworkEuropeortheBiomethaneTooldesignedwiththesupportofNavigant ),theexternalanalysisconformstothewidelyacceptedunderstandingofthesetopics.

TheTYNDP2020ScenarioReportattemptstoreflecttheEnergyTransitionandthedecarbonisationeffortsoftheEuropeanenergysysteminitsscenarios.Thisisin-corporatedbytheuseoftheCOP21Agreement( intheformofacarbonbudgetcalculation )asoneofthekeyinputparametersforthetop-downscenarios.However,itisimportanttorecognizethatitisbeyondthescope( andindeedtheresources )oftheWorkingGroupScenarioBuildingtoanalysepolitical,environmentalandindeedsocietaldevelopmentsonthewidestscale.

Aboveallitisimportanttorecognizethefast-movingnatureoftheEnergyTransitioninEurope.TheWorkingGroupScenarioBuildingrecognisestherealitythatsomeoftheinputparametersusedinthecreationofthesescenar-iosmaywellneedtobeadjustedinthemonthsandyearstocomeastheenergypolicyoftheEUanditsmemberstatesevolvestomeetthechallengesofclimatechange.WetakethisopportunitytoremindthereaderthattheTYNDPScenarioBuildingProcessisaniterativeprocessanditcontinuestoevolvebasedonexternalinfluences.Ascenarioisapictureofthefuture;however,itisalsoareflectionofthepresentknowledgeandtheforeseeablechallengesfacetoday.

Page 8: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

8 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

1) Tocomplywiththe1.5°CtargetsoftheParisAgree-ment,carbonneutralitymustbeachievedby2040intheelectricitysectorandby2050inallsectorstogeth-er.Additionalmeasurestoreachnetnegativeemissionsafter2050arenecessary.

2) Toachievenet-zeroemissions,innovationinnewandexistingtechnologiesisrequiredto:

–reducethelevelisedcostofenergyfromrenewableenergysources

–increasetheefficiencyandtypeofenduserappliances

–supportrenewableanddecarbonisedgas 4

–developtechnologiesthatwillsupportnegative emissions

3) “Quickwins”areessentialtoreduceglobaltemperaturewarming.Acoaltogasswitchinthepowersectorcansaveatleast85MtCO₂by2025.

4) Tooptimiseconversions,thedirectuseofelectricityisanimportantoption–resultinginprogressiveelectri-ficationthroughoutallscenarios.Gaswillcontinuetoplayanimportantroleinsectorssuchasfeedstockinnon-energyuses,high-temperatureprocesses,transportorinhybridheatingsolutionstomakeoptimaluseofbothinfrastructures.

5) Tomovetowardsalowcarbonenergysystem,signifi-cantinvestmentingasandelectricityrenewabletech-nologiesisrequired.FurtherexpansionofcrossbordertransfercapacitybetweenmarketswillcontributetoensuringrenewableresourcesareefficientlydistributedanddispatchedintheEuropeanelectricitymarket.

4 Decarbonisedgasisnaturalgasforwhichthecarbondioxideisremovedbypre-orpost-combustioncarboncaptureandstorage(CCS) technology.Renewablegasontheotherhandoriginatesfromrenewablesources.Forexample,biomethaneproducedfromorganicmaterialorhydrogen/syntheticmethanefromelectrolysis(P2G).Moreinformationdefinitionscanbefoundintheglossaryorinthemethodologyreport.

5 AccordingtotheP2GandP2Lmodellingapproach,thededicatedwindandsolarissimulatedoutsidetheintegratedelectricitysystem.

6 SeeEUROSTAT(link)

6) WindandsolarenergywillplayanimportantroleintheEuropeanenergysystem,however,thescenariospointoutthatthedecarbonisationofgaswillhaveasignificantparttoplayaswell.Thescenariosshowthatthedecarbonisationofthegascarrierisnecessary,em-ployingtechnologiestoincreasetheshareofrenewablegases,suchasbio-methaneandPower-to-Gas,anddecarbonisedgasesassociatedwithCarbonCaptureandStorage( CCS ).

7) Atpresentgasasanenergycarrierismainlybasedonmethane,asthemaincomponentofnaturalgas.However,inthelonger-termhydrogencouldbecomeanequallyimportantenergycarriertowardsfulldecar-bonisationofthegascarriersin2050.

8) SectorCouplingenablesalinkbetweenenergycarriersandsectors,thusitbecomeskeyincontributingtoachievethedecarbonisationtarget.Inthelong-term,Power-to-GasandPower-to-Liquidwillplayakeyroleinboththeintegrationofelectricityfromvariablere-newablesanddecarbonisingthesupplyofgasandliquidfuels.Thiswouldrequirecloseto800 GWofdedicatedwindandsolar 5in2050.Gas-firedpowerplantswillcontinuetoprovidepeakpowerflexibilitytosupportanenergymixbasedonincreasinglyvariableelectricitygeneration.

9) Today,theEU28importsmostofitsprimaryenergy( ca.55 % 6 ).Decarbonisationwillalsochangethispattern.Inaway,the“insourcing”ofenergyproductionwillreducetheimportdependencytoca.20 %to36 %.However,importsremainanimportantvectorinthefutureener-gysupplymakinguseofcompetitivenaturalresourcesoutsidetheEUterritory.Forgasinparticular,importsharesincreaseinallscenariosuntil2030duetothedecliningnaturalgasproductionintheEU.

Highlights3

Page 9: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 9

4.1 National Trends – the central policy scenario aligned with draft NECPs

7 MostMemberStatessubmittedtheirfinalNECPbytheendof2019.Atthetimeofdraftingthisscenarioreport,someNECPsarestillunderrevisionthough.Forthesecountries,theENTSOstookthedraftNECPsinstead.

Meeting European targets considering current policies

NationalTrendsaimsatreflectingthecommitmentsofeachMemberStatetomeetthetargetssetbytheEuropean

UnionintermsofefficiencyandGHGemissionsreductionfortheenergysector.Atcountrylevel,NationalTrendsisalignedwiththeNECPsoftherespectiveMemberStates 7,whichtranslatetheEuropeantargetstocountryspecificobjectivesfor2030.

Special Focus: Pathways towards a decarbonised economy4

Figure1:NationalTrendsscenariointeractionswithNECPs(FinalNECPs,EUCOscenarios)

National Trends 1.0 / draft scenario report (Nov.2019)

MS Draft NECPS (Dec.2018) EC recommendations (Jun.2019) MS Final NECPs (Dec.2019)

National Trends 2.0 / final scenario report (Mar.2020)

EUCO 32/32.5

Page 10: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

10 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

4.2 COP21 scenarios – a carbon budget approach

8 TheIntergovernmentalPanelonClimateChange,SpecialReport,2018,https://www.ipcc.ch/sr15/

9 “Carbonneutrality(ornetzero)meanshavingabalancebetweenemittingcarbonandabsorbingcarbonfromtheatmosphereincarbonsinks.Removingcarbonoxidefromtheatmosphereandthenstoringitisknownascarbonsequestration.Inordertoachievenetzeroemissions, allworldwidegreenhousegasemissionswillhavetobecounterbalancedbycarbonsequestration”(EuropeanParliament(link)). TheENTSOsconsiderallgreenhousegasemissionsmeasuredintermsoftheircarbondioxideequivalence.

Below +1.5°C at the end of the century with a carbon budgetDistributedEnergy( DE )andGlobalAmbition( GA )( alsoreferredtoas“COP21Scenarios” )scenariosaremeanttoassesssensiblepathwaystoreachthetargetsetbytheParisAgreementfortheCOP21:1.5°Coratleastwellbelow2°Cbytheendofthecentury.ForthepurposeoftheTYNDPscenarios,thistargethasbeentranslatedbyENTSO-EandENTSOGintoacarbonbudgettostaybelow+1.5°Cattheendofthecenturywitha66.7 %probability 8.

A carbon budget defined with environmental organisationsTolimittheglobalwarmingto+1.5°Cbytheendofthecentury,thereisamaximumquantityofGHGtheEU–includingtheenergysystem–canemit.ThisdefinesthecarbonbudgetfortheEU,andtoamorerestrictiveextent,theshareallocatedtotheenergysystemthattheCOP21scenariosconsider.Todefinethecarbonbudgetuntiltheyear2100,ENTSO-EandENTSOGhaveworkedwiththeenvironmentalNGOsRenewableGridInitiativeandClimateActionNetworkEurope.

A carbon neutral energy system by 2050TheotherobjectivesetintheCOP21scenariosistoreachcarbonneutrality 9oftheenergysystemby2050.Thisobjectivethereforeplacesfurtherdemandsonthespeedofdecarbonisationtheenergysystemshouldreach.

GHG emissions compared to 1990 level

20202015 2025 2030 2035 2040 2045 20500

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

Global AmbitionDistributed Energy EU GHG reduction targets/range 2015 NT30

Figure2:GHGemissioninENTSOS’scenarios

Page 11: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 11

Cumulativenon-CO�emissions 1,534 5,135 8,401 11,311 13,844 16,000 17,780

CumulativeCO�emissions 6,743 21,953 34,686 44,995 53,008 59,075 63,504

Cumulativecreditsfrompre-and post-combustiveCCS

0 0 –136 –679 –1,673 –3,034 –4,676

CumulativecreditsfromBECCS 0 0 0 –32 –128 –356 –808

CumulativecreditsfromLULUCF –627 –2,253 –3,963 –5,757 –7,635 –9,598 –11,644

NetCumulativeCO�eqemissions 7,650 24,835 38,988 49,838 57,416 62,087 64,155

Cumulativenon-CO�emissions 1,534 5,132 8,394 11,298 13,821 15,963 17,725

CumulativeCO�emissions 6,735 21,985 34,486 43,860 50,456 54,784 57,113

Cumulativecreditsfrompre-and post-combustiveCCS

0 0 –56 –260 –642 –1,165 –1,778

CumulativecreditsfromBECCS 0 0 0 0 0 0 0

CumulativecreditsfromLULUCF –627 –2,253 –3,963 –5,757 –7,635 –9,598 –11,644

NetCumulativeCO�eqemissions 7,642 24,864 38,860 49,141 55,999 59,984 61,416

2020 2025 2030 2035 2040 2045 2050

0

20,000

10,000

−20,000

−10,000

30,000

40,000

50,000

60,000

70,000

90,000

100,000

80,000

EU 28 cumulative GHG emissions – Global Ambition

EU 28 cumulative GHG emissions – Distributed Energy

2020 2025 2030 2035 2040 2045 2050

0

20,000

10,000

−20,000

−10,000

30,000

40,000

50,000

60,000

70,000

80,000

Figure3:EU28CumulativeEmissionsinCOP21ScenariosinMtCO2

Page 12: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

12 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Carbon neutrality can be reached by 2050 within a budget of 61 GtCO� …BothDistributedEnergyandGlobalAmbitionscenariosshowthatacentralisedordecentralisedevolutionoftheenergysystemcanachievecarbonneutralityby2050.Thescenariosalsoshowthat,consideringdifferentdevelop-mentoftechnologies–andstartingfrom2018onwards–theenergysystemcanlimititsemissionstoreachnotmorethan64.2GtCO₂atEUleveluntil2050inGlobalAmbition,andnotmorethan61.4GtCO₂inDistributedEnergy.

10 AccordingtotheP2GandP2Lmodellingapproach,thededicatedwindandsolarissimulatedoutsidetheintegratedelectricitysystem.

… but negative emissions are needed after 2050However,thescenariobudgetdefinedtolimittheglobalwarmingto1.5°Cwitha66.7 %probabilityconsidersthatthecumulativeEUGHGemissionsshouldbelimitedto48.5GtCO₂bytheendofthe21stcentury.Thismeansnetnegativeemissionsof15.7GtCO₂havetobeachievedbe-tween2050and2100incaseofGlobalAmbition,providedtheEUiscarbonneutralin2050.ForDistributedEnergy,duetolowercumulativeemissionsuntil2050,12.9GtCO₂ofnetnegativeemissionsareneededtoreachthe1.5°Ctargetby2100.

4.3 Sector-Coupling – an enabler for ( full ) decarbonisation

ForENTSOGandENTSO-E,sectorcouplingdescribesinterlinkagesbetweenenergycarriers,relatedtechnolo-giesandinfrastructure.Majorprocessesinthisregardaregas-firedpowergeneration,Power-to-Gas( P2G )aspartofthebroaderPower-to-Xandhybriddemandtechnologies.

ENTSOs’scenariosaredependentonfurtherdevelopmentofsectorcoupling,withouttheseinterlinkagesahighorevenfulldecarbonisationintheenergysectorwillnotbereached.

Assumingaswitchfromcarbon-intensivecoaltonaturalgasin2025,aminimumof85MtCO₂couldbeavoidedinthepowergeneration.Withincreasingsharesofrenewableanddecarbonisedgases,gas-firedpowerplantsbecomethemain“back-up”forvariableRESinthelong-term.DistributedEnergyevenshowsafurtherneedforCCS

forgaspowerplantstoreachitsambitioustargetoffulldecarbonisationinpowergenerationby2040.

Ontheotherhand,P2GbecomesanenablerfortheintegrationofvariableRESandanoptiontodecarbonisethegassupply.Hydrogenandsyntheticmethaneorliquidsallowforcarbon-neutralenergyuseinthefinalsectors.DistributedEnergyisthescenariowiththehighestneedforP2GandP2L,requiring1,460 TWhofdedicatedpowergeneration 10peryearwithmorethan490 GWofcapacitiesforwindandsolarin2040toproducerenewablegas.

SectorcouplinginNationalTrends,withtheassumptionthatP2Ggenerationislimitedtosubstituteotherwisecur-tailedelectricitysupply,amountsto27 TWhwith22GWofP2Gtoproducerenewablegas.

< 2050 2050 > 2050 Total

Energyandnon-energyrelatedCO�emissions 57.1

Carbon-Neutrality

Additionalmeasuresneeded,e. g.: LULUCF,

BECCS,CCS,DAC

Non-CO�GHGemissions(includingmethaneandFluorinatedgases)* 17.7

Carbonsinks** −13.4

Netcumulative emissions 61.4 −13

EU28carbonbudgetsharebasedonitspopulation 48.5GtCO�

*DataformethaneandfluorinatedgasesemissionsistakenfromtheEuropeanCommission’smostambitious1.5TECHand 1.5LIFE scenarios (average)aspublishedinthe“ACleanPlanetforall”-Study(link).

**DataforLULUFCistakenfromtheEuropeanCommission’smostambitious1.5TECHand 1.5LIFEscenarios(average)aspublishedinthe “ACleanPlanetforall”-Study(link).

Table1:CumulativeemissionsandrequirednetnegativeemissionsinDistributedEnergy

Page 13: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 13

ToensureconsistencybetweensuccessiveTYNDPreports,itisnecessarytopreservethescenariosessencetosomedegree.Therefore,the2020scenariosbuildonthe2018scenarios.However,theenergylandscapeiscontinuouslyevolving,andscenariosmustkeepupwiththemaindriversandtrendsinfluencingtheenergysystem.

Storyline drivers

ENTSOGandENTSO-Eidentifiedtwomaindriverstodeveloptheirscenariostorylines:Decarbonisationandcentralisation/decentralisation.DecarbonisationreferstothedeclineintotalGHGemissionswhilecentralisation/decentralisationreferstothespatialset-upoftheenergysystem,suchastheshareoflarge/smallscaleelectricitygeneration( offshorewindvs.solarPV )ortheshareofin-digenousrenewablegases( biomethaneandP2G )vs.shareofdecarbonisedgasimports( eitherpre-orpost-combus-

tive ).Figure4illustratestherelationofthetwokeydriversforallthreescenarios.

Fortheshortandmedium-term,thescenariosincludea“BestEstimate”scenario( bottom-updataincludingameritordersensitivitybetweencoalandgasin2025 ).Forthelongerterm,theyincludethreedifferentstorylinestoreflectincreasinguncertainties.

- For2020and2025,allscenariosarebasedonbot-tom-updatafromtheTSOscalledthe“BestEstimate”ScenarioandreflectingcurrentnationalandEuropeanregulations.Asensitivityanalysisregardingthemeritorderofcoalandgasinthepowersectorisincludedfor2025followingstakeholderinputregardingtheun-certaintyonprices,evenintheshortterm.Thesearedescribedas2025CoalBeforeGas( CBG )and2025GasBeforeCoal( GBC ).

Scenario description and storylines5

Page 14: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

14 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

- NationalTrendskeepsitsbottom-upcharacteristics,takingintoaccountTSOs’bestknowledgeofthegasandelectricitysectorsincompliancewiththeNECPs.Country-specificdatawascollectedfor2030and2040( whenavailableforelectricity )incompliancewiththeTYNDPtimeframe.Forgas,furtherassumptionshavebeenmadetocomputethedemandfor2050onanEU28-level.

- DistributedEnergyandGlobalAmbitionarebuiltasfullenergyscenarios( allsectors,allfuels )withtop-downmethodologies.Bothscenariosaimatreachingthe1.5°CtargetoftheParisAgreementfollowingthecarbonbudgetapproach.Theyaredevelopedonacountry-leveluntil2040andonanEU28-leveluntil2050.

Thestorylinesfor2030and2040/2050are:

- National Trends ( NT )isthecentralbottom-upscenarioinlinewiththeNECPsinaccordancewiththegovernanceoftheenergyunionandclimateactionrules,aswellasonfurthernationalpoliciesandclimatetargetsalreadystatedbytheEUmemberstates.Followingitsfunda-mentalprinciples,NTiscompliantwiththeEU’s2030ClimateandEnergyFramework( 32 %renewables,32.5 %energyefficiency )andEC2050Long-TermStrategywithanagreedclimatetargetof80–95 %CO₂reductioncom-paredto1990levels.

National Trends relies on data provided by the latest submissions of country specific NECPs for 2030 at the freeze date of the data. Where, in particular for 2040,

NECPs do not provide sufficient information or nec-essary granularity, National Trends is based on TSOs’ best knowledge in compliance with national long-term climate and energy strategies.

- Global Ambition ( GA )isascenariocompliantwiththe1.5°CtargetoftheParisAgreementalsoconsideringtheEU’sclimatetargetsfor2030.Itlooksatafuturethatisledbydevelopmentincentralisedgeneration.Economiesofscaleleadtosignificantcostreductionsinemergingtechnologiessuchasoffshorewind,butalsoimportsofenergyfromcompetitivesourcesareconsideredasaviableoption.

- Distributed Energy ( DE ) isascenariocompliantwiththe1.5°CtargetoftheParisAgreementalsoconsideringtheEU’sclimatetargetsfor2030.Itembracesade-central-isedapproachtotheenergytransition.Akeyfeatureofthescenarioistheroleoftheenergyconsumer( prosum-er ),whoactivelyparticipatesintheenergymarketandhelpstodrivethesystem’sdecarbonisationbyinvestinginsmall-scalesolutionsandcircularapproaches.Basedonstakeholders’feedbackontheDraftScenarioReport,apartofbiomassusageshasbeentransferredtobothP2LanddirectelectricityconsumptionresultinginanupdatedStorylineCentralMatrix.Theupdatedscenar-iocomesverycloseto1.5TECH/LIFEscenariooftheuropeanCommissionformostoftheparameters.

FormoreinformationonthedevelopmentoftheScenarioStorylinesandhowthestakeholderfeedbackhasbeentakenintoaccountpleaserefertosection10.

Figure4:KeydriversofScenarioStorylines

Cent

ralis

atio

n

Game Changer &Cost Reduction

Management

Game Changer &Cost Reduction

Management

STATUS QUO

De-

cent

ralis

atio

n

Decarbonisation Ambition Level

40 %

40 %

100 %

100 %

80 %

80 %

60 %

60 %

50 %

50 %

CENTRALISEDINNOVATION

DE-CENTRALISEDINNOVATION

20 %

2050

2050

2030

2030

2025

2030

100 %

2040

2050

2040

2040

Lenght of arc reflects the range of possible outcomes

Scenario Year & Scenario Button

2040

National Trends

National TrendsNECP alignment

2025 Merit Order SwitchGas before Coal

Global Ambition

Distributed Engery

Page 15: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 15

Category Criteria 2040 Scenarios

National Trends

Global Ambition

Distributedion Energy

Primary mix Coal -- --- ---

Oil -- --- ---

Nuclear -- -- --

Hydro o o o

Geothermal o + ++

Biomass* o ++ +

Natural gas - -- ---

Windonshore ++ +++ +++

Windoffshore +++ +++ ++

Solar ++ + +++

WindforP2GandP2L** o + +++**

SolarforP2GandP2L + + +++

ImportedGreenLiquidFuel + ++ +

EnergyImports - -- ---

High temperature Heat Totaldemand(allenergy) o - -

ElectricityDemand + + ++

GasDemand + ++ o

Low temperature Heat Totaldemand(allenergy) - -- --

ElectricityDemand + ++ +++

GasDemand - - --

Transport Totaldemand - -- --

ElectricityDemand + ++ +++

Power and Lighting GasDemand + ++ +

ElectricityDemand o - -

CCS CCS o +++ +

Table2:StorylineCentralMatrix

Change from today

––– –– – o + ++ +++

Notavailable Moderate Reduction

Low Reduction Stable Lowgrowth Moderate

growth Highgrowth

*biomassuseinNationalTrendsisveryclosetocurrentuseandtheevolutionhasbeenreducedto”Stable”comparedtotheDraftScenarioReport.ForDistributedEnergyscenario,thesubstitutionofbiomassbydirectelectrificationandP2Lhasresultedinanupdateoftheevolutionfrom“Moderategrowth”to“Lowgrowth”.

**ForDistributedEnergyscenario,thesubstitutionofbiomassbydirectelectrificationandP2LsuppliedwithadditionalREShasresultedinanupdateoftheevolutionfrom“Moderategrowth”to“Highgrowth”.

Page 16: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

16 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Scenario Building Central Matrix

TheScenarioBuildingCentralMatrixisatoolusedtoiden-tifythekeyelementsofthestorylines.TheCentralMatrixenablescreationofscenariosthatareconsistentalongapathway,yetdifferentiatedfromotherstorylines.

TheCentralMatrixisatablethatcanprovideanEU-widequalitativeoverviewofkeydriversfortheEuropeanenergysystemin2050.Thematrixuses+/–indicatorstoshowhowprimaryenergymixandfinalenergyusechangecom-paredtosectorsareassumedtochangefromtoday.Itisimportanttonotethatcountryleveland/orregionaldiffer-enceswillbepresent,whencomparedtotheEU-28figures,thedifferencesaredrivenbyfactorssuchasnationalpolicy,geographicaland/ortechnicalresourceconstraints.

Tounderstandthematrixnotation,thefollowingassump-tionsmustbeconsidered:

- Thegrowthorreductionindicationsareinrelationtowhatisseentoday,butalsoinrelationtotheratesob-servedwithinthatcategoryincomparisontotheotherscenarios.Forexample,comparedtotoday,solargener-ationisexpectedtoincreasesignificantlyinallscenariosfromtoday,butonlyreceivesa+++inDistributedEnergy.

- Equally,growthandreductionratesacrossthedifferentcategoriesarenotdirectlycomparable.Forexample,twocategorieswith++ratingmaydiffersignificantlyintheiractualpercentageincreasefromtoday,basedonthestartingpointandultimatepotential.

WherestorylineparametershavebeenupdatedbasedonconsultationfeedbackontheDraftScenarioReport,theinitialvaluesarementionedasfootnotes.

FurtherinformationonhowtoreadtheCentralMatrixcanbefoundintheannexdocumentScenarioBuildingGuidelines.

Figure5:TheTYNDP2020ScenariosaredefinedbythreeStorylines

2020 2025 2030 2040 2050

n/a 19 %

n/a 20 %

n/a 8 %

n/a n/a

1 % 1 %

1 % 1 %

78 % 85 %

29 % 42 % n/a21 % 16 % n/a12 % 15% n/a

0 % 1 % n/a

n/a n/a n/a

4 % 12 % n/a

4 % 13 % n/a

84 % 83 % n/a

Domestic RES Gas Biomethane

RES-E solar

RES-E hydro

Decarbonisation of gas supply

RES-E wind

Domestic RES Gas Power-to-gas

Gas import share

Direct electrification

29 % 42 % 54 %

32 % 45 % 50 %

21 % 21 % 23 %

21 % 16 % 29 %

14 % 18 % 19 %

10 % 13 % 15 %

3 % 17 % 32 %

0 % 6 % 11 %

29 % 45 % 54 %

27 % 35 % 41 %

6 % 18 % 33 %

5 % 12 % 19 %

12 % 47 % 86 %

11 % 46 % 86 %

79 % 60 % 35 %

83 % 78 % 70 %

National TrendsBest Estimate

Distributed Energy

Global Ambition

Page 17: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 17

Thelevelofdetailprovidedforeachscenariodependsontheapproachtobuildingthedataset.

TheNationalTrendsbottom-upcollectionusesgasandelectricitydemanddatafromtheTSOsalignedwiththeNECPs.Thefinalenergydemandsuppliedbyotherprimaryfuels,suchasforheatandtransport,isnotinfocusoftheTSOdatacollection;thereforesectorbysectorenergydemandsplitscannotbereported.ThebottomupdataisbasedonmemberstateNECPs,thisunderpinstheassump-tionthatthebottomupgasandelectricitydemanddata

contributesfairlytowardstheEU28CleanEnergyPackagetargetsfor2030;32 %renewableenergyalongwith32.5 %energyefficiency.

Thenewtop-downscenariobuildingapproachprovidesENTSOGandENTSO-Ewithnewopportunitiestoreportontotalprimaryenergyandthesectorsplitsforfinalen-ergydemand.Thetop-downenergymodellingapproachevolvesinfiveyearstepsfromhistoricalenergybalancedata,soitispossibletoreportonthesectoralfinalenergydemandovertime.

Scenario Results 6

Page 18: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

18 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

6.1 Demand

6.1.1 Final Energy Demand

11 https://ec.europa.eu/energy/en/topics/energy-efficiency/targets-directive-and-rules/eu-targets-energy-efficiency

ThechartbelowshowsthetotalenergysectordemandforthestorylinesDistributedEnergyandGlobalAmbition.AkeydriverinhowthefinalenergydemandvolumesarederivedisaEU28targetspecifyinga32.5 %reductioninfinaluseenergydemandby2030comparedto2005.ThefinalusedemandfortheEU28accordingtoDEE2012/27/EU( 10309/18 ) 11shouldbearound11,100 TWh.Thefinaluseenergydemandfiguredoesnotincludetheenergyrequirementfornon-energyuses.Whenthisadjustmentistakenintoaccount,finalenergydemandin2030forDistributedEnergyis10,500 TWhandGlobalAmbition10,600 TWh.Bothscenariosachievein2050highereffi-ciencygainabove50 %,higherthan1.5TECHandLIFELTSscenarios.

Finalenergydemandcanachieveambitiousreductionsinenergyvolumeduetochangestoenduserapplicationsandenergyefficiencymeasures.Thescenariostorylinescapturethemessuchas,butnotlimitedto:

- Convertingfromlessefficientheatingoptionstoheatpumptechnologies,suchaselectricorhybrid( combinedgasandelectricityusage )airorgroundheatpumps,

- Switchingfromlowefficiencytransportoptionstomoreefficientmodesoftransport

- Energyefficiencyproductstandards;continuetodeliverenergyefficiencygainsforend-userappliances

- Inthebuiltenvironmentthermalinsulationreducesdemandforheat,whileensuringcomfortlevelaremaintained

- Behaviouralchangeswhereconsumersactivelyreducedemandeitherbyutilisingmorepublictransportormodifyingheatingandcoolingcomfortlevels.

Althoughoverallfinalenergydemandisdecreasing,gasandelectricityshowdifferenttrends.Forgasatleastuntil2025aswellasforelectricityinthelong-run,theenergydemandgrowthisdrivenbyfactorssuchasunderlyinggrossdomesticproduct( GDP )growth,additionalenergydemandfromlowtemperatureheatandtransportsectorsasthesesectorsswitchawayfromcarbon-intensivefuels,suchascoalandoil.ThestorylinesassumethatatanEUlevelunderlyingGDPgrowthistemperedbythestrongenergyefficiencymeasures,sothatfinalenergydemand( whichincludeselectricitydemand )isreducedtomeettheEU2832.5 %energyefficiencytargetfor2030.

TheNationalTrendsenergyfiguresarebasedontheTSOdatacompatiblewiththelatestavailabledatafrommemberstateNECPs.Theannualenergyvolumescomefromnationalforecasts,thataresummeduptoprovideinformationatEU28level.

TWh

2005

Distributed EnergyDistributed Energy Global AmbitionGlobal AmbitionHistoricHistoric

2015 2030 2050

Transport

0

2,000

6,000

4,000

8,000

14,000

18,000

16,000

12,000

10,000

Residential Tertiary Industry Final energy demand EU Efficiency Target 2030

Figure6:FinalenergydemandinCOP21 scenarios

Note: All gas figures are expressed in gross calorific value (GCV) except when stated otherwise in net calorific value (NCV). Where needed, external scenario figures have been converted to gross calorific values by applying a factor of 110 %. For the definition of gross and net calorific value please refer to the glossary section at the end of this document.

Page 19: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 19

6.1.2 Direct Electricity Demand 12

12 DirectElectricityDemandreferstotheelectricityenduseinsectorssuchasresidential,tertiary,transportandindustry

Thescenariosshowthathigherdirectelectrificationoffinalusedemandacrossallsectorsresultsinanincreaseintheneedforelectricitygeneration.

DistributedEnergyisthescenariostorylinewiththehigh-estannualelectricitydemandreachingaround4,000 TWhin2040andaround4,300 TWhin2050.TheresultsforscenariosshowthatthereisthepotentialforyearonyeargrowthforEU28directelectricitydemand.Thetablepro-videsannualEU-28electricitydemandvolumesandtheassociatedgrowthrateforthespecifiedperiods.

Thegrowthratesforthestorylineshowthatby2040NationalTrendsiscentrallypositionedintermsofgrowthbetweenthetwomore-ambitioustop-downscenariosDistributedEnergyandGlobalAmbition.ThemainreasonfortheswitchingrowthratesisduetothefactthatGlob-alambitionhasthestrongestlevelsofenergyefficiency,whereasforDistributedEnergystrongelectricitydemandgrowthislinkedtohighelectrificationfromhighuptakeofelectricvehiclesandheatpumps( inhouseholdsanddis-trictheating ),overlayingelectricalenergyefficiencygains.

Peakelectricitydemandisdefinedasthehighestsinglehourlypowerdemand( GW )withinagivenyear.Peakdemandgrowthinthefuturewillbeimpactedinanumberofways,forexample;

- Therolloutofsmartmetering,thesemayprovidemoreopportunitiesforintelligentorefficientenergydemandpatternsbyconsumersintime

- Highgrowthratesforpassengerelectricvehiclesprobablyleadtopressuresontheelectricalgrid,bothatdistributionandtransmissionlevels.Thescenariosassumethatthereisaninherentlevelofsmartchargingthatshiftsconsumerbehaviourawayfrompeakperiods.

- Electricandhybridheatpumps.Thedemandtimeseriescreatedareweatherdependent.Theresultsshowthatelectricheatpumpscanaddpressuretodemand;i. e.thereismoreheatdemandwhentheoutsidetem-peraturesarelow.Thereareanumberofoptionstosupportdirectelectricheating,suchas,thermalstorageorhybridheatingsystems.Forexample:Hybridsystemscanhelpmitigatetheadverseimpactontheelectricitygridbyswitchingtogasduringextremecoldperiods( typicallylessthan5°C ).

- Newpeakdemandchallengesmayresultfromaddition-alnewbaseloaddemand,suchasdatacentresassumingthatdigitalisationincreasesglobally.

Figure7:Directelectricitydemandperscenario(EU28)

Scenario EU-28 Annual Electricity Demand (TWh) Compound Annual Growth Rate

2015 2025 2030 2040 2050 2015–2030 2030–2040 2040–2050

HistoricalDemand 3,086

National Trends 3,199 3,237 3,554 3,696 0.3 % 0.6 % 0.4 %

GlobalAmbition 3,213 3,426 3,478 0.3 % 0.6 % 0.2 %

DistributedEnergy 3,422 4,029 4,269 0.7 % 1.5 % 0.7 %

2015

Historical Demand

20302025 2040 2050

3,100

3,3003,200

3,000

3,4003,5003,6003,7003,8003,9004,0004,1004,200

4,4004,300

4,500

National Trends Global Ambition Distributed Energy

Annual Demand TWh

Table3:AnnualEU-28electricitydemandvolumesandtheassociatedgrowthrate

Page 20: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

20 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

ThehourlydemandchartsshowthatthehistoricaleffectsofGDPandenergyefficiencycontinueinfluencingelec-tricitydemandgrowthinindustry,tertiaryandresidentialsectors.Thescenariosshowthatdirectelectrificationoftransportandheatingsectorsstartstohaveasignificantimpactonthehourlyprofiles.

Itisclearfromthefuturedemandprofilecompositionthattheimpactofelectricvehiclesisnoticeablethroughouttheyear.Theimpactforheatpumpsishoweverlargelydependentontheoutsideweathertemperature.Naturally,

thereisareduceddemandforheatinthesummer,butelectrifiedwaterheatingremainspartofthecompositionduringsummerperiods.

Peakdemandforelectricitygrowsbetween2030and2040foreachstoryline.Theelectrificationofheatandtransportaretwosignificantdriversingrowthofelectricitypeakdemand.ThestorylineassumptionsmeanthatGDPrelatedpeakde-mandgrowthismoderatedbyenergyefficiency.Theimpactofdemandsideresponseonpeakelectricityismodelledasapriceddemandsideresponseinthepowermarketanalyses.

Electricity Demand (GW)

0

Water Heating

1 2 4 5 6 7 8 9 10 11 12

Hour of Day

13 14 15 16 17 18 19 20 21 22 233

2.0

6.0

4.0

–2.0

0

8.0

10.0

12.0

14.0

16.0

18.0

Electric Heat pumps Historical

Hybrid Heating Industrial demand Growth Residential and Tertiary Growth Electric Cars Passenger TrainsBuses

Winter hourly demand profile for a single market node

Electricity Demand (GW)

0

Water Heating

1 2 4 5 6 7 8 9 10 11 12

Hour of Day

13 14 15 16 17 18 19 20 21 22 233

2.0

6.0

4.0

–2.0

0

8.0

10.0

12.0

14.0

16.0

18.0

Electric Heat pumps Historical

Hybrid Heating Industrial demand Growth Residential and Tertiary Growth Electric Cars Passenger TrainsBuses

Summer hourly demand profile for a single market node

Figure8:Exampleofwinterhourlydemandprofileforasinglemarketnode–Impactofdirectelectrificationinheatingand transport sectors

Figure9:Exampleofsummerhourlydemandprofileforasinglemarketnode–Impactofdirectelectrificationinheatingandtransport sectors

Page 21: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 21

TheNationalTrendsdemandprofilesaredevelopedfromtheTSOsinputbasedonlatestavailablememberstateNECPsandwhereavailablenationalprojectionsfor2040.Forthetop-downscenariosENTSOGandENTSO-Eas-sumeahighuptakeofsmartchargingfortransport,whichwillmoderatepeakdemandgrowthrates.Thedemandprofilesaccountforoutsidetemperatureandtheimpactonpeakdemand;thisisimportantastheshareofelectricitywithintheheatingsectorincreases.

Forthetop-downscenariosthereisrationalspreadinpeakdemandgrowthratesbetween2030and2040.GlobalAmbitionisthescenariowiththelowestlevelsofheatpumps,coupledhigherenergyefficiencyresultsinthisscenariointhelowestpeakdemandgrowthbetween2030&2040.InDistributedEnergythemaindriverforhigherpeakdemandisthehigherrateofelectrificationacrossallsectors,however,itisimportanttonotethiscanatthesametimeprovideadditionalopportunitiesfordemandsideresponse,suchasvehicletogridordemandflexibilitiesatdomesticlevel.

ThepeakdemandgrowthrateinNationalTrendsbetween2030and2040indicatesa1.0 %yearonyeargrowthinpeakdemand.ThegrowthrateforNationalTrendsliesfirmlyinbetweenthedemandgrowthratesforDistributedEnergyandGlobalAmbition.Thespreadinpeakdemandprovidesanopportunityforallthreescenariostoenhancetheunderstandingonthe long-termimpactsfortheEuropeantransmissionsystem.

Direct electrification of transport and heat

ElectrificationofheatandtransportaretwokeyareasthatarenecessarytodecarbonisetheEuropeanenergysystem.TheinformationreceivedfromtheTSOsandtheCOP21scenariosshowthatelectricvehiclesandheatpumpshavethegreatestimpactonelectricitydemand.Thechartsshowhowthescenarioelectricvehiclesandheatpumpscomparetoexternalscenariosreferencedinthechartas“range”.

ThescenariosaimtoreduceemissionsinlinewiththeEuropeantargetsandCOP21pathways.Toachieveam-bitiousemissionreductionintheheatingsector,ashiftawayfromfossilfuelsisrequired.Thescenariosshowthatmovingawayfromoilandcoalisaquickwintoreduceemissionsintheheatingsector.Thetop-downandbottomupscenarioshighlighttheneedforconsumerstochangehowtheyuseheatintheirhomesandbusinesses.Thescenariosrequirealargeshifttowardselectricandhybridheatpumps,thesetechnologiesbothreduceprimaryenergydemandandfinaluseenergydemandduetotheimpactofheatpumpco-efficientofperformance.Heatpumptechnologiesareusedforspaceheatingandsanitywaterheating.

DistributedEnergyshowsthehighestelectrificationwith245Millionelectricvehiclesandaround50millionheatpumpsby2040.ThevolumesrelatingtoelectricvehiclesandheatpumpsprovideinsightintowhytheDistributedEnergyelectricitydemandreaches4,000 TWhby2040.

GlobalAmbitionisascenariowherethereisstronguptakeofelectricvehiclesreachingaround200millionby2040butlowerheatpumpuptakeataround25milliondevices.Thescenarioassumedmoreuptakeofalternativelowcarbonheatingtoensurethattheemissionslevelsforthescenariosareachieved.

National Trends

Distributed Energy

Global Ambition

2025Max 570,904

Average 520,101

2030Max 587,499 594,554 559,687

Average 534,324 547,007 516,480

2040Max 632,982 665,756 574,733

Average 576,844 625,990 533,988

CAGR (2015–2030) 0.54 % 1.01 % –0.14 %

CAGR (2030–2040) 0.77 % 1.36 % 0.33 %

Figure10:Peakelectricitydemandperscenario(EU28)

GW

Gobal Ambition Average Max

2015 2016 2017 2018 2025 20402030

450

400

500

550

600

650

700

National Trends Average Max

Distributed Energy Average Max

Historic Data

Table4:AnnualpeakdemandandCARGperscenario

Page 22: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

22 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

TheNationalTrendsscenarioisbasedonTSOdataandshowsthatthereisalowerlevelofambitionforelectrifi-cationofthetransportsectoraround100millionelectricvehicleswitharound60millionheatpumpsby2040.Thescenarionumbersforelectricvehiclesandelectricandhybridheatpumpstechnologiesareshownonthe

13 Totalgasdemandcanalsobereferredtoas“GrossInlandConsumption”ofgasasdonebyEurostat(link)

charts.Theshadedarearepresentsarangeofminimumandmaximumvaluesfromthirdpartystudies,seesection8forfurtherinformation.Thechartsshowthattheinputassumptionsforheatpumpsandelectricvehiclesnumbersliewithincrediblevalues.

6.1.3 Gas Demand

Totalgasdemand 13issplitupintofinaldemand( residential,tertiary,industryincl.non-energyusesandtransport )anddemandforpowergeneration.Whereasscenarioscanshowadecreaseorincreaseforthetotalgasdemand,thedifferentsectorscanevolveindependentlyandindifferentdirections.

By2030,NationalTrendshasthelowesttotalgasdemand.Incontrarytothat,GlobalAmbitionandDistributedEnergyreachhigherdecarbonisationlevelsoftheenergysystemwithmoregas.Thisisduetothreemainreasons:

- fasterswitchfromcarbon-intensivefuels,suchascoalandoiltogas

- highersharesofrenewableanddecarbonisedgasesinthegasmix

- andinparticularDistributedEnergyprojectsahigherelectricitydemandinpowergenerationduetoahigherelectricitydemand

Whencomparingthesectoralsplit,allscenariosprojectadecreaseintheresidentialandtertiarysector,buttheuptakeofgasdemandinthetransportsectorcancompensatepartsofitintheCOP21Scenarios.Thesetrendsremainuntil2040,resultinginlowerdemandforallscenarios:DistributedEnergydecreaseseventoca.4,000 TWh( –20 %comparedtotoday’slevel ).Onthe

otherside,industryshowsamorestabledemanddevelop-mentandgasdemandfortransportincreasesthroughoutallscenarios,mostsignificantlyinGlobalAmbition.

Itisworthmentioning,thatthedevelopmentoffinalgasdemanddiffersfromregiontoregion.Duetoahighde-pendencyoncoal,gasdemandforheatingratherincreasesinCentralandEasternEurope,whereasotherregionsheadtowardsmoreelectrificationintheprivateheatingsector.Togiveanexamplecoalhasashareofupto50 %intheheatingsectorand80 %inthepowergenerationinPoland.

Aswitchfromcarbon-intensivecoaltonaturalgaswithlowercarbonintensityby2025,resultsin186 TWhadditionalgasdemand.However,thiswouldleadtoemissionsreductionintheelectricitygenerationofaminimumof85MtCO₂.Atleastuntil2030gasdemandforpowergenerationisincreasingwiththelevelofdecarbonisation( includingafastcoal-phaseout )andelectricitydemand.Therefore,DistributedEnergyasthescenariowiththehighestelectricitydemandhasupto26 %moregasdemandforpowergenerationthanNationalTrendswiththelowestgasdemandforelectricitygeneration.Thepicturechangesfor2040,wherealsoNationalTrendshasaccomplishedthecoalphase-outbutshowslowerrenewablepowergeneration.Asaresult,NationalTrendshasthehighestgasdemandforpowerin2040.

Figure11:Numberofelectricandhybridvehiclesandheatpumps(excl.districtheating)comparedtoarangebasedonanalysisof thirdpartyreports

2025

Range of external scenarios

2030 20502040

National Trends Global Ambition Distributed Energy

Mio. Number of EVs and PHEVs

2025 2030 20502040

Mio. Number of HP and HHP

0

50

100

150

300

250

200

350

0

50

100

150

300

250

200

350

Page 23: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 23

Peak demand generally follows the annual trends

Thehighdaily-peakand2-weekdemandrequirements 14 reflectthechangingnatureofresidentialandcommercialdemand,astemperature-dependingspaceheatingtypical-lydrivespeakgasconsumption.Asaresult,finaldemandforpeakdayand2-weekdecreasesinallscenariosduetoefficiencymeasureswithanevenfurtherdecreaseinDistributedEnergy,duetoahigherpenetrationofelectricalheatpumps.Thedecreaseinfinaldemandisforthemostpartcompensatedbyanincreasingpeakdemandforgasinpowergenerationasthemainback-upofvariablerenewables.NationalTrendsobservesthemostlimitedchangeasconsumershaveinvestedinmoretradition-altechnologies,althoughtheyareconsideredlessefficient.

The gas system can support the high development of variable RES

ThesignificantdevelopmentofvariableelectricityREScapacitiesinbothscenariosinfluencestheroleofthegasinfrastructuretoback-upthevariablepowergeneration.WithsignificantvariableREScapacitiesintheenergysys-tem,thegasdemandmaybeimpactedbyDunkelflauteeventsmoreoftenandmoreintensely.

14 The“2-weekdemand”referstoatwo-weekperiodduringacoldspellwithverylowtemperaturesresultinginhighheatingdemand

TWh (GCV)

BE 2020

CBG GBC NT GA 2030 2040 20502025

DE NT GA DE GA DE

R&C Industrial Transport

Historic Demand Average

Power Final

0

1,000

2,000

3,000

4,000

5,000

6,000

Figure12:SectoralbreakdownoftotalgasdemandinEU28

GWh/d (GCV)

Peak

2 W

eek

DF

Peak

2 W

eek

DF

Peak

2 W

eek

DF

Peak

2 W

eek

DF

Peak

2 W

eek

DF

Peak

2 W

eek

DF

Peak

2 W

eek

DF

Peak

2 W

eek

DF

Peak

2 W

eek

DF

BE 2020 2025 CBG 2025 GBC NT 2030 GA 2030 DE 2030 NT 2040 GA 2040 DE 2040

Final Demand

0

10,000

5,000

15,000

20,000

25,000

30,000

35,000

40,000Power Yearly Average

Figure13:Gasdemandinhighdemandcases(Peak,2-Weekcoldspell,Dunkelflaute*) *“KalteDunkelflaute”orjust“Dunkelflaute”(Germanfor“colddarkdoldrums”)expessesaclimatecase,whereinadditiontoa2-weekcoldspell,variableRESelectricitygenerationislowduetothelackofwindandsunlight.

Page 24: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

24 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Decarbonisation of the energy system comes with an uptake of the hydrogen demand

Asaconsequenceofanincreasingvolumeofhydrogengeneration,theCOP21scenariosconsidercontrastedde-velopmentofthehydrogendemandthatcouldmaterialisetomakeuseofthispotential:

- DistributedEnergyconsidersahigherpenetrationofP2GtechnologieswithsignificantvolumesproducedmorelocallyandthusasimilardevelopmentoftheHydrogendemand.

- GlobalAmbitionconsidersamorecentraliseddecarbon-isationwheretheincreasingdemandismainlysuppliedbypre-combustivehydrogenproduction.

TWh (GCV)

2020CurrentNormalised

Demand

Global Ambition Distributed Energy

2030 2040 2050 2020HistoricDemand

2030 2040 2050

Methane

0

1,000

2,000

3,000

4,000

5,000

6,000

Hydrogen

Figure14:TotalmethaneandhydrogendemandinCOP21scenarios

Page 25: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 25

6.2 Supply

6.2.1 Primary energy supply

FortheCOP21Scenarios,theoverallenergymixbecomescarbon-neutralby2050.Tofullydecarbonize,bothCOP21ScenariosregisterasignificantincreaseinbothrenewablesandfurtherCO₂removaltechnologies,whilereducingprimaryenergydemand.Whereasbothscenariosreachsimilarlevelsofprimaryenergydemanddecreaseofaround40 %comparedto2015,theRESshareinGlobalAmbitionreaches69 %by2050butisstilloutbidbyDistributedEnergywithaRESshareof82 %.

Thevastmajorityofenergystemsfromrenewables.In2050,wind,solarandhydrocoverroughly52 %ofprimaryenergydemandinEuropewithinthescenarioDistributedEnergyandabout34 %inGlobalAmbition,whilenuclearasaCO₂neutralgenerationsourcecontributesbetween6and9 %.Biomassandenergyfromwastematerialscontributesignificantly–inDistributedEnergytheycover22 %andinGlobalAmbition28 %oftheprimaryenergymix.

2015 2020 2025 2030 2035 2040 2045 20500

8,000

6,000

4,000

2,000

10,000

12,000

14,000

16,000

18,000

20,000

0

40

30

20

10

50

60

70

80

90

100

Nuclear energy Solids Oil (including refinery gas)

Natural gas Imports for methane demand (decarbonised) Imports for hydrogen demand (decarbonised)

Solar (including P2X) Geothermal and other renewables

Biomass/BioLiquids/Waste Hydro (pumping excluded) Wind (Including P2X) RES-share in primary energy

TWh/year (NCV) Global Ambition RES share in %

2015 2020 2025 2030 2035 2040 2045 20500

8,000

6,000

4,000

2,000

10,000

12,000

14,000

16,000

18,000

20,000

0

40

30

20

10

50

60

70

80

90

100

Nuclear energy Solids Oil (including refinery gas)

Natural gas Imports for methane demand (decarbonised) Imports for hydrogen demand (decarbonised)

Solar (including P2X) Geothermal and other renewables

Biomass/BioLiquids/Waste Hydro (pumping excluded) Wind (Including P2X) RES-share in primary energy

TWh/year (NCV) Global Ambition RES share in %

2015 2020 2025 2030 2035 2040 2045 20500

8,000

6,000

4,000

2,000

10,000

12,000

14,000

16,000

18,000

20,000

0

40

30

20

10

50

60

70

80

90

100

Nuclear energy Solids Oil (including refinery gas)

Natural gas Imports for methane demand (decarbonised) Imports for hydrogen demand (decarbonised)

Biomass/BioLiquids/Waste Hydro (pumping excluded) Wind (Including P2X)

Solar (including P2X) Geothermal and other renewables

RES-share in primary energy

TWh/year (NCV) Distributed Energy RES share in %

Figure16:PrimaryenergymixandRESshareinGlobalAmbition(EU28)

Figure15:PrimaryenergymixandRESshareinDistributedEnergy(EU28)

Page 26: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

26 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Biomasscanbedirectlyusedinindustrialprocesses,orasfeedstocktoproducebiofuelsorbiomethane–bothcanbeusedinallsectors,withamainfocusinpowergeneration,transportandheating.SincecoalisassumedtobephasedoutinEuropeby2040,theremainingdemandiscoveredbyoil,nuclearandgasimports.Theincreaseinrenewableenergyproductionresultsindeclining“all-energy”import

15 Forthecalculationofimportshares,itisassumedthatalloilandnuclearenergyisimportedin2050.

shares,from55 %to60 %nowadays,toca.18 %inDistrib-utedEnergyand31 %inGlobalAmbition 15.

AkeyenablerforthetransitionistheconversionofwindandsolarpowertoP2GandP2L,whichbalancesthevaria-bleelectricitysupplytoenergydemandandallowsutiliza-tionofenergysourcedfromrenewableelectricityinfinalconsumptionsectorswhenthereisnoelectricitydemand.

6.2.2 Electricity

IntheCOP21Scenarios,theelectricitymixbecomescar-bonneutralby2040.InEU-28,electricityfromrenewablesourcesmeetsupto64 %ofpowerdemandin2030and78 %in2040.Variablerenewables( windandsolar )playakeyroleinthistransition,astheirshareintheelectricitymixgrowstoupto44 %by2030and61 %by2040.

Theremainingrenewablecapacityconsistsofbiofuelsandhydro.AllfiguresstatedaboveexcludepowerdedicatedforP2Xuse,whichisassumedtobeentirelyfromcurtailedRES,andnewlybuildrenewablesthatarenotgrid-connect-ed,andthereforenotconsideredinthisrepresentation.

There is an increase in renewable capacity foreseen in all scenarios ……butthespeedoftheuptakeiscontingentonthestory-lineassociatedwitheachscenario.

DistributedEnergyisthescenariowiththehighestinvest-mentingenerationcapacity,drivenmainlybythehighestlevelofelectricaldemand.DistributedEnergymainlyfo-cusesonthedevelopmentofsolarPV.Thistechnologyhas

thelowestloadfactor,asresultsolarPVinstalledcapacitywillbehighercomparedtooffshoreoronshorewindtomeetthesameenergyrequirement.Thescenarioshowsalargergrowthinonshorewindafter2030.

In2030,solarcovers14 %ofthetotalelectricalenergyandwindcovers29 %.In2040,solarcovers18 %oftheelectricalenergyand41 %comesfromwind.Thescenarioalsoshowstheleastamountofelectricityproducedfromnuclearoutofthethreescenarios,providing16 %ofelec-tricityin2030and10 %in2040.

GlobalAmbitionhasalowerelectricitydemand,withageneraltrendofhighernuclearandreducedpricesofoffshorewind.Consequently,thecapacityrequiredforthisscenarioisthelowestasmoreenergyisproducedperMWofinstalledcapacityinoffshorewind.Nuclearprovides19 %ofenergyin2030andreducingto12 %in2040.In2030,solarcovers10 %ofthetotalelectricalenergyandwindcovers31 %.In2040,solarcovers13 %oftheelectricalenergyand44 %comesfromwind.

%

Variable RES2025

Total RES Variable RES2030

Total RES Variable RES2040

Total RES0

40

30

20

10

50

60

70

80

90

National Trends Global Ambition Distributed Energy

Percentage share of electricity demand covered by RES

Figure17:ShareoffinalelectricitydemandcoveredbyRES

Page 27: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 27

NationalTrendsisthenationalpolicy-basedscenario.Thevariablerenewablegenerationrestsbetweenthetwotopdownscenarios.In2030,Solarcovers12 %ofthetotalelectricalenergyandwindcover29 %.In2040,Solarcovers15 %oftheelectricalenergyand41 %comesfromwind.17 %ofelectricalenergyisstillproducedfromnu-clearin2030,reducingto12 %in2040.

Thescenariosincluderepoweringofrenewablegenerationtechnologiesin2040resultingintheintegrationofloadhours.

Sharesofcoalforelectricitygenerationdecreaseinallsce-narios.Thisisduetonationalpoliciesoncoalphase-out,suchasstatedbyUKandItalyorplannedbyGermany.Coalgenerationmovesfrom8 %in2025,to3 %–6 %in2030andnegligibleamountsin2040.

TWh Generation Mix

National Trends National TrendsGlobal AmbitionDistributed Energy National TrendsGlobal AmbitionDistributed Energy

2025 2030 2040

Nuclear energy

0

1,500

1,000

500

2,000

2,500

3,000

3,500

4,000

5,000

4,500

DSR Battery Coal and other fossilOil Gas CHP and Small Thermal Biofuels

Small Scale RES Hydro and pumped storage Solar Solar Thermal Wind Onshore Wind Offshore

GW Capacity

National Trends National TrendsGlobal AmbitionDistributed Energy National TrendsGlobal AmbitionDistributed Energy

2025 2030 2040

Nuclear energy

0

800

600

400

200

1,000

1,200

1,400

1,600

1,800

2,000

Battery Coal and other fossilOil Gas Gas CCS CHP and Small Thermal Biofuels

Small Scale RES Hydro and pumped storage Solar Solar Thermal Wind Onshore Wind Offshore

GW Capacity

National Trends National TrendsGlobal AmbitionDistributed Energy National TrendsGlobal AmbitionDistributed Energy

2025 2030 2040

Nuclear energy

0

800

600

400

200

1,000

1,200

1,400

1,600

1,800

2,000

Battery Coal and other fossilOil Gas Gas CCS CHP and Small Thermal Biofuels

Small Scale RES Hydro and pumped storage Solar Solar Thermal Wind Onshore Wind Offshore

Figure18:ElectricitygenerationmixinDistributedEnergy(EU28)

Figure19:ElectricitycapacitymixinDistributedEnergy(EU28)

Page 28: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

28 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Gas,however,hasashareof20 %in2025,whichreducesin2040to10–12 %.Itisimportanttonotelevelofdecar-bonisedandrenewablegasesinthegasmix,increasesto13 %in2030and54 %in2040.DistributedEnergystartstoshowaneedforCCSin2040,whichwillleadtonega-tiveemissionsinplantsburningbiomethane.

ConsiderationsonOtherNon-Renewables( mainlysmallerscaleCHPs )sourceareimportantfordecarbonisation.Asitstands,carbon-basedfuelsarestillwidelyusedinCHPplantsthroughoutEurope.Thisincludesoil,lignite,coalandgas.Inordertofollowthethermalphase-outstorylines,oil,coalandligniteshouldbephasedoutby2040andreplacedwithcleanerenergysources.Gaswillcontributetodecarbonisationbyincreasingsharesofrenewableanddecarbonisedgas.

OtherREScontainsgenerationtechnologiessuchasma-rine,smallbiofuelandgeothermal.Thegenerationfromthiscollectionoftechnologiesremainsstableinallscenarios.

Generationfromhydro increases in2030duetoanincreaseincapacityfrom145 GWin2025to174 GWin2030butremainsstableafter2030.Ashydropotentialisdeterminedbyveryspecificconditions,bottomupdataisusedforallscenarios.

Thermalcapacitiesarereduced,notonlytonationalphase-outpolicies,butthefactthatsomegenerationunitswillnolongerbeeconomicallyviableduetoreducedrunninghoursorwillreachtheendoftheirlifetime.

Thescenariosshowthatthereispotentialfordemandsidetechnologiesandbatteriestotakepartinthemarketandhelptosmoothendemandpeaksandlevelprices.Whiletheimpactofthesetechnologiesintermsofenergymaybelow,theyshowavastpotentialtoreducegenerationfromcarbonbasedpeakingunits,supportingdecarbonisation,contributetowardssystemadequacyatlowercostsandhelptointegrateincreasinglyvariableelectricitygeneration.

DistributedEnergyshowsthehighestincreaseinusageofthesetechnologiesin2030,whilsttheotherscenariosincorporaterelativelymoderatetolowusage.DistributedEnergyshowsmoreuseofdemandsideresourcesasthecostofresidentialsolarandbatterysystemsarediscounted.In2040,thereisamuchlargerincreaseinuseofbatterytechnologiesinallscenarios,themostnoticeableareDistributedEnergyandNationalTrends.

TWh Generation for Adequacy and Flexibility

National Trends National TrendsGlobal AmbitionDistributed Energy National TrendsGlobal AmbitionDistributed Energy

2025 2030 2040

Thermal

0

90

50

80

70

60

40

30

20

10

BatteryDSR

Figure20:Peakgeneration,demandsideresponseandbatterytechnology(EU28)

Page 29: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 29

6.2.3 Gas

6.2.3.1 Gas supply potentials

Indigenous production: contrasted views captured by the COP21 scenarios

Allscenariosconsidersimilardecreaseoftheconventionalindigenousproduction.However,theassumptionsontheindigenousrenewablegasproduction,suchasbiomethaneandP2G,differacrossthescenarios:

- 2020and2025relyonBestEstimatesfortheTSOs.Duetothedecreasingdomesticconventionalgasproductionandratherstablegasdemand,gasimportswillincrease.

- NationalTrendsreliesonbottom-updatafortheindigenousproductionfornaturalgas( includingun-conventionalgas,suchasshalegas )andbiomethane.Additionally,P2Gisaddedassumingthatcurtailedelec-tricitywillbeusedtoproducehydrogenandsyntheticmethane.

- DistributedEnergyconsidersasignificantuptakeoflocalrenewablegasproductionsupplying65 %oftheEUgasconsumptionin2050.Consideringagraduallydecreasinggasdemandafter2025,gas importsdecreaseby70 %comparedtotoday’slevel.

- GlobalAmbitionscenarioconsiderstheuptakeofrenewablegasproductioncapacitiestoalesserextentwithamoreimport-orientedvisionandlarge-scaledecarbonisation.Importsrepresent70 %oftheEUgasconsumptionin2050.Consideringagraduallydecreas-inggasdemandafter2025,gasimportsstilldecreaseby30 %comparedtotoday’slevel.

Thecontrastedapproachtowardsthesupplyconfigura-tionsisessentialwhenassessingtheinfrastructureforthenexttwentyyearssinceitdirectlyimpactsthewaytheEuropeangassystemisused.

Enough gas potential to satisfy the EU demand until 2050

AllscenariosconsideramaximumutilisationofindigenousproductionintheEuropeangassupplymixuntil2050.ThesupplypotentialassessmentrunbyENTSOGanddiscussedwithstakeholdersinJuly2019 16concludesthatforallsce-narios,theimportpotentialsarehighenoughtoensurethesupplyanddemandadequacyoftheEUuntil2050.Thisisdespitethedeclineoftheconventionalindigenous

16  https://www.entsog.eu/entsog-workshop-supply-potentials-and-market-related-assumptions-tyndp-2020#

TWh/year (GCV) National Trends

Best Estimate2020

Best Estimate2025

National Trends2030

National Trends2040

1,000

0

2,000

3,000

4,000

5,000

6,000

7,000

Total National Production (incl. natural gas, biomethane and P2G)

Minimum Extra-EU Supply Potential

Gas demand in EU28: Gas before Coal Coal before Gas

Additional Supply PotentialTWh/year (GCV) Distributed Energy

Best Estimate2020

Best Estimate2025

DistributedEnergy 2030

DistributedEnergy 2040

1,000

0

2,000

3,000

4,000

5,000

6,000

8,000

7,000

Total National Production (incl. natural gas, biomethane and P2G)

Minimum Extra-EU Supply Potential

Gas demand in EU28: Gas before Coal Coal before Gas

Additional Supply PotentialTWh/year (GCV) Global Ambition

Best Estimate2020

Best Estimate2025

Global Ambition2030

Global Ambition2040

1,000

0

2,000

3,000

4,000

5,000

6,000

7,000

Total National Production (incl. natural gas, biomethane and P2G)

Minimum Extra-EU Supply Potential

Gas demand in EU28: Gas before Coal Coal before Gas

Additional Supply Potential

Figure21–23:NationalTrends,DistributedEnergy,GlobalAmbition

Page 30: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

30 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

production.Inthisregard,itcanbehighlightedthattheDutchGovernmenthasdecidedtostopproductionatGro-ningen,Europe’slargestonshorenaturalgasfield,by2022.Additionally,thesupplymixwillbefurtherdiversifiedwithnewsourceslookingtowards2050.

Furthermore,whilstNorwegiansupplyisproducedinEurope,itisconsideredasanimportsourcetotheEUsinceNorwayisnotaMemberoftheUnion.

The import supply mix will be dominated by gas from Russia, Norway and LNG

Eventhoughthesupplymixwillbediversified,theimportsupplymixwillstillbedominatedbythecurrentthreelargestsupplysources:Russia,Norwayandliquefiednat-uralgas( LNG ).Whichofthesesources,whowillhavethelargestshareoftheimportsupplymix,willbedependentonmarketprices,andthesupplychain’sadaptationofthegrowingdemandfordecarbonisedgases.

Figure21,Figure22andFigure23highlighttheadequacyofscenariospecificgasdemandandsupply.Supplyissplitintothreecategories:

- TotalEUindigenousProductioncoversalldomesticproductionofconventionalnaturalgas,biomethaneandP2Gforbothhydrogenandmethane.

- MinimumExtra-EUSupplyPotentials:minimumgasim-portsbasedonlong-termcontractsandtheirassumedprolongation

- AdditionalSupplyPotential:additionalgasimportsoptionswhichwillbeusedbasedonarbitrage

Allscenariosshowenoughsupplypotentialstomeetthefuturedemand.

6.2.3.2  Gas supply composition

A technology neutral approach

Thedecarbonisationofthegassupplycanbedoneinmanyways.GascaneitherbeproducedfromrenewableenergysuchasbiomethaneorhydrogenfromP2G,butitcanalsobedecarbonisedfromconventionalnaturalgaswithdifferenttechnologiessuchassteammethanereforming( associatedwithcarboncaptureandsequestrationpro-cess )orpyrolysis.

EachtechnologycomeswithitslevelofdecarbonisationthatisconsideredinthecomputationoftheGHGemis-sionsofeachscenariotokeeptrackoftheircarbonbudgetexpenses.Forinstance,biomethanecanbeconsideredas

carbonneutralorcarbonnegativeifassociatedwithCCS( thereforeincludedinBio-EnergyCarbonCaptureandSe-questration( BECCS )category ).However,CCSprocessescomewithefficiencyfactorstoaccountforthepartoftheCO₂thatcannotbecapturedintheprocessandthatisthereforereleasedintheatmosphere.

Inordertocaptureallpossibleimpactsofthedevelopmentofoneoranothertechnology,thescenarioscomewithcontrastedassumptionsregardingthepenetrationofre-newableordecarbonisedgasesinthesupplymixoftheEU.

A source neutral approach

TYNDP2020scenariosconsidercontrastedpossibledevelopmentsofthegasdemandincludingdifferentgasqualities.ENTSOGandENTSO-Ehaveimprovedtheirmethodologyandintroducedamoredetailedbreakdownofthegasdemandbetweenmethaneandhydrogen.

However,therearedifferenttechnologicalwaysboththosedemandscanbesatisfied.Methaneandhydrogendemandscanofcourseprimarilybesatisfiedrespectivelybymeth-aneandhydrogenproduction.However,dependingonthepenetrationofthedifferentgenerationtechnologies,methanecanbedecarbonisedtogeneratehydrogenandthereforesatisfythehydrogendemand.Ontheotherhand,hydrogencanbemethanisedtocreatemethaneandthereforesatisfythemethanedemand.Itshouldbenotedthatanyconversionprocessincorporatesenergylossestakenintoaccountasefficiencyfactorswhenbuildingthescenarios.

InlinewiththeneutralapproachofENTSOGtowardstheinfrastructuresubmittedtoTYNDP,thescenariosaretech-nologyneutral.Therefore,unlessapieceofinfrastructureisactuallycommissionednochoiceismadebyENTSOGandthescenariosdonotpre-emptthelocationoftheconversionofthegassupplytosatisfythedemand.Theconversioncouldthereforebecentralisedattransmissionlevelorbedecentralisedatcity/consumergate.

6.2.3.2.1  National Trends

ThegassupplymixconsideredinNationalTrendsreflectsthecurrentEuropeantargetsandrespectiveMemberStates’NECPs.ThelevelofinformationregardingthegassupplymixcanbeverydifferentdependingonhowthetargetsaresetintheNECPs.Thus,duetolackofconsistencybetweentheindividualNECPs,thegassupplymixforNationalTrendsisnotsplitintodifferentgasqualities.Basedoninformationavailablefordemandandnationalproduction,NationalTrendswillrequiresimilargasimportslevelsastoday,withapeakof4,000 TWhin2025.

Page 31: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 31

TWh (GCV) National Trends

History 2020 2025 2030 2035 20400

1,000

2,000

3,000

4,000

5,000

*decarbonised, either by natural gas imports with post-combustive CCU/s or any other technology**natural gas converted to hydrogen at import point/city gate or direct hydrogen imports

Imported Natural Gas:

Unabated

Indigenous Natural Gas: Power-to-Hydrogen Power-to-Methane Biomethane Imports (incl. Norway)

Unabated Abated Imports for Hydrogen Demand**Imports for Methane Demand*Figure24:Gassourcecomposition–NationalTrends

TWh (GCV) Distributed Energy

History 2020 2025 2030 2035 2040 205020450

1,000

2,000

3,000

4,000

5,000

Imported Natural Gas:

Unabated

Indigenous Natural Gas: Power-to-Hydrogen Power-to-Methane Biomethane Imports (incl. Norway)

Unabated Abated Imports for Methane Demand* Imports for Hydrogen Demand**

*decarbonised, either by natural gas imports with post-combustive CCU/s or any other technology**natural gas converted to hydrogen at import point/city gate or direct hydrogen imports

TWh (GCV) Global Ambition

History 2020 2025 2030 2035 2040 205020450

1,000

2,000

3,000

4,000

5,000

Imported Natural Gas:

Unabated

Indigenous Natural Gas: Power-to-Hydrogen Power-to-Methane Biomethane Imports (incl. Norway)

Unabated Abated Imports for Methane Demand* Imports for Hydrogen Demand**

*decarbonised, either by natural gas imports with post-combustive CCU/s or any other technology**natural gas converted to hydrogen at import point/city gate or direct hydrogen imports

TWh (GCV) National Trends

History 2020 2025 2030 2035 20400

1,000

2,000

3,000

4,000

5,000

*decarbonised, either by natural gas imports with post-combustive CCU/s or any other technology**natural gas converted to hydrogen at import point/city gate or direct hydrogen imports

Imported Natural Gas:

Unabated

Indigenous Natural Gas: Power-to-Hydrogen Power-to-Methane Biomethane Imports (incl. Norway)

Unabated Abated Imports for Hydrogen Demand**Imports for Methane Demand*

Figure25:Gassourcecomposition–DistributedEnergy

Figure26:Gassourcecomposition–GlobalAmbition

Page 32: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

32 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

6.2.3.2.2  Distributed Energy Scenario

Asadecentralisedscenario,DistributedEnergyconsidersahighlevelofindigenousproductionofrenewablegas.Sincebothdecarbonisationandahigherself-sufficiencyarethemaindriversoftheDistributedEnergyScenario,itrequiresasignificantincreaseinrenewableelectricitygenerationtomeettheP2Gdemand.Moreover,withalmost1,000 TWhDistributedEnergyprojectsthehighestbiomethaneproductionofallscenarios.Ontheotherside,importsarereducedby70 %between2020and2050,accountingfor2,386 TWhin2040,and1,050 TWhin2050.Thelevelofimportsisthelowestofallthescenariosandtoreachcarbonneutralityby2050meansthattheremainingimportsmustbedecarbonisedorrenewablebythen.However,aimingfordecarbonisationrequiresasignificantincreaseinrenewableelectricitygenerationtomeettheP2Gdemand.

6.2.3.2.3  Global Ambition

Asacentralisedscenario,GlobalAmbitioncombinesbothhighdecarbonisationlevelswithaglobalgassupplyandaccesstoavarietyofsources.However,thankstogeneraldemanddecreasealsoimportsdecreaseby25 %by2050comparedtocurrentlevels( –830 TWh ).Toreachcarbonneutralitygasimportstobedecarbonisedorrenewablebythenareofalargerscale( 2,670 TWh/y )thaninDistributedEnergy.

BothP2GaswellasBiomethanearehigherthan inNationalTrendsbutlowercomparedtoDistributedEnergy.Togethertheycontributewith1,150 TWhby2050.

Page 33: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 33

6.3 Sector Coupling: Capacity and Generation for P2G and P2L

DistributedEnergyhasasignificantlyhigherdemandforEUproducedhydrogen,syntheticmethaneandliquidsthanGlobalAmbitionin2030and2040.TheDistributedEner-gystorylineassumesareductionby70 %ofgasimportsby2050( from3,700 TWhin2020downto1,050 TWhin2050 )combinedwiththedecarbonisationofthegassupply.Italsoassumesaquasiphase-outoffossiloilby2050replacedbyEuropeanbiofuelandP2L.

DistributedEnergyandGlobalAmbitionhaveaspecificdemandfordomesticallyproducedhydrogen.Inthesescenarios,P2GandP2Lplantsareoperatedoutsidetheenergymarkets,usingdedicatedrenewables,butthe

curtailedelectricityfromthemarketisusedtofeedtheseplants.NationalTrendsdoesnothaveaspecifictopdowndemandforhydrogen,thereforethepower-to-gasplantsarebuiltsolelybasedoncurtailedrenewables.

IntheCOP21scenarios,themainsourceusedforelectrol-ysisisoffshorewind,butwhereregionalconstraintsexist,onshorewindandsolarPVwillbethealternative.

Thegenerationprofilesmatchthecapacitiesbuild.ThereismoreREScapacityinDistributedEnergy2040there-foreitisnaturalthatthereismorecurtailedenergyinthisscenario.

GW Capacities for Hydrogen and derived fuels production

National TrendsGlobal AmbitionDistributed Energy National TrendsGlobal AmbitionDistributed Energy2030 2040

Electrolyser Capacity

0

600

500

400

300

200

100

Wind Offshore Wind OnshoreSolar PV

TWh Generation mix for Hydrogen and derived fuels production

Global AmbitionDistributed Energy National TrendsGlobal AmbitionDistributed Energy

2030 2040

0

Curtailed RES

1,600

1,400

1,200

1,000

800

600

400

200

Wind Offshore Wind OnshoreSolar PV

Figure27:Capacityforhydrogenproduction

Figure28:Generationmixforhydrogenandderivedfuels

Page 34: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

34 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

6.4 Reduction in overall EU28 CO2 Emissions and necessary measures

17 IPCCspecialreportontheimpactsofglobalwarmingof1.5°Cabovepre-industriallevelsandrelatedglobalgreenhousegasemissionpathways,IntergovernmentalPanelonClimateChange,2018

FollowingtheEU’s long-termgoal,NationalTrendistreatedtoreach80 %to95 %ofdecarbonisationby2050.Althoughthecommonlyagreedtargetfor2030is40 %GHGemissionreduction,thelatestadoptionstothe2030climateandenergyframework( 32,5 %improvementinenergyefficiency,32 %shareforrenewableenergy )willconsequentlyresultinhigherGHGemissionsreductions.ThisisalsoshownbytheEuropeanCommission’sLong-termStrategyScenarios.Ontheotherhand,theCOP21scenariosgoforcarbonneutralityby2050,assuggestedbythelatestIPCCSpecialReport 17andtargetedbytheEuropeanCommission.

AsmentionedinSection6.2.1,bothCOP21Scenariosregisterasignificantdecreaseinprimaryenergydemand

withincreasingsharesofrenewables,mainlybiomassandvariableelectricity( bothfordirectuseandP2Gproduc-tion ).Whereaselectricitygenerationhasalreadyfacedsomeleveloftransition,othercarrierssuchasgasneedtofollow.ENTSOs’scenariobuildingexerciseshowsthattodecarboniseallsectorsaswellasallfueltypes,addi-tionalmeasuressuchasCCU/S,alsoincombinationwithbioenergy,areneeded.Fulldecarbonisationalsoneedsthecontributionofnon-energyrelatedsectors,suchasthedecarbonisationofagriculture/meatproductionandfurtherafforestation.Itshouldbenoted,thatforGHGemissionsrelatedtonon-CO₂emissions( e. g.methaneemissions )andLULUFC,ENTSOs’scenariosrelyontheaveragegivenbythe1.5TECHand1.5LIFEscenariosoftheEuropeanCommission’sLong-termStrategy.

GHG emissions compared to 1990 level

20202015 2025 2030 2035 2040 2045 20500

80 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

Global AmbitionDistributed Energy EU GHG reduction targets/range 2015 NT30

Figure29:GHGemissionreductionpathwaysuntil2050

Page 35: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 35

Electricity Generation

In2030theelectricitysectorproducesemissionsofbe-tween363and402MtCO₂,areductionofaround76 %ascomparedto1990.DistributedEnergyshowsthelargesttheemissionreductionisonparwithNationalTrends.IntheCOP21Scenarios,theelectricitymixbecomesalmostcarbonneutralby2040withemissionsof74MtCO₂inDistributedEnergyand87MtCO₂inGlobalAmbition.Inthiscasebothscenarioshavethegasbeforecoalmeritorder,butasthedemandishigherinDistributedEnergy,

thereismoreconsumptionofbothgasandcoal.However,tomeettheambitioustargetsintheelectricitygeneration,fuelinputintosmallscaleCHP,mainlygas,needstobe83 %decarbonised.Moreover,inDistributedEnergyalsoCCU/SneedstobeappliedtoCCGTsby2040.

NationalTrendsseesemissionsof196MtCO₂,ontargetwiththe2°CscenariosshownintheLong-termStrategyfromtheEuropeanCommission.

Gas supply

Gasasanenergycarrierwithincreasingsharesofrenew-ableanddecarbonisedgasesplaysakeyroleinthede-carbonisationoftheeconomy.BiomethaneandrenewablegasesproducedviaP2GdonothaveCO₂emissions,butifCCU/S( post-combustiveorduringtheproductionofbiomethane )isappliedtheirconsumptioncanevenleadtonegativeemissions.Apartfromindigenouslyproducedrenewablegases,alsotheconsumednaturalgasneedstobedecarbonisedwithcarboncapturetechnologies,eitherpre-combustiveincombinationwithsteammeth-anereformingormethanepyrolysis,orpost-combustiveinlarge-scaleindustrialsitesorpowerplants.However,post-combustiveCCSmaymostlybeappliedtolargescaleprocesssuchasindustrialsitesorpowerplantsanditscarboncapturerateisusuallyaround90 %.

InDistributedEnergyin2050,65 %ofthegaswillberenew-able,butfortheother35 %needstobedecarbonisedwithcarboncapturetechnologies:in2050,tobecarbon-neutral,90MtCO₂needtobecapturedduringtheconversionofnaturalgasintohydrogenandadditionally50MtCO₂needtoberemovedpost-combustiveatindustrialsites.

Figure31showstheemissionsrelatedtotheconsump-tionofgasesandtheaveragecarbonintensity( inkgCO₂/kWh )ofthegasmixinDistributedEnergy.Duetoabovementionedrestrictionsforpost-combustiveCCS,theCO₂intensityofthegasmixdecreasesby86 %inDistributedEnergyby2050comparedtoconventionalnaturalgas.

Duetohigherimports,GlobalAmbitionseesabroaderneedforCCU/Stodecarbonisethegasmixtoreachcar-bonneutrality.Toproducehydrogenfromnaturalgasupto264MtCO₂/yearneedtobecapturedandstoredorused.Additionally,upto83MtCO₂/yearneedtoberemovedpost-combustive.Furthermore,88MtCO₂needstobecapturedfrombiomethane,whichallowsfornegativeemis-sions.TheCO₂intensityofgasdecreasesby86 %inGlobalAmbitionin2050comparedtoconventionalnaturalgas.

InthiscontextENTSOGandENTSO-E’assumptionsontheneedandapplicationofCCSareguidedbytheEuropeanCommission’sLong-termStrategyanditsmostambitious1.5°Cscenarios:1.5LIFEand1.5TECHseethenecessityof281to606MtCO₂captured( seesection8.5forabench-markwiththesescenarios ).

Mt CO� Emissions

203020251990 2040

0

1,600

1,400

1,200

1,000

600

800

400

200

Global Ambition

Distributed Energy

BestEstimate

GBC

BestEstimate

CBG

NationalTrends

Distributed Energy

NationalTrends

Historic Global Ambition

Figure30:CO²emissionsintheElectricityGeneration

Page 36: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

36 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Total CO� emissions in Mt CO� CO� intensity of Gas mix in kg CO�/kWh

–600

–400

–200

0

200

400

600

800

1,200

1,000

Natural gas Credits from post-combustive CCS

Credits from pre-combustive CCU/S

CO� intensity of Gas mix

Imports for Methane Demand* Imports for Hydrogen Demand**

*decarbonised, either by natural gas imports with post-combustive CCU/s or any other technology**natural gas converted to hydrogen at import point/city gate or direct hydrogen imports

Decarbonisation of Gas: Distributed Energy

0

–0.2

0.2

0.3

2020 2025 2030 2035 2040 2045 2050

Figure31:DecarbonisationpathofgasinDistributedEnergy

CO� intensity of Gas mix

Decarbonisation of Gas: Global AmbitionTotal CO� emissions in Mt CO� CO� intensity of Gas mix in kg CO�/kWh

*decarbonised, either by natural gas imports with post-combustive CCU/s or any other technology**natural gas converted to hydrogen at import point/city gate or direct hydrogen imports

2020 2025 2030 2035 2040 2045 2050–600

–400

–200

0

200

400

600

800

1,200

1,000

Natural gas

Credits from post-combustive CCU/S

Credits from pre-combustive CCU/S

Imports for Methane Demand* Imports for Hydrogen Demand** Credits from Biomethane + CCS

0

–0.2

0.2

0.3

Figure32:DecarbonisationpathofgasinGlobalAmbition

Page 37: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 37

TheCO₂priceandelectricitydemanddirectlyaffectthemarginalcostofthescenarios.DistributedEnergyhasthehighestCO₂priceandelectricitydemandinbothtime-frames,thereforethemarginalcostisthehighest.Thecostassumptionsofwindandsolar,influencetheCO₂pricehavinganeffectontheLevelizedcostofelectricityineachmarketnode,andtheelectricitymarginalcostsofthescenarios.

Levelised cost of electricity

Acrossallthescenariosnewcapacityforelectricitygen-erationcomesmainlyfromwindandsolarpower.Globaltrendsshowthatincentives,innovation,andinvestmenthavematuredthesolarandwindindustry;theirlevelisedcostsofelectricity( LCOE )issignificantlylowercomparedtootherlowcarbongenerationtechnologies,suchastidalorCCGTswithCCS.

Electricity Costs

€/MWh Marginal Prices

20302025 2040

0

70

60

50

40

30

20

10

Global Ambition

Distributed Energy

NationalTrends

Global Ambition

NationalTrends

Distributed Energy

NationalTrends

Figure33:Marginalcosts

7

Page 38: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

38 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

ApowersysteminvestmentmodelreliesontheLCOEofaparticulartechnologytomakedecisionsonwhetheritcanbebuilt.TheinvestmentmodelensuresthattheCAPEXandfixedcostsofatechnologyarerecoveredovertheeconomic/technicallifetimeoftheinvestment.AnnexIIprovidesanoverviewoftheinvestmentCAPEXandfixedcostassumptionsforeachofthetechnologiesconsideredbythescenariobuildingprocess.

Thedecisiontobuildaparticulartechnologyisdrivenbytheachievedelectricitypriceforaparticularmarketarea,i. e.theweightedaveragepricefromhourswhenthewind/solargeneratorisproducing,whichisimpactedbygeneralsupply/demandsituationandtheamountofpreviouslyin-stalledcapacityofthesametechnology.Typicallyinanin-vestmentmodelwillpreventoverinvestmentinaparticulartechnology,suchasSolarPV,assimilaroutputprofilesreducethemarginalprice,sothatfurtherinvestmentisnoteconomicallyviable.Furthermore,thecostandavailabilityofflexibilitiessuchasinterconnectionorstorage,suchasP2Xandbatteries,impacttheinvestmentdecisions,sincehigheramountsofstoragemayimprovetheachievedpriceforvariablerenewabletechnologies.

ConventionalandRenewableLCOEarevariableandde-pendentondifferingfactors.TheLCOEofRenewableen-ergysourcesareimpactedbyresourceavailabilitybothinageographicalandclimaticsense.ThecostoftechnologyforresidentialPVistypicallystableacrossEuropehowevertheabilitytoconverttheenergytoelectriciswhollyde-pendentonthegeographicallocation,basedonourCostassumptionsforDE2040SpaincouldachieveanLCOEof~€17/MWhcomparedto~€40/MWhFinlandforthesameinvestmentcost,thedifferenceisdrivenentirelybythefactsthataSpainPVyieldsapprox.22 %energyfrom1MWcomparedto9 %energyfrom1MWinFinland.

Thedecisiononbuildingnewconventionalthermalplantsisnotadependentonlocation,butrathertheSRMCandtheresidualdemandonthesystem.Thedecisiontobuildnewconventionalplantwillbebasedontheneedtomeettheresidualdemandandensuresecurityofsupplyforaparticularmarket.Thechartsshowsdemonstratethatinthelongtermhorizonrenewableenergyismorecosteffec-tivethanthermalgeneration.Thevariabilityofrenewablehowevermeansthatbackupsupplyismorecritical,theinvestmentdecisiontobuildthermalswillrelyonwhetherornotsecurityofsupplyishighlightedinamarketareaandhighpricesignalsenablethebuildingofbaseloadorpeakingthermalplant.TypicallyOCGTorLightoilunitswillrecovercostoverasmallnumberofhourswhereasbase-loadormid-meritplantswillrequireasignificantnumberofhourswherethepriceishighenoughtomakeaneconomicdecisiontobuild.

Solar PV Capacity Factor

0

25 %

20 %

15 %

5 %

10 %

Sola

r PV

ES0

0So

lar P

V P

T00

Sola

r PV

CY

00So

lar P

V T

R00

Sola

r PV

MT0

0So

lar P

V R

O00

Sola

r PV

GR

00So

lar P

V G

R03

Sola

r PV

ITSI

Sola

r PV

ITSA

Sola

r PV

HR

00So

lar P

V IT

S1So

lar P

V M

E00

Sola

r PV

MK

00So

lar P

V B

A00

Sola

r PV

ITCS

Sola

r PV

SI0

0So

lar P

V A

L00

Sola

r PV

ITN

1So

lar P

V B

G00

Sola

r PV

ITCN

Sola

r PV

FR

15So

lar P

V F

R00

Sola

r PV

AT0

0So

lar P

V S

K00

Sola

r PV

UK

00So

lar P

V L

T00

Sola

r PV

CZ0

0So

lar P

V E

E00

Sola

r PV

DK

W1

Sola

r PV

HU

00So

lar P

V U

KN

ISo

lar P

V IE

00So

lar P

V L

V00

Sola

r PV

DK

E1So

lar P

V C

H00

Sola

r PV

DE0

0So

lar P

V B

E00

Sola

r PV

NO

S0So

lar P

V S

E04

Sola

r PV

SE0

3So

lar P

V L

UG

1So

lar P

V S

E02

Sola

r PV

PL0

0So

lar P

V S

E01

Sola

r PV

NL0

0So

lar P

V F

I00

Figure34:SolarPVCapacityFactor

Offshore Wind

Onshore Wind

Solar PV

Average 43 % 28 % 14 %

Max 51 % 40 % 22 %

Min 27 % 19 % 9 %

Table5:WindandSolarCapacityFactorCharacteristics

Page 39: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 39

OuranalysisshowsthatinvestmentinnewconventionalformsofenergysuchasnuclearandCCGTswithCCSaredifficultduetothehighCAPEXandtheneedforhighoperationalhour’s60-70 %ofGasCCGTsand80-85 %forCCGTwithCCSandNuclearpowerplants.

GlobalAmbitionassumesverystrongcostreductionsforoffshorewind,withoffshorewindeconomicalcompetitivetoonshorewindandsolarPV.DistributedEnergyassumesstrongreductioninsolarPVcosts.Windonshoreisgen-erallycompetitiveinbothscenarios.SolarPVisgenerallymostcompetitiveinSouthernEurope,whereasonshorewindisparticularlycompetitiveinNorthernandWesternEurope.Foroffshorewind,thelowestcoststakeplaceinNorthSeaandsouthernBalticSearegions.

€/MWh LCOE: Global Ambition 2040

20

0

40

60

80

100

120

140

Median conditions LCOE Good conditions LCOE Very good conditions LCOE Average marginal cost

CCGT CCS

CCGT New

Nuclear Solar PV (commercial)

Solar PV (residential)

Wind off-shore

Wind on-shore

20

0

40

60

80

100

120

140

Median conditions LCOE Good conditions LCOE Very good conditions LCOE Average marginal cost

CCGT CCS

CCGT New

Nuclear Solar PV (commercial)

Solar PV (residential)

Wind off-shore

Wind on-shore

€/MWh LCOE: Distributed Energy 2040

Figure35:RESLCOEinGlobalAmbition2040

Figure36:RESLCOEinDistributedEnergy2040

Page 40: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

40 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Aliteraryreviewofrelevantexternalstudiesisabestprac-ticeapproachwhenundertakingacomplextasksuchasdevelopingscenarioforENTSOGandENTSO-EandEU28perimeter.ThepurposeoftheexerciseistounderstandwhetherornottheinputassumptionsandmethodologiesthatENTSOsemployresultincredibleandplausibleout-comescomparetootherexpertopinionandmethods.

Aspartofourinternalqualityprocessforscenariobuilding,ENTSOGandENTSO-EhavecomparedtheirTYNDP2020ScenariostotheEuropeanCommission’sScenarios:

a) EUCO32/32.5scenario( EC,2018 ).b) ACleanPlanetforall–AEuropeanlong-termstrategicvisionforaprosperous,modern, competitiveandclimateneutraleconomy”( EC,2018 ),inparticularwith

a. BaselineScenario( “Baseline” ) b. 1.5TECHScenario( “1.5TECH” ) c. 1.5LIFEScenario( “1.5LIFE” )

Itisacknowledgedthattherearedifferentapproachesandpurposesforbothlistedstudies.ThestudieseachhaveaviewontheEU28electricityandgassectors.Itispossibletocreateplausiblerangesforscenarioparameterssuchas,lowtohighrangesfordemand;EVuptake,HeatPumpuptake;installedcapacityforgeneration,lowtohighrangegasforimportsetc.InthefollowingsectionsENTSOshavefocusedtheirbenchmarkingontheoverallelectricityandgasdemand,electrificationandgassupply.

Benchmarking8

Page 41: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 41

8.1 Final Electricity Demand

ThehighestfinalelectricitydemandcorrespondstoDis-tributedEnergy,withtheactualgrowthbeingduetotheverystrongincreaseinelectricvehiclesandheatpumps.TheGlobalAmbitionscenariohasthelowestfinalelectric-itydemand,duetothehighergasshare.

Electrification rates

Thefinalelectricityenergydemanddividedbyfinalener-gydemandindicatesthedirectelectrificationofdifferentscenarios.Thegeneralincreaseintheshareofelectricityinfinalusedemand,illustratesthatelectrificationisonekeydrivertryingtoachieveasufficientdecarbonizationupto2050.TheelectrificationtrajectoriesoftheTYNDP2020scenarios3–4percentagepointsaboveorbelowtheECLTS1.5scenarios.Asdisplayedfortheyear2050,theDis-

tributedEnergyscenariosachievesanelectrificationrateof54 %pointsabovethe1.5TECHscenario.TheGlobalAmbitionscenarioachievesanelectrificationrateof47 %,2pointsbelowthe1.5LIFEscenario.

Thesectorialbreakdownsoftheindustry,residentialandcommercialsectorsillustratethattheCOP21scenariosare,withregardtoelectrification,intheorderofmagnitudecomparedtotheECLTSscenarios.

Asimilarstatementcanalsobemadetothetransportsectorforthemid-termhorizon( 2030and2040 ),wheretheelectrificationisintheballparkofotherexternalsce-narios.For2050,thetransportelectrificationinENTSOGandENTSO-ECOP21scenariosmatchestheEC’s1.5TECHscenario.

2030 203520252015 2020 2040 2045 2050

60 %

50 %

40 %

30 %

20 %

Global AmbitionTYNDP 2020: EUCO reference case 2016 EU LTS Baseline Distributed Energy

Direct electrification rate

EC 1.5 TECH

EC 1.5 LIFE

EC 1.5 LIFE

Figure38:BenchmarkingofprojectedelectrificationrateforEU28

TWh Direct Electricity Demand

2025 2030 2035 2040 2045 2050

4,500

4,000

3,500

3,000

2,500

TYNDP 2020: Global AmbitionNational Trend Distributed EnergyEUCO reference case 2016 EU LTS Baseline

EC 1.5 TECHEC 1.5 LIFE

Figure37:Benchmarkingofprojectedelectricitydemandandwind/solargenerationforEU28

Page 42: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

42 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Electrification rate – Industry

2030 2040 20500 %

100 %

80 %

90 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

Global AmbitionTYNDP 2020: EU LTS Baseline

Distributed Energy

EC LTS 1.5 TECH

EC LTS 1.5 LIFE

Electrification rate – Residential and Tertiary

2030 2040 20500 %

100 %

80 %

90 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

Global AmbitionTYNDP 2020: EU LTS Baseline

Distributed Energy

EC LTS 1.5 TECH

EC LTS 1.5 LIFE

Electrification rate – Transport

2030 2040 20500 %

100 %

80 %

90 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

Global AmbitionTYNDP 2020: EU LTS Baseline

Distributed Energy

EC LTS 1.5 TECH

EC LTS 1.5 LIFE

Electrification rate – Transport

2030 2040 20500 %

100 %

80 %

90 %

70 %

60 %

50 %

40 %

30 %

20 %

10 %

Global AmbitionTYNDP 2020: EU LTS Baseline

Distributed Energy

EC LTS 1.5 TECH

EC LTS 1.5 LIFE

Figure39:BenchmarkingofprojectedelectrificationintheindustrialsectorforEU28

Figure40:BenchmarkingofprojectedelectrificationofresidentialandcommercialsectorsinEU28

Figure41:BenchmarkingofprojectedelectrificationinthetransportsectorforEU28

Page 43: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 43

8.2 Gas demand

AlthoughENTSOsscenariosfollowtheirspecificassump-tionsandmethodologies,theyaredesignedtomeetthesameEUclimateobjectivesasotherexternalscenarios.

ENTSOs scenarios in the range of EC scenarios

Inthetimeframe2020–2040,NationalTrendsprojectsca.10 %highergasdemandthanEUCO32/32.5andtheBaselinescenario.Partofthedifferencecanbeexplained

bynationalcoal-phaseoutpoliciescapturedbyNationalTrendstakingintoaccountlatestinformationfromtheNECPsornationalclimatestrategies( suchastheGermancoal-phaseout ).

In2050,DistributedEnergyreachestheEUclimatetargetswith3,000 TWhrangingbetween1.5TECHand1.5LIFE.GlobalAmbitionreachesthesameobjectiveswithagasdemandof3,800 TWh,rangingabove1.5TECH.

TWh (GCV) Total gas demand (Methane + Hydrogen)

2020 2025 2030 2035 2040 2045 20500

1,000

2,000

3,000

4,000

5,000

6,000

EC – LTS – Baseline

EC – LTS – 1.5 TECH

EC – LTS – 1.5 LIFE

Gas before Coal SenstitivityGlobal Ambition

Distributed Energy

National Trends

EUCO32/32.5 GCVtotal demand

Figure42:Totalprimarygasdemand–BenchmarkwithECLongTermStrategy

Page 44: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

44 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Gas demand for final use and for power generation follow different evolutions

Whenlookingintothegasdemandmoreindetail,thetotalgasdemand( methaneandhydrogen )canbedividedinthegasdemandforfinaluse,wheregasisdirectlyusedasenergy( inresidential,tertiary,industryandtransport )orasfeedstock( onlyindustry )andthegasdemandforpowergeneration,wherethegasisconvertedintoelectricityinpowerplants,CHPorinthelongrunfuelcells.

Till2025,allTYNDPscenariosshowhighalignmentwiththeEUCO32/32.5scenarioforbothdemandcategories.For2030,TheTYNDPscenariosshowdifferentdemanddevelopmentscomparedtotheEUCO32/32.5scenario.

- Final demand:Withregardtothegasfinaldemand,theTYNDPScenariosconsidermoregasinsectorssuchastransportandindustrycomparedtotheEUCO32/32.5scenario,whichalsoleadaslightlyhigherdemand.

- Power Demand:IncaseofNationalTrends,thediffer-encecanbeexplainedbyrecentlystatedpoliciesandtheirreflectionintheNECPs.IncaseofDistributedEnergyandGlobalAmbition,thereasonistwofolded:bothscenarioscombineahigherelectricitydemandwithanearlycoal-phaseout.Thecombinationleadstoanincreasingroleforgasinpowergeneration.

2020 2025 2030 2035 2040 2045 2050

0

1,000

500

1,500

2,000

2,500

3,000

3,500

4,000

5,000

4,500

Global Ambition

Distributed Energy

National Trends

EUCO32/32.5

TWh (GCV) Methane + Hydrogen demand

Gas demand for final use

Gas demand for power generation

Gas before Coal

Figure43:Primarygasdemandforfinaluseandforpowergeneration

Page 45: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 45

8.3 Renewable gas supply

Therenewablegasproductioninthenextthirtyyearscanbedividedinthreedifferentcategories:productionofbiomethane,Power-to-Methane( P2CH4 )andPower-to-Hydrogen( P2H2 ).

Biomethane in the range of EC LTS scenarios and Gas for Climate study

BiomethanegenerationinGlobalAmbitioniscomparableto1.5TECHand1.5LIFEscenariosofECLTS,whereasDistributedEnergyconsidersahighergenerationofbiom-ethanewithintheEUcomparabletotheP2Xscenario.withNationalTrendshavingthemostlimitedpenetrationofbiomethane,allscenariosarethereforeintherangeofthe

ECLong-TermStrategy.Additionally,DistributedEnergyshowscomparablegenerationtotheGasforClimatestudybyNavigant( 1,200 TWhingrosscalorificvalue ).

Power-to-gas sees a limited development compared to EC LTS

Asaresultoftheassumptionsonthegenerationpoten-tialaswellasthedevelopmentrateofP2Gtechnologies,ENTSOGandENTSO-Escenariosalllookmoreconserva-tivethanECLTS,explainingthelimitedgapbetweentheoverallindigenousgenerationconsideredinECLTSandENTSOsscenarios.

TWh (GCV) Renewable Gas Production

0

500

1,000

1,500

2,000

2,500

3,000

20502050 2030Global Ambition

2030 2040 2040National Trends

2030 2050 1.5 LIFE

2030 20501.5 TECH

2030 2050Baseline

2030 2050

Biomethane Power-to-HydrogenPower -to-Methane

Distributed Energy

Figure44:Renewablegasproduction–ENTSOsvsECLTS(P2X,1.5TECH,1.5LIFE)

Page 46: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

46 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

8.4 Energy imports

Thefigurebelowcomparestheenergyimportin2050betweenENTSOsandECLTSscenarios.AsDistributedEnergyfocusesonhigherEuropeanself-sufficiency,thisscenarioforeseesthelowestlevelsofenergyimport.EvenwellbelowtheenergyimportsintheECLTSscenarios.TotalenergyimportinGlobalAmbitionisquitecomparablewithboth1.5TECHand1.5LIFEscenarios.Thetypeofen-ergycarrier,whichareimporteddiffer,however.ComparedtotheECscenarios,GlobalAmbitionforeseeslessimportofoilandmoreimportof( renewable )gas.Thehighergasimporthoweverstemsexplicitlyfromthescenariostorylineofthisscenario.Furthermore,comparedtotheLTSbase-linescenariothegasimportsinGlobalAmbitionarestillreasonable.

Figure46presentsthedevelopmentsofgasimportsovertime.Althoughgasimportmightseelimitedincreaseinthenextfiveyears,allscenariosforeseeadecreaseingasim-portafter2025.Withhighsharesofindigenouslyproducedrenewablegases,DistributedEnergyshowsalignmentwithEC’smostambitious1.5TECHScenario.Ontheotherhand,GlobalAmbitionshowsabalanceddevelopmentofgasimportsonatrajectorywhichseemssimilartotheNECPbasedNationalTrends.

Thedifferenceinimportsfor2020reflectstherecentreductionofGroningenfieldproductiondecidedbytheNetherlands,whichisnotconsideredintheotherexternalscenarios( EUCO32/32.5inparticular ).

2020 2025 2030 2035 2040 2045 20500

1,000

500

1,500

2,000

2,500

3,000

3,500

4,000

4,500

TWh (GCV) Gas imports (demand – indigenous production)

EC – LTS – 1.5 TECH EC – LTS – 1.5 LIFE

Global Ambition Distributed Energy National Trends

EUCO32/32.5 GCV total demand

Energy imports in 2050TWh (NCV)

Distributed Energy 1.5 TECH 1.5 LIFEGlobal Ambition LTS Baseline0

8,000

6,000

7,000

5,000

4,000

3,000

2,000

1,000

Hydrogen demand**Oil demand Methane demand*

Figure46:Gasimportsperscenarioandperyear

Figure45:Energyimportsin2050byenergycarrier

*decarbonised,eitherbynaturalgasimportswithpost-combustiveCCU/soranyothertechnology **naturalgasconvertedtohydrogenatimportpoint/citygateordirecthydrogenimports

Page 47: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 47

8.5 Carbon Capture and Storage

BothDistributedEnergyandGlobalAmbitionscenariosshowanincreasedapplicationofcarboncaptureandstor-age( CCS ).DistributedEnergyforeseesaboutagrowthofupto130MTperyearin2050.ThisisslightlyaboveECLTS1.5LIFE,butwellbelowEC1.5TECH.GlobalAmbitiondoesexceedECLTSscenarioshowever.ButincomparisonwithforexampleGasforClimate( Navigant )theamountCCSinthisscenariostillseemsreasonable.

8.6 Conclusion

Benchmarkingthedemand,renewablegenerationandelectrificationwiththemostimportantreferencestudiesillustratesthereasoningbehindthenTYNDP2020Sce-nariosintheirassumptionsandmethodologies.NationalTrendsisbasedonthenationalpoliciestowardsmeetingtheEU’sclimatetargetsfor2050.However,thebenchmarkconfirmsbothGlobalAmbitionandDistributedEnergyscenariostobeplausiblepathwaystowardsmeetingtheCOP21targetsconsideringcontrastedevolutionsoftheenergysystem.

Inaddition,itshouldbenotedthattheDistributedEnergyscenariocomesveryclosetoEC’s1.5°Cscenariosformostoftheirfeatures.

ENTSOs scenarios robust and fit for purpose

Thecontrastsindemandandproductiontechnologiesaswellasthecentralised/de-centralisedapproachtothedevelopmentofrenewabletechnologiesanditsimpactontheenergyimportsmakeENTSOGandENTSO-Escenariosthebestsupportforassessingtheinfrastructureneedsoftheenergysystemforthenextdecades.

MT/y Carbon Capture and Storage in 2050

0

300

250

200

150

100

50

1.5 LIFELTS Baseline

DistributedEnergy

GlobalAmbition

1.5 TECH

350

400

450

500

Figure47:CCSin2050inENTSOsandECscenarios

Page 48: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

48 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

Fuelpricesarekeyassumptionsforthepowermarketmodellingastheydeterminethemeritorderoftheelec-tricitygenerationunits,hencetheelectricitydispatchandresultingelectricityprices.

ENTSOGandENTSO-Ehaveusedseveralsourcestobenchmarkthedifferentpriceforecastsandprojectionsinordertoconcludeonthereferencesourcetobeusedforthescenarios( IEA,Primes,Bloomberg,IHS ).Thisas-sessmentshowsthatthepricesprovidedbythePRIMES,whichconsiderstheglobalcontextanddevelopmentthatinfluencescommodityprices,in-linewiththeECtargets,isrobustenoughtobeusedasareferenceforgas,oilandcoalpricesaswellfortheCO₂price.Pricesfornuclear,ligniteandbiofuelsarekeptthesameasconsideredforTYNDP2018.

ThefollowingtablesummarizesthesourceforeachfueltypeandCO₂.

StartingfromthePRIMESreferencepriceforNationalTrends2030,theCO₂pricewillbeincreasedinordertoachieveaspecificcarbonbudgetasdefinedforeachspe-cificstorylineandyear.

Thetablebelowsummarizesalltheresultingpricesperscenario.

Fuel Commodities and Carbon Prices

Figure48:Summaryoffuelpricereferences

TYNDP 2018

PRIMES

Endogenous to reach the carbon budgetPRIMES

Global Ambition and Distributed EnergyNational Trends

CO�

Table6:FuelpricesinTYNDP 2020scenarios

2020 2021 2023 2025 2030 2040

BE G2C NT DE GA NT DE GA

€/GJ

Nuclear 0.47 0.47 0.47 0.47 0.47 0.47

Lignite 1.1 1.1 1.1 1.1 1.1 1.1

Oilshale 2.3 2.3 2.3 2.3 2.3 2.3

HardCoal 3.0 3.12 3.4 3.79 4.3 6.91

NaturalGas 5.6 5.8 6.1 6.46 6.91 7.31

LightOil 12.9 14.1 16.4 18.8 20.5 22.2

HeavyOil 10.6 11.1 12.2 13.3 14.6 17.2

€/tCO2 CO2 price 19.7 20.4 21.7 23 56 27 53 35 75 100 80

9

Page 49: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 49

Externalstakeholdersrepresentingthegasandelectricityindustries,customersandenvironmentalNGOs,regulators,EUMembersStatesandtheEuropeanCommissionwerekeyinbuildinganambitious,yettechnicallysound,setofscenarios.

TheScenarioBuildingprocesswassetupbyENTSOGandENTSO-Eworkjointlywithstakeholdersthroughinterac-tiveworkshops,webinarsandweb-consultations.Dozensofstakeholdersprovidedinputtoformulate,withENTSOGandENTSO-E,thenewscenariosstorylines.

Why do we do external stakeholder interaction?

StakeholdersfortheTYNDP2020ScenarioBuildingprocessaredividedintotwogroups:internalandexternal–andthereforeabovequestionsrequiresadifferentiatedanswer:

Internal Stakeholders

SincethescenariosaredevelopedbyENTSO-EandENTSOG–therepresentativesofEuropeanelectricityandgastransmissionoperators–theparticipantsinthese

organisationsareregardedasinternalstakeholders.Rep-resentativesofENTSO-EandENTSOGformthesteeringcommitteefortheScenarioBuildingprocess.Theyreceiveupdatesonthedevelopmentoftheprocess,aredirectlyconsultedonmajorprocess-decisions( e. g.thedecisiontoengageClimateActionNetworkEuropeandtheRenewa-blesGridInitiativeinthecalculationofaParis-compliantcarbonbudget ),andultimatelyapprovethescenarioreportforpublish.

External Stakeholders

Toensurecompletetransparencyandtoencouragethewidestpossiblerangeofopinions,participationintheex-ternalstakeholderactivitiesisentirelyopen.Anyorganisa-tionorprivateindividualwhichwishesmaytakepartintheexternalstakeholdereventswhichaccompanythescenariobuildingprocess.Anyorganisationorprivateindividualmayalsoofferfeedbackinthetwoconsultationperiodsduringtheprocesswithoneexception:Inordertoensuretransparencywhentakingexternalstakeholderfeedbackintoaccount,feedbackfrommembersofENTSO-EandENTSOGisnotconsideredintheexternalconsultations.

Stakeholder feedback and how it shaped the scenarios10

Page 50: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

50 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

SincethescenariosalsoformthebasisfortheTenYearsNetworkDevelopmentPlansforelectricityandgas,andthereforealsohaveadirectinfluenceonthecost-benefitanalysisforProjectsofCommonInterest,theEuropeanCommissionandtheAgencyfortheCooperationofEnergyRegulators( ACER )areconsultedregularlyandbilaterallythroughouttheentirescenariobuildingprocess.

How does the external stakeholder inter action work?

Theexternalstakeholderinteractionwasdesignedtoaccompanytheentirescenariobuildingprocess.Theinteractioncanbegenerallygroupedintotwophases:consultationofthequalitativescenarioelementsinthefirstyearoftheprocess,andtheconsultationofthefinalscenarios–incorporatingbothqualitativeandquantitativescenarioelements–intheinthesecondyearofthepro-cess.Consultationswerepreceededbystakeholderwork-shops.Whilemanysimilarstudiesorscenariodevelopmentprocessesoftenholdworkshopsafterthecompletionofaconsultationphase,theWorkingGroupScenarioBuildingfeltitwouldbemorebeneficialtoholdworkshopspriortoconsultation.Thisgavestakeholdersabetterunderstand-ingofthescenariosandtheopportunitytoaskquestionsbeforetakingpartintheconsultationprocess.

Thedevelopmentprocessiscoveredindetailbythematerialreleasedpriortothepublicationofthisreport,thehigh-levelprocessforthesestorylinesfollowedthestepsbelow:

1. Public workshop: “TYNDP 2020 Scenario Develop-ment Workshop”, 29 May 2018 (link)

2. Publication of first draft of five storylines describ-ing potential relevant futures for the electricity and gas system in Europe developed by ENTSO-E and ENTSOG, 2 July 2018 (link)

3. Public consultation of storylines: “2020 Scenario Storylines ”, 2 July to 14 September 2018 (link)

4. Public Webinar on “Scenario Development Process Update”, 21 November 2018 (presentation sent to participants via email)

5. Public Webinar on Final Storyline Release, 18 April 2019 (link)

6. Publication of Final Storylines, 29 May 2019 (link)

7. ENTSOG’s Public Workshop on the Supply Poten-tials and Market Related Assumptions for TYNPD 2020, 10 July 2019 (link)

8. TYNDP Cooperation Platform (with EC and ACER) and High-Level Meetings throughout the whole process with main focus on National Trends as the central policy scenario.

9. Public Workshop on “Draft Scenario Report 2020”, 5 December 2020 (link)

10. Public consultation on “Draft Scenario Report 2020”, 25 November 2019 to 22 January 2020 (link)

Page 51: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 51

10.1 Storyline Consultation

Theinitialstorylineswerepresentedforconsultationinthesummerof2018.Beforethebeginningoftheconsultation,astakeholderworkshopwasheldinBrusselson29May2018.Thegoalofthisworkshopwastointroducethefiveinitialqualitativestorylinesandthestorylinematrices.StakeholdersweregiventheopportunitytointeractwithmembersoftheWorkingGroupScenarioBuildingdirectlyandtoofferopinionsandaskquestionsabouttheunder-lyingassumptionsforallfivestorylines.

AftertheworkshoptheStorylineReportwaspublishedforconsultation.Respondentswereaskedtoremarkontheconsistencyandcredibilityofthefivestorylinesandtorankthestorylinesaccordingtotheirpreferences.TheywerealsoaskedabouttheiropinionsonkeyissuesunderpinningthestorylinessuchasdisruptivetechnologieswhichmightplayamajorroleintheEUenergysystemby2050,theroleofcoalintheEnergyTransition,andthepotential( ornot )ofCCStosupportdecarbonisation.Theresultsofthefirststakeholderconsultationprovidedsomeimportantfeedbackforthequantificationofthescenarios.

Storyline Feedback and Storyline Selection

Feedback on Distributed Energy

TheDistributedEnergystorylinereceivedthemostpos-itivefeedbackofthefivestorylinespresentedandwasgenerallyseenasconsistentandcredible.Criticismofthisstorylineprincipallyrevolvedaroundpossiblelimitationsorweaknessesinthedecentralisedenergymodel.Forexample,thehighlevelofelectrificationattheexpenseofgas( includinglow-carbongases )wasnotedbyseveralstakeholdersaswereconcernswithmaintainingsecurityofsupplywithdecentralisedgeneration.Finally,severalstakeholdersfeltthattheroleofdistributiongridsinthestorylineneededtobeconsideredingreaterdetail.How-ever,thisstorylinewasclearlythemostpopularamongrespondents.

Feedback on European Focus

TheEuropeanFocusStorylinewasaplaceholderforanexternalScenario,asrequestedbytheEuropeanCommis-sionintheTYNDP2018Scenarios.ENTSOs,EuropeanCommissionandACERhavejointlydecidednottouseanexternalScenario,butinsteadtoalignNationalTrendswiththeNECPstotheutmostpossible.However,theEuropeanFocusStorylinereceivedlessdirectfeedbackthantheoth-

erstorylinesbutwasgenerallypositivelyreceived.SeveralrespondentsnotedthesimilarityofthisstorylinetotheNationalTrendsstorylineand,likewise,criticiseditforapparentlyfailingtoreachEUTargets.EuropeanFocuswasthesecond-mostpopularstorylineamongrespondents,narrowlyaheadofNationalTrendsandGlobalAmbition.

Feedback on National Trends

Theconsensusamongstrespondentswasthatthestorylinewasbothconsistentandcredible.Manyrespondentsspokeofthisstorylineasforminga„reference“scenarioincomparisontothemoreambitioustop-downscenarios.Nonetheless,thelackofambitioninthisscenarioalsodrewcriticismasmanystakeholders( correctly )recognisedthatsuchascenariowouldnotachievethenecessaryclimatechangegoalsby2050.SeveralstakeholdersalsonotedthatadjustmentstothecurrentETSmodelwouldbecrucialtoachievingclimatetargetsanddoubtedwhethertheadjustmentsassumedintheNationalTrendsstorylinewouldbesufficient.NationalTrendsrankedthirdamongrespondents,slightlybehindEuropeanFocusandslightlyaheadofGlobalAmbition.

Feedback on Global Ambition

ThemajorityofstakeholderswereunsatisfiedwiththeconsistencyandcredibilityoftheGlobalAmbitionsto-ryline.Manyenvironmentalandsocietalstakeholdersviewedthe95 %reductioninCO₂emissionsasunrealistic,especiallyasthiswouldbeachievedthroughtheglobalscale-upofseverallow-carbontechnologies( PtX,CCS )whichrespondentsconsideredimmaturetoday.Whiletheglobalfocusofthestorylinereceivedpraisefromsomere-spondents,othercriticisedthehigherlevelsof( renewable )energyimportsthatwouldentail.GlobalAmbitionrankedfourthamongrespondents,slightlybehindbothEuropeanFocusandNationalTrends.

Feedback on Delayed Transition

TheDelayedTransitionstorylinewasby-fartheleastpopularstorylineamongstakeholderswhofeltitlackedbothconsistencyand,inparticular,credibility.Thesto-rylinewascriticisedforitslackofambitionandnegativemessageitwouldsendifsuchascenariowereincludedinthefinalreport.Multiplerespondentsnotedthatthisscenariowouldentailthegreatestsocietalcostsduetotheincreasesinglobaltemperatureswhichwouldoccurifthisscenariooccurredworldwide.Thestorylinerankedlastoutofthefive.

Page 52: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

52 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

The Role of CCS

Asamaturebutcontroversialtechnology,withthepoten-tialtosupportdecarbonisation,stakeholderswereaskedfortheiropiniononwhatroleCCSshouldplayinthesce-narios.ManyoftherespondentsheldaskepticalviewofCCS,largelythiswasbasedonaperceivedimmaturityofthetechnologyandanexpectedlackofsocialacceptanceontheEuropeanmainland.Ontheotherhand,respond-entsalsosuggestedtoincludeCCSwithregardto“hardtodecarbonize”sections( suchasnon-energydemandorcement/fertilizerproduction )andnetnegativeemissionsasalsoexpressedbytheIPCC1.5SpecialReport.

The Role of Coal

StakeholderswereaskedaboutwhethercoalfiredpowergenerationwouldplayaroleintheEuropeanenergysys-temin2050and,ifnot,whichmeasuresshouldbeusedtoinduceacoalphase-out.Whilemanystakeholdersbelievedthatcoalshouldnotplayanyroleinthefuture,othersfeltthatitwouldcontinuetoplayatleastaminorroleinsomecountriesuntil2050.However,therewasageneralcon-sensusthatachievingEUclimatechangetargetsby2050wouldbeextremelydifficultifcoalcontinuedtoplayamajorroleintheenergymix.Thereweremajordiscrepan-ciesinthefeedbackregardingwhetherthecoalphase-outshouldbepolicy-oreconomically-driven.Themajorityofstakeholdersadvocatedforapolicydrivenapproach,howevermanyfeltbothpolicyandeconomywouldhavetoplayacentralroleinthisprocess.ImprovementoftheETSsystemandagreatlyincreasedcarbonpricewerethemainpolicyoptionssuggestedintheconsultation.

Disruptive Technologies

Aspartoftheconsultation,stakeholderswerealsoaskedtheiropiniononwhichpotentialdisruptivetechnologieswouldhaveamajorimpactonthefutureEuropeanenergysystem.Morethananyothertechnologies,stakeholdersmentionedenergystoragetechnologiesaspotentiallydisruptiveinthefuture.Power-to-Xtechnologieswerethesecond-mostcommonresponse,followedbyimprovedrenewablesgenerationtechnologies,smartgridtechnolo-giesandCCS/CCU.

How did the Storyline Consultation influence the Scenario Building Process?

OneofthecentraldecisionsmadeaftercompletionoftheStorylineConsultationwasthefinalstorylineselection.TheWorkingGroupScenarioBuildinghadpreviouslyagreedtomodelthreeofthefivestorylinespresented.ThisdecisionwasmadebasedontimeandresourceconstraintswithinthegroupandwithrespecttotheoverallTYNDPprojectsandtheadjacentProjectofCommonInterestselectionprocess.

TheWorkingGroupScenarioBuildingagreedthattwoofthescenariosshouldhaveahigherlevelofclimate-changeambitionandremainwithintheParis-compliantcarbonbudgetcalculatedbyCANEuropeandchosenbyENTSOGandENTSO-E.Tocounterbalancethesetwoscenarios,thethirdscenarioshouldbeabottom-upscenariobasedonofficialEUandmember-statedata.AsDistributedEnergyhadbeenthemostpopularstorylineamongrespondents,itwaschosenbytheWorkingGroupScenarioBuilding.TheteamalsofeltthatGlobalAmbitionofferedthegreatestcontrasttoDistributedEnergyfromaninfrastructure-perspectiveand that thecreationofacentralised,import-focusedscenariojuxtaposedespeciallywellthedecentralised,EU-focusednarrativeofDistributedEnergy.GlobalAmbitionalsohadahigherlevelofdecarbonisationambitionthanEuropeanFocus( althoughEuropeanFocushadbeenslightlymorepopularamongexternalstakehold-ers ).

AsEuropeanFocushadbeensopopularamongexternalstakeholders, theWorkingGroupScenarioBuildingfeltitshouldalsobetakenintoaccountinthescenariodevelopment.BoththeWorkingGroupScenarioBuildingandexternalstakeholdershadnoticedthesimilaritybe-tweenNationalTrendsandEuropeanFocusandmostofthekeyparametersofthetwostorylineswerecombinedinthedevelopmentofNationalTrends.InordertoensurealignmentwiththeaimsoftheEuropeanFocusstorylineandasjointlydecidedwiththeEuropeanCommissionandACER,theNationalTrendsscenariowasalignedwithdatafromtheNationalEnergyandClimatePlans( NECP )oftheEUmemberstates.

AlthoughACERfavouredtheinclusionoftheDelayedTransitionstorylineinthefinalScenarioReport,boththeEuropeanCommissionandthemajorityofexternalstakeholderswereextremelycriticalofthis.Moreover,ENTSOGandENTSO-Etakeenergyinfrastructureread-inessfortherequiredenergytransitionforinevitableandthereforefocustheirTYNDPontheassessmentofprojectsincompliancewithnationalandEU-wideclimatetargets.Therefore,theWorkingGroupScenarioBuildingdecideditwouldbeintransparenttoincludesuchawidelyunpopularstorylineinthefinalreport.

Page 53: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 53

10.2 Draft Scenario Report Consultation

18 LinktoPCI

ThesecondphaseofexternalstakeholderconsultationbeganafterthepresentationoftheDraftReporton 5December2019.Thegoalsofthesecondexternalstakeholderconsultationwerefarbroaderthanduringthefirstconsultation.Tothisend,theconsultationquestion-nairewasmoredetailedandentailedquestionswithtwodifferentbroadfoci:

- Presentationofdataandengagementwith externalstakeholders

- Consistencyandcredibilityofthescenarios, themethodsusedandtheirambition

TheWorkingGroupScenarioBuildingreceived42directresponsestotheconsultation( thisdoesnotincludebilat-eralornon-consultationfeedbackfrominstitutionssuchastheEuropeanCommissionandACER ).Morethanhalfofthesecamefromprojectpromoters,researchersandNGOs,showingthehighlevelofengagementtheseorganisationswereabletoachieveinthescenariobuildingprocess.

Presentation of data and engagement with stakeholders

Themajorityofstakeholdersweresatisfiedwiththepres-entationandlevelofexplanationprovidedbytheWorkingGroupScenarioBuilding.Inparticulartheuseofvisualisationtoolswaspraisedformakingthedatasetsmoreaccessible,althoughsomerespondentsstillfeltthatbetteraccesstotherawdatawasneededtofullycomprehendthescenarios.StakeholdersexpressedlesssatisfactionwiththelevelofengagementbytheWorkingGroupScenarioBuilding,how-everitshouldbenotedthatalmosthalfofallrespondentsfailedtoanswerthequestionsonthistopic.Theprincipalconcernsregardingthestakeholderengagementprocessrelatedtothetimingofthefinalconsultationperiodandthecommunicationofitsgoals.Somerespondentsfeltthesec-ondconsultationoccurredtoolateintheprocess.Indeed,severalstakeholdersmistakenlybelievedthattheresultsoftheTYNDP2020ScenarioReportwouldbeutilisedforthe4thProjectofCommonInterestList 18( releasedinOctober2019andconfirmedbytheEuropeanParliamentinFebru-ary2020 )andthereforecriticisedtheapparentlatenessofthestakeholderconsultationinthisrespect.TheWorkingGroupScenarioBuildingalsonotedthatcommunicationoftheScenarioMethodologyReport( publishedinparalleltothemainreportandavailableatENTSOGandENTSO-ETYNDPScenarioReportmicrosite )wasapparentlylesssuc-cessfulthanforthemainDraftScenarioReportasmanyofthestakeholdersquestionsregardingthescenariobuilding

processhadbeenaddressedintheScenarioMethodologyReport.Itisclearthatinthe2022scenariobuildingprocess,greateremphasisshouldbeplacedonexplainingandpre-sentingtheScenarioMethodologyReporttostakeholders.

Consistency and credibility of the scenarios, the methods used, and their ambition

ThevastmajorityofrespondentsagreedthatthescenariosshoulduseEU2030and2050climatechangetargetsasaminimumstandard.TherewasalsogeneralagreementthattheNationalTrendsscenarioshouldbebasedondatafromtheNationalEnergyandClimatePlans( NECPs )oftheEU-28,although,astheWorkingGroupScenarioBuildingalsonoted,thisapproachcancreatediscrepanciesbetweenna-tionalenergyandclimatepoliciesthatundermineEU-widedecarbonisationmeasures.

TheuseofacarbonbudgetfortheDistributedEnergyandGlobalAmbitionscenarioswaswidelyregardedasapositivestep.However,manyrespondents,especiallythosefromenvironmentalNGOs,foundthescenarioswerestilltooconservativeandrequestedmoreextremescenarioswithgreaterlevelsofdecarbonisationorcompletelyexcludingcertainenergycarriersfromthemodels.Furthermore,sever-alrespondentsfeltthattheGlobalAmbitionandDistributedEnergyscenariosdidnotdiffersufficientlytoprovidetrulyalternativevisionsoftheEnergyTransitionin2050.

Severalrespondentsalsofeltthelevelsofbiomassandnatu-ralgasdemand,especiallyintheDistributedEnergyscenarioweretoohigh.TheyalsoarguedthattheuseofCCSand,toalesserextent,LULUCFtocompensateforthesefossilfuelsintheenergymixwasnotcredibleconsideringthehighdecarbonisationambitionsattachedtothesescenarios.

How did the Draft Scenario Report consultation influence the Final Scenario Report 2020?

AstheWorkingGroupScenarioBuildingthemselvesnoted,itwillbenecessarytorestructurethetimelineforthe2022ScenarioReporttoensurethatthedelayswhichoccurredlateinthe2020processarenotrepeated.Certainrespondentssuggestedshorteningthestorylineselectionphaseearlyintheprocesstoallowmoretimeformodel-ling.TheWorkingGroupScenarioBuildingwilltakethissuggestiononboardinthe2022process.Respondentsalsorequestedbetteraccesstodatasetsinordertogaina

Page 54: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

54 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

betterunderstandingoftheprocess.TheWorkingGroupScenarioBuildingnotedthisconcernandwillendeavourtotransparencyofdatasetsinthe2022ScenarioReportandtoallowstakeholderstoviewthecoreassumptionsandparametersusedtobuildthescenarios.Toensurethatstakeholderscanretainthehighlevelofengagementintheearlystagesoftheprocess,theWorkingGroupScenarioBuildingsuggestincludingkeyassumptionsandparametersinthefirstexternalconsultationphaseinadditiontothequalitativestorylineelements.

Inordertotakeintoaccountfeedbackreceivedonalackofdifferencebetweenthetop-downscenarios,theconsid-erableuseofbiomass,andaperceivedlackofambitionintheelectrificationandRESdevelopment,theWorkingGroupScenarioBuildingmadethedecisiontoupdatetheScenarios.

– National Trends

ForNationalTrends,ENTSOGhasrunanadditionaldatacollectionwithitsmemberstocollectinformationfromthefinalNECPs.Moreover,latestpolicydecisionshavebeentakenintoaccount,suchasfortheGermancoal-phaseoutortheDutchgasproduction.UpdateofdatacompliantwiththefinalNECPsandGermanCoalphaseout.UpdatesonpoliciesarealsotakenintoaccountforDistributedEn-ergyandGlobalAmbition.

– Distributed Energy

Gas demand: ThegasdemandforDistributedEnergyin2050hasbeenre-computedfollowingalinearextrapola-tionofthedevelopmentbetween2025and2040–withanewtotalgasdemandof3,000 TWhforDistributedEnergy.

Bioenergy:DistributedEnergyhasbeenupdatedinthefinalreportfortheyears2040and2050.Thiswasdonebylimitingtheoveralluseofbiomassto2,424 TWhin2040and2,757 TWhin2050inlinewiththe2,442–2,907 TWhrangeofthe1.5LIFEand1.5TECHscenariosoftheEurope-anCommissionLongTermStrategy.Theenergyproduction

deficitwhichresultedfromthiswascompensatedbyanincreaseinelectrificationlevels.

Biomassusewasreducedby26 %intheresidentialandtertiarysectors,by80 %inthemobilitysectorandby30 %intheindustry.ThishasbeencompensatedbyanincreaseindirectelectrificationcombinedwithP2Lintransportaccordingtothefollowingtable:

Thisadditionalelectricitydemandtriggeredanincreaseofdispatchablegenerationandtheadditionaldevelopmentof740and1,415 GWofRESrespectivelyin2040and2050.

AdditionalRESfordirectelectrificationhavebeenmod-elledaspartoftheelectricitysystemwhilethededicatedRESforP2LhavebeenmodelledoutsidetheelectricitysystemaccordingtotheP2Gapproach.

– Global Ambition

ThegasdemandforGlobalAmbitionin2050hasbeenre-computedfollowingalinearextrapolationofthedevel-opmentbetween2025and2040–withanewtotalgasdemandof3,800 TWhforGlobalAmbition.

Electricity demand increase by sector (TWh) 2040 2050

Residential 53 42

Tertiary 16 16

Transport– Direct electrification–Power-to-Liquid

35648

50905

Industry 142 126

Table7:ElectricitydemandincreaseinDistributedEnergy

Page 55: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 55

SinceTYNDP 2018 ENTSOG and ENTSO-E havealignedtheirTYNDPtimelinesandprocessesleadingtothesameTYNDPpublicationtimeframes.Beforethattime,eachorganisationhaditsownindividualprocesswiththeENTSO-ETYNDP2016andENTSOGTYNDP2017respectively.ThejointdevelopmentoftheTYNDPScenariosintroducedattheTYNDP2018projectstartmustbehighlightedasoneofthemostsignificantprocessim-provementsteps,asENTSO-EandENTSOGpooledtheirScenarioBuildingeffortsandexpertiseintheframeoftheinterlinkedmodel.

Thefocusstudyontheinterlinkagebetweengasandelectricity 19,performedbyArtelysandpresentedtoCopenhagenInfrastructureForum2019,concludesthat

19 https://www.entsog.eu/methodologies-and-modelling#consistent-and-interlinked-electricity-and-gas-model

mostoftheinterlinkageiscapturedinthescenariosandthelevelofdirectinteractionmainlydependsontheassumptionsmadeonthedifferenttechnologiesforgastopowerandpowertogasconversion,aswellasonthehybridtechnologies.Thoseinteractionsdefiningtheinterlinkagebetweengasandelectricitythusdirectlyderivefromthestorylinesdefinedandselectedwiththestakeholders.

BothENTSOsconsistentlyworktomodernisetheirdata,toolsandmethodologiesbetweeneachreleaseofthescenarios.SomeofthekeyimprovementsfortheScenarios2020arepresentedbelow.ThemethodologiesusedbybothENTSOstoproducethescenariosarepresentedindetailintheAnnexofthisreport.

Improvements in 2020 Scenarios11

Page 56: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

56 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

11.1 More sustainability-oriented Scenarios ( carbon budget )

WiththeintroductionofacarbonbudgetasaninputtotheCOP21scenarios,ENTSOGandENTSO-EcanassesswhatthetargetssetbytheCOP21requirefromtheenergysystembeyond2025andhence,supportthepolicydecision-makingprocess.

Thedevelopmentofthecarbonbudgetandtheinputassumptionstothescenarioshaveinvolvedawiderangeofstakeholdersincludingenvironmentalorganisation,participatingtothecredibilityofthetwoverydifferent

pathwaystheenergysystemcouldtaketowardsreachingthe EuropeanUnionclimateambitions.Buildingonpreviousexercise,ENTSOGandENTSO-Ehavekeptthecentralisedanddecentralisedapproachof,respectively,GlobalAmbitionandDistributedEnergyscenarios.Evenifthesescenariosshouldnotbeconsideredmorelikelythanothers,theywillallowENTSOGandENTSO-Etoconsidertheelectricityandthegassystemunderthemostcontrastedsituations,thusdeliveringthemostcomprehen-siveassessment.

11.2 Total Energy Scenarios ( Top-down )

WhereasENTSOs’TYNDP2018Scenariosweremainlybasedonbottom-upcollecteddataforthegasandelec-tricitysectors,forthefirsttime,theyhavedevelopedtop-downScenarioscapturingthefullenergysystem( allsectors,allfuels ).Inthissense,thejointWorkingGroupScenarioBuildingdevelopedanin-houseenergymodeltoolcalledthe“AmbitionTool”.

Themainobjectiveswere:

1) tobettermapthesectoralcouplingandtheassociatedinterdependencebetweengasandelectricitysector

2) toimprovethemethodologiestocaptureallGHGemis-sionsandtheirdevelopmentwithinatimeperiodandthusensurethatthescenariosareincompliancewiththeParisAgreementtargets( carbonbudgetmethodasstatedbytheIPCCSpecialReport ).

Itisapolicydriventop-downenergymodel,asnocostelementsareconsideredandislinkedtotheEurostat2015dataasprojectionstartingpoint.WorkingGroupScenarioBuildingislookingattheEuropeanambitionlevelwithleverssectoraltechnologysplit,fueltypes,supplysourcesetc.andisworkingoutthefutureenergycarriercontent( focusingonthegasandelectricitysystem ).

11.3 Electricity Demand

TRAPUNTA( TemperatureRegressionandloAdProjectionwithUNcertaintyAnalysis )isthenextstepinelectricityloadforecastingafteraboutoneyearofdevelopment.Thistoolisasoftwarethatallowstoperformelectricloadpredictionstartingfromdataanalysisofthehistoricaltimeseries( electricload,temperature,otherclimaticvariables )andevaluationofthefutureevolutionofthemarket( e. g.,

penetrationofheatpump,electricvehicles,batteries,pop-ulationandindustrialgrowth ).IthasbeendevelopedbyMilanoMultiphysicsforENTSO-E.TRAPUNTAisbasedonaninnovativemethodologyfortheelectricloadprojectionanalysisbasedonregression,modelorderreductionanduncertaintypropagation.

Page 57: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 57

11.4 Gas Demand

Quality SplitTakingintoaccountrecenttechnologicandpoliticaltrends,ENTSOshavedecidedtoinvestigatethedemandformethaneandhydrogenseparately.Thetermgasthereforestandsforthesumofbothgastypes.

Daily gas peak demand computationAsforTYNDP2018Scenarios,thedailygaspeakdemandfiguresforgashavebeencollectedfromtheTSOsforthebottom-upscenarioNationalTrends.Forthetop-downsce-narios,astheannualdemandvaluesweredeterminedwiththeAmbitionTool,ENTSOshavedevelopedamethodologytocomputedailygaspeakdemandfiguresusingsectoralfullloadhoursandtemperature-demandregressioncurves.

Dunkelflaute climatic caseConsideringthelevelofdevelopmentofrenewablegenera-tioncapacitiesintheCOP21scenarios,especiallyin2040,ENTSOGandENTSO-EhavedevelopedforthefirsttimeaDunkelflauteclimaticcase( DF )toassessthepossibleimpactofadditionalgasdemandforpowergenerationwhenminimumvariablerenewablegenerationisavailablefortwoweeks.

11.5 Electricity Generation

Co-optimisationFollowingtheexchangewithinternalandexternalstake-holdersaco-optimisationofgenerationcapacityandgridwasperformed.Thisnewmethodincludesfollowingkeyimprovements:

- Endogenousandsimultaneousoptimisationofgenera-tioncapacityandinterconnectors

- UtilisationofscenariodependentCAPEXcosts,OPEXcostsandfuelpriceswithendogenousCO₂ leveladjustment

- EndogenousCO₂pricesettingasafunctionofcarbonbudgetasmaininvestmentlever

- Considerationofhouseholdsolarbatterystoragesys-tems,vehicletogridandindustrydemandsideresponse

- ImplementationofREStechnologyevolutionbytheusageoftimehorizon( 2025,2030and2040 )relatedRESinfeedtimeseries

Trajectories collectionTheScenarioBuildingprocessisdeveloping“top-down”scenariodatasetsthatarequantifiedusinganumberofoptimisationloopsaccordingtothestakeholderagreedstorylines.Inordertoimprovethescenarioquantificationbysettingplausibleboundaries,theWorkingGroupSce-narioBuildingestablishedaTrajectorydatacollectionforvariouscoresupplyanddemandelementsbasedonuptothreenationalscenarios( withlow,mediumandhighdevel-opmenttrajectories ).Themainaimofthiscomplementaryinformationistohelpbetterintegrateuncertaintiesonnationalpoliticaldecisionslikecoalphase-outs,nuclearfleetdevelopments,RESsupportschemesbutalsotoelaborateonupcomingtechnologieslikeelectricvehicles,batterystoragesorP2G.

Basedonthosedata,itispossibleto:

- Ensurecoherencywithnationalstudies

- Takeintoaccountnationalpoliciesandpoliticaldecisions/plans

- Setboundariesfortechnologydevelopments

- ComparetheoutcomesofENTSOGandENTSO-Escenarioswithnationalperspectives

Page 58: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

58 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

11.6 Gas Supply

InTYNDP2018,gassupplyassumptionsconsistofmainlybottom-updatafordomesticproductionofnaturalgas,biomethaneandP2Gwithoutaqualitysplitinmethaneandhydrogen.

Import shareAsdoneinexternalstudies( e. g.EC’s“CleanPlanetforall” )ENTSOs’developedgenericassumptionsontheimportshareforgassupply.ThisenablesENTSOGandENTSO-Etotestthegasinfrastructureunderdifferentconditions( highimportshares,lowimportshares ).ENTSOsareconvincedthatcentralisationandde-centralisationwillhaveamajorimpactonfutureinfrastructureneeds.

BiomethaneTofurtherimprovethedataqualityandcapturelatesttrends,ENTSOGincollaborationwiththeconsultancyNavigant( previouslyEcofys )hasdevelopeda“Biomethane

Productiontool”,whichisbasedontheassumptionsofthe“GasforClimate”study.Thetoolconsidersanaerobicdigestionandthermalgasificationastechnologiestoproducebiomethane.TocapturethepotentialofbothtechnologiesitdifferentiatesbetweenseveralfeedstocktypesandgrowingregionswithinEurope.

Hydrogen supplyForthefirsttime,ENTSOshaveidentifiedtheneedforhydrogensupplyconsideringthreemajortechnologies:P2G,SteamMethaneReformingplusCCU/SandMethanePyrolysis.Theyhavedevelopedmethodologiestoidentifytheindigenousproductionofhydrogenbyaforementionedtechnologiesand,followingtheirassumptionsontheim-portshare,theneedfordirecthydrogenimportsand/ornaturalgasimportstoconvertitintohydrogeninEurope,respectively.

11.7 P2G and P2L

Forthetop-downscenarios,thequantificationoftheproductionofsynthetichydrogen,methaneandliquidviaP2GandP2Lwasextendedtoatwo-stepapproachforthetop-downscenarios.Inafirststep,curtailedelectricityfromtheelectricitymarketmodelisconsideredassourceofrenewableelectricitytoproducerenewablegases( hy-drogen,methaneandliquids ).Inasecondstep,additionalrenewableelectricityproductionisassumedandmodelledtomeetthedemandforrenewablegases.Thisisdoneviaa

dedicatedmodel,whichquantifiestheneededRES,P2GandP2Lcapacitiesforthepurposeofsupplyingsyntheticgas.

NexteditionswillprovidetheopportunitytofurtherenhancethemodellingofP2Xbytakingintoaccountdifferentconfigurations( e. g.P2GsuppliedbydedicatedRES,attheinterfaceofelectricityandgassystemsoratconsumerfacility )andanalyzingtheirimpactonelectricityandgasinfrastructures.

11.8 Data Visualisation Platform

Anonlinedatavisualisationplatformwassetuptoengagewithinternalandexternalstakeholdersandimprovethetransparencywithregardtothescenariooutcome.Stake-

holdershavesimplifiedaswellasextendeddataaccesswithonlineanalysisfunctions.

Page 59: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 59

ENTSOGandENTSO-EarecurrentlyworkingonthefurtherdevelopmentoftheirInterlinkedModelandontheintegrationofthefocusstudyrecommendationsfortheidentificationofprojectsworthadualassessmentonbothgasandelectricitysystems.

ENTSOGcompleteditsprojectcollectionphaseinJuly2019.ForthefirsttimeENTSOGopeneditsTYNDPtoEnergyTransitionRelatedprojectsincludingbiomethane,P2Gandccs/uprojects.ENTSO-EiscollectingsubmissionsinOctober–November2019andwillrunasecondsub-missionwindowforfutureprojectsafterthereleaseofitsIdentificationofSystemNeeds2040studyinApril2020.

Overthecomingmonths,ENTSOGandENTSO-Ewillpursue their respectiveTYNDP2020developmentprocess,inaclosetimeline:

- TheelectricityandgasdraftTYNDPswillbepublishedinQ32020forpublicconsultation.

- FurthertoreceivingthepublicconsultationfeedbackaswellasACER’sopinion,ENTSOGandENTSO-EwillpublishthefinalTYNDPs,byend2020forgasandinspring2021forelectricity.

- BothTYNDPswillsupportthe5thPCIselectionprocess.

NationalTrendswillserveasbasisforENTSO-E’sIdentifi-cationofSystemNeedsstudy,whichassessespan-Euro-peannetworkneeds,theirimpactinregions,wheregridprojectsshouldbeconsidered,potentialneededpolicyadjustmentsandtechnicalchallenges.

Acost-benefitanalysis( CBA )ofelectricitytransmissionandstorageprojectswillbeperformedfortheNationalTrends( 2025and2030timehorizons ).Additionally,toillustratetherobustnessoftheproposedinfrastructureprojects,asubsetofCBAparameterswillbedeterminedforDistributedEnergyandGlobalAmbition( 2030timehorizon ).Projectswillalsobeassessedina‘CurrentTrends’scenario,anENTSO-Escenarionotincludedinthisreportwhichdescribesafuturewheretheenergytransitionisslowerthanplanned.

ThescenarioswillalsofeedintoprojectswithinENTSO-E’sMarketsandSystemOperationscommittee,suchaslook-ingatmarketdesignandsystemoperabilityin2030.

ENTSOGTYNDP2020willincludetheProject-SpecificCBAs( PS-CBAs )forthoseprojectshavingdeclaredtheirintentiontoapplyforthe5thPCIlist.FullPS-CBAswillbeperformedfortransmission,storageandLNGterminalgasprojects,andwillconsiderallscenariosandthewholetime-horizonoftheTYNDP( from2020to2040 ).EnergyTransitionRelated( ETR )projectswillbeassessedwithareducedandsustainability-orientedCBA,toassesshowtheycandeliverintermsofdecarbonisationoftheenergysystemandsupporttheEuropeanclimateambitions.

Next Steps12

Page 60: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

60 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

ACER:AgencyfortheCooperationofEnergyRegulators.

BECCS:Bio-EnergyCarbonCaptureandStorage.CCSappliedtoBio-Energy,thusresultinginanetnegativeemissionofcarbondioxide.

Biomethane:Gaseousrenewableenergysourcederivedfromagriculturalbiomass( dedicatedcrops,by-productsandagriculturalwasteandanimalwaste ),agro-industrial( wastefromthefoodprocessingchain )andtheOrganicFractionMunicipalSolidWaste( OFMSW ).

Bottom-Up:ThisapproachofthescenariobuildingprocesscollectssupplyanddemanddatafromGasandElectricityTSOs.

Blue Hydrogen:HydrogenobtainedfromnaturalgasorindustrialresidualgasesbysplittingthemintohydrogenandCO₂.TheCO₂isthencapturedandstored/used.

CAGR:Compoundannualgrowthrate.

CAPEX:Capitalexpenditure.

Carbon budget:Thisistheamountofcarbondioxidetheworldcanemitwhilestillhavingalikelychanceoflimitingaverageglobaltemperatureriseto1.5°Cabovepre-indus-triallevels,aninternationallyagreed-upontarget.

Carbon price:costappliedtocarbonpollutiontoencour-agepolluterstoreducetheamountofgreenhousegasestheyemitintotheatmosphere.

CBA:CostBenefitAnalysiscarriedouttodefinetowhatextentaprojectisworthwhilefromasocialperspective.

CCS:CarbonCaptureandStorage.Processofsequestrat-ingCO₂andstoringitinsuchawaythatitwon’tentertheatmosphere.

CCU:CarbonCaptureandUsage.ThecapturedCO₂,in-steadofbeingstoredingeologicalformations,isusedtocreateotherproducts,suchasplastic.

CHP:Combinedheatandpower.

COP21:2015UnitedNationsClimateChanceConference.

Curtailed Electricity:Curtailmentisareductionintheoutputofageneratorfromotherwiseavailableresources( e. g.windorsunlight ),typicallyonanunintentionalbasis.Curtailmentscanresultwhenoperatorsorutilitiescontrolwindandsolargeneratorstoreduceoutputtominimizecongestionoftransmissionorotherwisemanagethesys-temorachievetheoptimummixofresources.

Coal phase-out:Coalisthemostcarbonintensivefossilfuelandphasingitoutisakeysteptoachievetheemis-sionsreductionsneededtolimitglobalwarmingto1.5°C,asenshrinedintheParisAgreement.

DSR:DemandSideResponse.Consumershaveanactiveroleinsofteningpeaksinenergydemandbychangingtheirenergyconsumptionaccordingtotheenergypriceandavailability.

( Kalte ) Dunkelflaute:Germanfor„( cold )darkdoldrums”expressesaclimatecase,whereinadditiontoa2-weekcoldspell,variableRESelectricitygenerationislowduetothelackofwindandsunlight.

EC:EuropeanCommission.

EV:Electricvehicle.

GCV:Grosscalorificvalue.Theheatproducedbycom-bustionofafuelataconstantpressureof1atmosphere,includingtheheatprovidedthecondensationofallvaporsproducedbythecombustion.Withnetcalorificvalueontheotherhandtheheatprovidedbcondensationisnotincluded( seealsoNCV ).

GDP:Grossdomesticproduct.

GHG:Greenhousegas.

Hybrid Heat Pump:heatingsystemthatcombinesanelectricheatpumpwithagascondensingboilertoopti-mizeenergyefficiency.

IEA:WorldEnergyOutlook.

Indirect electricity demand:Indirectelectrificationmeansthatelectricityisnotusedasadirectreplacementforfossilfuels,butasaninputinindustrialprocesses.

Glossary

Page 61: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report // 61

LCOE:Levelisedcostsofelectricity.Itrepresentstheaver-agerevenueperunitofelectricitygeneratedthatwouldberequiredtorecoverthecostsofbuildingandoperatingageneratingplantduringanassumedfinanciallifeanddutycycle.

LNG:Liquefiednaturalgas.

LULUCF:LandUse,LandUseChangeandForestry.SinkofCO₂madepossiblebythefactthatatmosphericCO₂canaccumulateascarboninvegetationandsoilsinterrestrialecosystems.

NCV:Netcalorificvalue.Theheatproducedbycombustionofafuelataconstantpressureof1atmosphere,undertheconditionthatallwaterintheproductsremainsintheformofvapor.Withgrosscalorificvalueontheotherhand,theheatproducedbycondensationofallvaporsisalsoincluded( seealsoGCV ).

NECPs:NationalEnergyandClimatePlansarethenewframeworkwithinwhichEUMemberStateshavetoplan,inanintegratedmanner,theirclimateandenergyob-jectives,targets,policiesandmeasurestotheEuropeanCommission.CountrieswillhavetodevelopNECPsonaten-yearrollingbasis,withanupdatehalfwaythroughtheimplementationperiod.TheNECPscoveringthefirstperiodfrom2021to2030willhavetoensurethattheUnion’s2030targetsforgreenhousegasemissionreduc-tions,renewableenergy,energyefficiencyandelectricityinterconnectionaremet.

NGO:Non-governmentalOrganization.

OPEX:Operationalexpenditure.

P2G:Powertogas.Technologythatuseselectricitytoproducehydrogen( PowertoHydrogen–P2H₂ )bysplit-tingwaterintooxygenandhydrogen( electrolysis ).ThehydrogenproducedcanthenbecombinedwithCO₂toobtainsyntheticmethane( PowertoMethane–P2CH4 ).

P2L:Powertoliquids.Combinationofhydrogenfromelec-trolysisandFischer-Tropschprocesstoobtainsyntheticliquidfuels.

PCI:ProjectofCommonInterest.

Power-to-Hydrogen/P2Hydrogen:HydrogenobtainedfromP2H₂.

Power-to-Methane/P2Methane:Renewablemethane,couldbebiomethaneorsyntheticmethaneproducedbyrenewableenergysourcesonly.

PRIMES:ThePRIMESenergymodelsimulatestheEuro-peanenergysystemandmarketsonacountry-by-countrybasisandacrossEuropefortheentireenergysystem.Themodelprovidesprojectionsofdetailedenergybalances,bothfordemandandsupply,CO₂emissions,investmentindemandandsupply,energytechnologypenetration,pricesandcosts.

RES:Renewableenergysource.

Shale gas:Shalegasisnaturalgasthatisfoundtrappedwithinshaleformations( e. g.viafracking ).

Synthetic methane:fuelgasthatcanbeproducedfromfossilfuelssuchaslignitecoal,oilshale,orfrombiofuels( whenitisnamedbio-SNG )orfromrenewableelectricalenergy.

Top-Down:The“Top-DownCarbonBudget”scenariobuildingprocessisanapproachthatusesthe“bottom-up”modelinformationgatheredfromtheGasandElectricityTSOs.ThemethodologiesaredevelopedinlinewiththeCarbonBudgetapproach.

TRAPUNTA:TemperatureREgressionandloAdProjectionwithUNcertaintyAnalysis.Softwarethatallowstoperformelectricloadpredictionstartingfromdataanalysisofthehistoricaltimeseries( electricload,temperature,otherclimaticvariables )andevaluationofthefutureevolutionofthemarket( e. g.,penetrationofheatpump,electricvehicles,batteries,populationandindustrialgrowth ).IthasbeendevelopedbyMilanoMultiphysicsforENTSO-E.

TSO:TransmissionSystemOperator.

TYNDP:TenYearNetworkDevelopmentPlan.

Page 62: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

62 // ENTSO-E // ENTSOG  TYNDP 2020 Scenario Report

List of Figures & Tables

Figures

Figure 1: NationalTrendsscenariointeractions withNECPs .....................................................................9

Figure 2: GHGemissioninENTSOS’scenarios .....................10

Figure 3: EU28CumulativeEmissionsinCOP21 ScenariosinMTCO₂ ................................................ 11

Figure 4: KeydriversofScenarioStorylines.......................... 14

Figure 5: TheTYNDP2020Scenariosaredefinedby threeStorylines ........................................................... 16

Figure 6: FinalenergydemandinCOP21scenarios ............18

Figure 7: Directelectricitydemandperscenario(EU28) ....19

Figure 8: Exampleofwinterhourlydemandprofile forasinglemarketnode ............................................20

Figure 9: Exampleofsummerhourlydemandprofile forasinglemarketnode ............................................20

Figure 10: Peakelectricitydemandperscenario(EU28) ....... 21

Figure 11: Numberofelectricandhybridvehiclesand heatpumps(excl.districtheating)comparedtoarangebasedonanalysisofthirdpartyreports ..... 22

Figure 12: Sectoralbreakdownoftotalgasdemand inEU28 .......................................................................... 23

Figure 13: Gasdemandinhighdemandcases (Peak,2-Weekcoldspell,Dunkelflaute) ............... 23

Figure 14: Totalmethaneandhydrogendemandin COP21scenarios ....................................................... 24

Figure 15: PrimaryenergymixandRESsharein DistributedEnergy(EU28) ........................................25

Figure 16: PrimaryenergymixandRESsharein GlobalAmbition(EU28) .............................................25

Figure 17: Shareoffinalelectricitydemand coveredbyRES ............................................................ 26

Figure 18: ElectricitygenerationmixinDistributedEnergy(EU28) ............................................................................27

Figure 19: ElectricitycapacitymixinDistributedEnergy (EU28) ............................................................................27

Figure 20: Peakgeneration,demandsideresponseand batterytechnology(EU28) ........................................28

Figure 21–23:NationalTrends,DistributedEnergy, GlobalAmbition...........................................................29

Figure 24: Gassourcecomposition–NationalTrends ........... 31

Figure 25: Gassourcecomposition–DistributedEnergy ..... 31

Figure 26: Gassourcecomposition–GlobalAmbition.......... 31

Figure 27: Capacityforhydrogenproduction .......................... 33

Figure 28: Generationmixforhydrogenand derivedfuels ................................................................. 33

Figure 29: GHGemissionreductionpathwaysuntil2050 .... 34

Figure 30: CO₂emissionsintheElectricityGeneration .........35

Figure 31: Decarbonisationpathofgas inDistributedEnergy ................................................. 36

Figure 32: Decarbonisationpathofgas inGlobalAmbition ...................................................... 36

Figure 33: Marginalcosts ..............................................................37

Figure 34: SolarPVCapacityFactor ..........................................38

Figure 35: RESLCOEinGlobalAmbition2040 .......................39

Figure 36: RESLCOEinDistributedEnergy2040 ..................39

Figure 37: Benchmarkingofprojectedelectricitydemand andwind/solargenerationforEU28 ...................... 41

Figure 38: Benchmarkingofprojectedelectrificationrate forEU28 ........................................................................ 41

Figure 39: Benchmarkingofprojectedelectrificationin theindustrialsectorforEU28 .................................. 42

Figure 40: Benchmarkingofprojectedelectrificationof residentialandcommercialsectorsinEU28 ......... 42

Figure 41: Benchmarkingofprojectedelectrificationin thetransportsectorforEU28 .................................. 42

Figure 42: Totalprimarygasdemand–Benchmarkwith ECLongTermStrategy ............................................... 43

Figure 43: Primarygasdemandforfinaluseandfor powergeneration ........................................................ 44

Figure 44: Renewablegasproduction– ENTSOsvsECLTS(P2X,1.5TECH,1.5LIFE) ........45

Figure 45: Energyimportsin2050byenergycarrier ............. 46

Figure 46: Gasimportsperscenarioandperyear................... 46

Figure 47: CCSin2050inENTSOsandECscenarios ...........47

Figure 48: Summaryoffuelpricereferences ...........................48

Tables

Table 1: CumulativeemissionsandrequirednetnegativeemissionsinDistributedEnergy .............................. 12

Table 2: StorylineCentralMatrix ............................................15

Table 3: AnnualEU-28electricitydemandvolumesand theassociatedgrowthrate .......................................19

Table 4: AnnualpeakdemandandCARGperscenario ..... 21

Table 5: WindandSolarCapacityFactorCharacteristics ..38

Table 6: FuelpricesinTYNDP 2020scenarios ....................48

Table 7: Electricitydemandincreasein DistributedEnergy ......................................................54

Page 63: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

Joint-Publishers

ENTSOG

EuropeanNetworkof TransmissionSystemOperators forGas

AvenuedeCortenbergh100 1000Brussels,Belgium

www.entsog.eu

ENTSO-E

EuropeanNetworkof TransmissionSystemOperators forElectricity

AvenuedeCortenbergh100 1000Brussels,Belgium

www.entsoe.eu

Co-authors

OlivierLebois PieterBoersmaDavidMcGowanThomasRzepczykCihanSönmezDantePowellMariaFernandez

MagdalenaBoguckaLouisWatineMartinGraversgaardNielsenWGSB SCNWG RGGroups

Design DreiDreizehnGmbH,Berlin|www.313.de

Pictures

Page4/6/17:CourtesyofTeréga Page9:CourtesyofAmberGrid Page13/49:CourtesyofStatnett Page37:CourtesyofTenneT Page40:CourtesyofInfrastruttureTrasportoGas/Edison Page55:CourtesyofGasum Page59:CourtesyofNationalGrid

Publishing date

June2020

i Imprint

Page 64: TYNDP 2020 Scenario Report – Final Report, June 2020 · 2020-07-02 · 4 // ENTSO-E // ENTSOG TYNDP 2020 Scenario Report What is this report about? The TYNDP 2020 Final Scenario

European Network ofTransmission System Operators

for Electricity