Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan...

34
urevler ve Bir E˘grinin Bi¸cimi Artan ve Azalan Fonksiyonlar urevler ve Bir E˘grinin Bi¸cimi Artan ve Azalan Fonksiyonlar A B C D y=ƒ f(x ¡) f(x™) a y 0 x x™ b c d S ¸ekilde grafik A’dan B’ye kadar y¨ ukselmekte B’den C ’ye kadar d¨ smekte ve C ’den D’ye kadar tekrar y¨ ukselmektedir f fonksiyonu [a, b] aralı˘ gında artan, [b, c] aralı˘ gında azalan, [c, d] aralı˘ gında ise yine artandır.

Transcript of Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan...

Page 1: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Turevler ve Bir Egrinin BicimiArtan ve Azalan Fonksiyonlar

(c)

Since and , we conclude that is neither even norodd.

The graphs of the functions in Example 11 are shown in Figure 25. Notice that thegraph of h is symmetric neither about the y-axis nor about the origin.

Increasing and Decreasing Functions

The graph shown in Figure 26 rises from to , falls from to , and rises againfrom to . The function is said to be increasing on the interval , decreasingon , and increasing again on . Notice that if and are any two numbersbetween and with , then . We use this as the defining prop-erty of an increasing function.

A function is called increasing on an interval if

It is called decreasing on if

In the definition of an increasing function it is important to realize that the inequal-ity must be satisfied for every pair of numbers and in with

.You can see from Figure 27 that the function is decreasing on the inter-

val and increasing on the interval .�0, �����, 0�f �x� � x 2

x1 � x2

Ix2x1f �x1 � � f �x2 �

whenever x1 � x2 in If �x1 � f �x2 �

I

whenever x1 � x2 in If �x1 � � f �x2 �

If

A

B

C

D

y=ƒ

f(x¡)

f(x™)

a

y

0 xx¡ x™ b c dFIGURE 26

f �x1 � � f �x2 �x1 � x2bax2x1�c, d ��b, c�

�a, b�fDCCBBA

1

1 x

y

h1

1

y

x

g1

_1

1

y

x

f

_1

(a) (b) (c)FIGURE 25

hh��x� � �h�x�h��x� � h�x�

h��x� � 2��x� � ��x�2 � �2x � x 2

SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION � 21

0

y

x

y=≈

FIGURE 27

Sekilde grafik A’dan B’ye kadar yukselmekte B’den C’ye kadar dusmekteve C’den D’ye kadar tekrar yukselmektedir f fonksiyonu [a, b] aralıgındaartan, [b, c] aralıgında azalan, [c, d] aralıgında ise yine artandır.

Page 2: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

(c)

Since and , we conclude that is neither even norodd.

The graphs of the functions in Example 11 are shown in Figure 25. Notice that thegraph of h is symmetric neither about the y-axis nor about the origin.

Increasing and Decreasing Functions

The graph shown in Figure 26 rises from to , falls from to , and rises againfrom to . The function is said to be increasing on the interval , decreasingon , and increasing again on . Notice that if and are any two numbersbetween and with , then . We use this as the defining prop-erty of an increasing function.

A function is called increasing on an interval if

It is called decreasing on if

In the definition of an increasing function it is important to realize that the inequal-ity must be satisfied for every pair of numbers and in with

.You can see from Figure 27 that the function is decreasing on the inter-

val and increasing on the interval .�0, �����, 0�f �x� � x 2

x1 � x2

Ix2x1f �x1 � � f �x2 �

whenever x1 � x2 in If �x1 � f �x2 �

I

whenever x1 � x2 in If �x1 � � f �x2 �

If

A

B

C

D

y=ƒ

f(x¡)

f(x™)

a

y

0 xx¡ x™ b c dFIGURE 26

f �x1 � � f �x2 �x1 � x2bax2x1�c, d ��b, c�

�a, b�fDCCBBA

1

1 x

y

h1

1

y

x

g1

_1

1

y

x

f

_1

(a) (b) (c)FIGURE 25

hh��x� � �h�x�h��x� � h�x�

h��x� � 2��x� � ��x�2 � �2x � x 2

SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION � 21

0

y

x

y=≈

FIGURE 27

x1 ve x2 noktaları a ve b arasında, x1 < x2 kosulunu saglayan herhangiiki nokta ise f(x1) < f(x2) olduguna dikkat ediniz. Bu ozelligi artanfonksiyonun tanımı icin kullanacagız.

I aralıgındaki her x1 < x2 icin f(x1) < f(x2) ise f fonksiyonu Iaralıgında artandır.

I aralıgındaki her x1 < x2 icin f(x1) > f(x2) ise f fonksiyonu Iaralıgında azalandır.

Page 3: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Artanlık-Azalanlık Testi

(a) Bir aralıkta f ′(x) > 0 ise bu aralıkta f artandır.

(b) Bir aralıkta f ′(x) < 0 ise bu aralıkta f azalandır.

Page 4: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Ornek 1f(x) = 3x4 − 4x3 − 12x2 + 5 fonksiyonunun artan ve azalan olduguaralıkları bulunuz.

Cozum.

Buradaf ′(x) = 12x3 − 12x2 − 24x = 12x(x− 2)(x+ 1)

olup artanlık-azalanlık testini kullanmak icin nerede f ′(x) > 0, neredef ′(x) < 0 oldugunu bilmek zorundayız.Bu f ′(x)’in carpanlarının isaretlerine baglıdır. Bu carpanlar, 12x, (x− 2)ve (x+ 1)’dir.

Page 5: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Cozum (devamı).

Gercel dogruyu uc noktaları −1, 0 ve 2 kritik noktaları olan aralıklarabolelim ve calısmamızı bir cizelgeye yerlestirelim

x

12x

x − 2

x + 1

f ′(x)

−1 0 2

− − 0 + +

− − − 0 +

− 0 + + 0 +

− + − +

azalan artan azalan artan

Artı isareti, verilen ifadenin pozitif, eksi isareti, verilen ifadenin negatifoldugunu gosterir.

Page 6: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Cozum (devamı).

Dolayısıyla f(x) = 3x4 − 4x3 − 12x2 + 5 fonksiyonu(−∞,−1) aralıgında azalandır,(−1, 0) aralıgında artandır,(0, 2) aralıgında azalandır,(2,∞) aralıgında artandır.

Page 7: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

f nin c de bir yerel maksimumu ya da minimumu varsa, c nin f nin kritiksayısı olması gerektigini (Fermat Teoremi), fakat her kritik sayıda birmaksimum ya da minimum ortaya cıkmayacagını hatırlayalım.Bunun sonucu olarak kritik sayıda f nin yerel maksimumu ya daminimumu olup olmadıgımız bir teste ihtiyacımız var.

Birinci Turev TestiBir f surekli fonksiyonunun bir kritik sayısının c oldugunu varsayalım.

(a) Eger f ′ turevi c’de pozitiften negatife degisirse f ’nin c’de bir yerelmaksimumu vardır.

(b) Eger f ′ turevi c’de negatiften pozitife degisirse f ’nin c’de bir yerelminimumu vardır.

(c) Eger f ′ turevi c’de isaret degistirmezse (f ′, c’nin iki yanında pozitifya da negatif ise) f ’nin c’de yerel maksimumu ve minimumu yoktur.

Page 8: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Recall from Section 4.2 that if has a local maximum or minimum at , then must be a critical number of (by Fermat’s Theorem), but not every critical numbergives rise to a maximum or a minimum. We therefore need a test that will tell uswhether or not has a local maximum or minimum at a critical number.

You can see from Figure 3 that is a local maximum value of because increases on and decreases on . Or, in terms of derivatives, for

and for . In other words, the sign of changesfrom positive to negative at . This observation is the basis of the following test.

The First Derivative Test Suppose that is a critical number of a continuousfunction .

(a) If changes from positive to negative at , then has a local maximumat .

(b) If changes from negative to positive at , then has a local minimum at .

(c) If does not change sign at (that is, is positive on both sides of c ornegative on both sides), then has no local maximum or minimum at .

The First Derivative Test is a consequence of the I�D Test. In part (a), for instance,since the sign of changes from positive to negative at c, f is increasing to the leftof c and decreasing to the right of c. It follows that f has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such asthose in Figure 4.

EXAMPLE 3 Find the local minimum and maximum values of the function inExample 2.

SOLUTION From the chart in the solution to Example 2 we see that changes fromnegative to positive at �1, so is a local minimum value by the FirstDerivative Test. Similarly, changes from negative to positive at 2, so is also a local minimum value. As previously noted, is a local maximumvalue because changes from positive to negative at 0.

Concavity

Let us recall the definition of concavity from Section 2.10.

A function (or its graph) is called concave upward on an interval if is anincreasing function on . It is called concave downward on if is decreas-ing on .I

f IIf I

f �x�f �0� � 5

f �2� � �27f f ��1� � 0

f �x�

f

FIGURE 4

c0 x

y

fª(x)<0 fª(x)>0

(b) Local minimum

0 x

y

c

fª(x)>0 fª(x)<0

(a) Local maximum (c) No maximum or minimum

c0 x

y

fª(x)<0

fª(x)<0

c0 x

y

fª(x)>0

fª(x)>0

(d) No maximum or minimum

f �x�

cff cf

cfcf

cfcf

fc

0f �x�0 � x � 2f �x� � 0�1 � x � 0f �x� � 0�0, 2���1, 0�

fff �0� � 5f

fccf

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 283

Recall from Section 4.2 that if has a local maximum or minimum at , then must be a critical number of (by Fermat’s Theorem), but not every critical numbergives rise to a maximum or a minimum. We therefore need a test that will tell uswhether or not has a local maximum or minimum at a critical number.

You can see from Figure 3 that is a local maximum value of because increases on and decreases on . Or, in terms of derivatives, for

and for . In other words, the sign of changesfrom positive to negative at . This observation is the basis of the following test.

The First Derivative Test Suppose that is a critical number of a continuousfunction .

(a) If changes from positive to negative at , then has a local maximumat .

(b) If changes from negative to positive at , then has a local minimum at .

(c) If does not change sign at (that is, is positive on both sides of c ornegative on both sides), then has no local maximum or minimum at .

The First Derivative Test is a consequence of the I�D Test. In part (a), for instance,since the sign of changes from positive to negative at c, f is increasing to the leftof c and decreasing to the right of c. It follows that f has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such asthose in Figure 4.

EXAMPLE 3 Find the local minimum and maximum values of the function inExample 2.

SOLUTION From the chart in the solution to Example 2 we see that changes fromnegative to positive at �1, so is a local minimum value by the FirstDerivative Test. Similarly, changes from negative to positive at 2, so is also a local minimum value. As previously noted, is a local maximumvalue because changes from positive to negative at 0.

Concavity

Let us recall the definition of concavity from Section 2.10.

A function (or its graph) is called concave upward on an interval if is anincreasing function on . It is called concave downward on if is decreas-ing on .I

f IIf I

f �x�f �0� � 5

f �2� � �27f f ��1� � 0

f �x�

f

FIGURE 4

c0 x

y

fª(x)<0 fª(x)>0

(b) Local minimum

0 x

y

c

fª(x)>0 fª(x)<0

(a) Local maximum (c) No maximum or minimum

c0 x

y

fª(x)<0

fª(x)<0

c0 x

y

fª(x)>0

fª(x)>0

(d) No maximum or minimum

f �x�

cff cf

cfcf

cfcf

fc

0f �x�0 � x � 2f �x� � 0�1 � x � 0f �x� � 0�0, 2���1, 0�

fff �0� � 5f

fccf

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 283

Recall from Section 4.2 that if has a local maximum or minimum at , then must be a critical number of (by Fermat’s Theorem), but not every critical numbergives rise to a maximum or a minimum. We therefore need a test that will tell uswhether or not has a local maximum or minimum at a critical number.

You can see from Figure 3 that is a local maximum value of because increases on and decreases on . Or, in terms of derivatives, for

and for . In other words, the sign of changesfrom positive to negative at . This observation is the basis of the following test.

The First Derivative Test Suppose that is a critical number of a continuousfunction .

(a) If changes from positive to negative at , then has a local maximumat .

(b) If changes from negative to positive at , then has a local minimum at .

(c) If does not change sign at (that is, is positive on both sides of c ornegative on both sides), then has no local maximum or minimum at .

The First Derivative Test is a consequence of the I�D Test. In part (a), for instance,since the sign of changes from positive to negative at c, f is increasing to the leftof c and decreasing to the right of c. It follows that f has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such asthose in Figure 4.

EXAMPLE 3 Find the local minimum and maximum values of the function inExample 2.

SOLUTION From the chart in the solution to Example 2 we see that changes fromnegative to positive at �1, so is a local minimum value by the FirstDerivative Test. Similarly, changes from negative to positive at 2, so is also a local minimum value. As previously noted, is a local maximumvalue because changes from positive to negative at 0.

Concavity

Let us recall the definition of concavity from Section 2.10.

A function (or its graph) is called concave upward on an interval if is anincreasing function on . It is called concave downward on if is decreas-ing on .I

f IIf I

f �x�f �0� � 5

f �2� � �27f f ��1� � 0

f �x�

f

FIGURE 4

c0 x

y

fª(x)<0 fª(x)>0

(b) Local minimum

0 x

y

c

fª(x)>0 fª(x)<0

(a) Local maximum (c) No maximum or minimum

c0 x

y

fª(x)<0

fª(x)<0

c0 x

y

fª(x)>0

fª(x)>0

(d) No maximum or minimum

f �x�

cff cf

cfcf

cfcf

fc

0f �x�0 � x � 2f �x� � 0�1 � x � 0f �x� � 0�0, 2���1, 0�

fff �0� � 5f

fccf

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 283

Recall from Section 4.2 that if has a local maximum or minimum at , then must be a critical number of (by Fermat’s Theorem), but not every critical numbergives rise to a maximum or a minimum. We therefore need a test that will tell uswhether or not has a local maximum or minimum at a critical number.

You can see from Figure 3 that is a local maximum value of because increases on and decreases on . Or, in terms of derivatives, for

and for . In other words, the sign of changesfrom positive to negative at . This observation is the basis of the following test.

The First Derivative Test Suppose that is a critical number of a continuousfunction .

(a) If changes from positive to negative at , then has a local maximumat .

(b) If changes from negative to positive at , then has a local minimum at .

(c) If does not change sign at (that is, is positive on both sides of c ornegative on both sides), then has no local maximum or minimum at .

The First Derivative Test is a consequence of the I�D Test. In part (a), for instance,since the sign of changes from positive to negative at c, f is increasing to the leftof c and decreasing to the right of c. It follows that f has a local maximum at c.

It is easy to remember the First Derivative Test by visualizing diagrams such asthose in Figure 4.

EXAMPLE 3 Find the local minimum and maximum values of the function inExample 2.

SOLUTION From the chart in the solution to Example 2 we see that changes fromnegative to positive at �1, so is a local minimum value by the FirstDerivative Test. Similarly, changes from negative to positive at 2, so is also a local minimum value. As previously noted, is a local maximumvalue because changes from positive to negative at 0.

Concavity

Let us recall the definition of concavity from Section 2.10.

A function (or its graph) is called concave upward on an interval if is anincreasing function on . It is called concave downward on if is decreas-ing on .I

f IIf I

f �x�f �0� � 5

f �2� � �27f f ��1� � 0

f �x�

f

FIGURE 4

c0 x

y

fª(x)<0 fª(x)>0

(b) Local minimum

0 x

y

c

fª(x)>0 fª(x)<0

(a) Local maximum (c) No maximum or minimum

c0 x

y

fª(x)<0

fª(x)<0

c0 x

y

fª(x)>0

fª(x)>0

(d) No maximum or minimum

f �x�

cff cf

cfcf

cfcf

fc

0f �x�0 � x � 2f �x� � 0�1 � x � 0f �x� � 0�0, 2���1, 0�

fff �0� � 5f

fccf

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 283

Page 9: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Ornek 2f(x) = 3x4 − 4x3 − 12x2 + 5 fonksiyonunun yerel maksimum veminimum degerlerini bulunuz.

Cozum.

x

12x

x − 2

x + 1

f ′(x)

−1 0 2

− − 0 + +

− − − 0 +

− 0 + + 0 +

− + − +

Cizelgeden f ′(x)’in (−1) noktasında negatiften pozitife degistiginigoruruz. Dolayısıyla, f(−1) = 0, Birinci Turev Testi ile bir yerelminimum degeridir.

Page 10: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Artan ve Azalan Fonksiyonlar

Cozum (devamı).

x

12x

x − 2

x + 1

f ′(x)

−1 0 2

− − 0 + +

− − − 0 +

− 0 + + 0 +

− + − +

Benzer olarak, f ′ turevi 2’de negatiften pozitife degisir. Buradaf(2) = −27’de bir yerel minimum degeridir.Daha once de belirtildigi gibi f(0) = 5 bir yerel maksimum degeridircunku f ′(x) turevi 0’da pozitiften negatife degisir.

Page 11: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Dusey Asimptot

Dusey Asimptot

Tanım 3

limx→a

f(x) =∞ limx→a−

f(x) =∞ limx→a+

f(x) =∞

limx→a

f(x) = −∞ limx→a−

f(x) = −∞ limx→a+

f(x) = −∞

ifadelerinden en az birinin dogru olması durumunda x = a dogrusunay = f(x) egrisinin dusey asimptotu denir.

Page 12: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Dusey Asimptot

Ornek 4y = tanx ve y = lnx fonksiyonlarının grafiklerinde dusey asimptotlarvardır.

Sekildenlimx→0+

lnx = −∞

oldugu gorulur.

and so the line (the y-axis) is a vertical asymptote. In fact, the same is true forprovided that . (See Figures 11 and 12 in Section 1.6.)

Figure 7 shows that

and so the line is a vertical asymptote. In fact, the lines ,n an integer, are all vertical asymptotes of .

EXAMPLE 2 Find .

SOLUTION We introduce a new variable, . Then and as because is a continuous function. So, by (3),

we have

Limits at Infinity

In computing infinite limits, we let approach a number and the result was that thevalues of became arbitrarily large (positive or negative). Here we let become arbi-trarily large (positive or negative) and see what happens to .

Let’s begin by investigating the behavior of the function defined by

as becomes large. The table at the left gives values of this function correct to six decimal places, and the graph of has been drawn by a computer in Figure 8.

x10

y

y=1

y=≈-1≈+1

FIGURE 8

fx

f �x� �x 2 � 1

x 2 � 1

fy

xyx

limx l

0 ln�tan2x� � lim

t l

0� ln t � �

tanx l 0 tan2 0 � 0t � tan2x lt 0t � tan2x

limx l

0 ln�tan2x�

y � tan xx � �2n � 1���2x � ��2

limx l

���2�� tan x �

FIGURE 6

__x

y

π0_π

1

π2

3π 2

π2

3π 2

x0

y

1

y=ln x

FIGURE 7y=tan x

a � 1y � loga xx � 0

limx l

0� ln x � �3

SECTION 2.5 LIMITS INVOLVING INFINITY � 133

� The problem-solving strategy forExample 2 is Introduce Something Extra (see page 88). Here, the some-thing extra, the auxiliary aid, is the new variable .t

x

0 �100.6000000.8000000.8823530.9230770.9801980.9992000.9998000.999998�1000

�100�50�10

�5�4�3�2�1

f �x�

Sekilden

limx→(π/2)−

tanx = +∞

oldugu gorulur. Aslında, n bir tamsayı ol-mak uzere x = (2n+1)π/2 dogruları y =tanx fonksiyonunun tum dusey asimp-totlarıdır.

and so the line (the y-axis) is a vertical asymptote. In fact, the same is true forprovided that . (See Figures 11 and 12 in Section 1.6.)

Figure 7 shows that

and so the line is a vertical asymptote. In fact, the lines ,n an integer, are all vertical asymptotes of .

EXAMPLE 2 Find .

SOLUTION We introduce a new variable, . Then and as because is a continuous function. So, by (3),

we have

Limits at Infinity

In computing infinite limits, we let approach a number and the result was that thevalues of became arbitrarily large (positive or negative). Here we let become arbi-trarily large (positive or negative) and see what happens to .

Let’s begin by investigating the behavior of the function defined by

as becomes large. The table at the left gives values of this function correct to six decimal places, and the graph of has been drawn by a computer in Figure 8.

x10

y

y=1

y=≈-1≈+1

FIGURE 8

fx

f �x� �x 2 � 1

x 2 � 1

fy

xyx

limx l

0 ln�tan2x� � lim

t l

0� ln t � �

tanx l 0 tan2 0 � 0t � tan2x lt 0t � tan2x

limx l

0 ln�tan2x�

y � tan xx � �2n � 1���2x � ��2

limx l

���2�� tan x �

FIGURE 6

__x

y

π0_π

1

π2

3π 2

π2

3π 2

x0

y

1

y=ln x

FIGURE 7y=tan x

a � 1y � loga xx � 0

limx l

0� ln x � �3

SECTION 2.5 LIMITS INVOLVING INFINITY � 133

� The problem-solving strategy forExample 2 is Introduce Something Extra (see page 88). Here, the some-thing extra, the auxiliary aid, is the new variable .t

x

0 �100.6000000.8000000.8823530.9230770.9801980.9992000.9998000.999998�1000

�100�50�10

�5�4�3�2�1

f �x�

Page 13: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Yatay Asimptot

Yatay Asimptot

−∞ sembolu bir sayı belirtmez ve

limx→−∞

f(x) = L

ifadesi

“x eksi sonsuza yaklasırken, f(x) in limiti L dir”

seklinde okunur.

Tanım 5Eger, lim

x→∞f(x) = L veya lim

x→−∞f(x) = L ise y = L dogrusuna

y = f(x) egrisinin yatay asimptotu denir.

Page 14: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Yatay Asimptot

Ornek 6Yatay asimptotu olan bir egri ornegi y = tan−1 x dir.

out bound, we can make as close to 1 as we like. This is expressed by writing

In general, as shown in Figure 10, the notation

means that the values of can be made arbitrarily close to by taking sufficientlylarge negative.

Again, the symbol does not represent a number, but the expressionis often read as

“the limit of , as x approaches negative infinity, is L”

Definition The line is called a horizontal asymptote of the curveif either

For instance, the curve illustrated in Figure 8 has the line as a horizontalasymptote because

An example of a curve with two horizontal asymptotes is . (See Figure 11.)In fact,

so both of the lines and are horizontal asymptotes. (This followsfrom the fact that the lines are vertical asymptotes of the graph of tan.)

EXAMPLE 3 Find the infinite limits, limits at infinity, and asymptotes for the functionwhose graph is shown in Figure 12.

SOLUTION We see that the values of become large as from both sides, so

Notice that becomes large negative as x approaches 2 from the left, but largepositive as x approaches 2 from the right. So

Thus, both of the lines and are vertical asymptotes.x � 2x � �1

limx l

2� f �x� � andlim

x l

2� f �x� � �

f �x�

limx l

�1 f �x� �

x l �1f �x�

f

x � ���2y � ��2y � ���2

limx l

tan�1x �

2lim

x l

� tan�1x � �

26

y � tan�1x

limx l

x 2 � 1

x 2 � 1� 1

y � 1

limx l

� f �x� � Lorlim

x l

f �x� � L

y � f �x�y � L5

f �x�

limx l

� f �x� � L

xLf �x�

limx l

� f �x� � L

limx l

� x 2 � 1

x 2 � 1� 1

f �x�

SECTION 2.5 LIMITS INVOLVING INFINITY � 135

x _`

FIGURE 10Examples illustrating lim ƒ=L

0

y

x

y=ƒ

y=L

x0

y

y=ƒy=L

FIGURE 11y=tan–!x

y

0

x

π2

_ π2

FIGURE 12

0 x

y

2

2

Gercekten,

limx→−∞

tan−1 x = −π2

limx→∞

tan−1 x =π

2

oldugundan, y = −π/2 ve y = π/2 dogruları yatay asimptotlardır.

Page 15: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Bukeylik

Bir f fonksiyonunun f ′ turevi bir I aralıgı uzerinde artan bir fonksiyon isef fonksiyonu (ya da grafigi) I uzerinde dısbukey denir. Eger f ′ turevi birI aralıgı uzerinde azalan bir fonksiyon ise f fonksiyonu I uzerindeicbukey denir.

Notice in Figure 5 that the slopes of the tangent lines increase from left to right onthe interval , so is increasing and is concave upward (abbreviated CU) on

. [It can be proved that this is equivalent to saying that the graph of lies aboveall of its tangent lines on .] Similarly, the slopes of the tangent lines decreasefrom left to right on , so is decreasing and is concave downward (CD) on

.

A point where a curve changes its direction of concavity is called an inflectionpoint. The curve in Figure 5 changes from concave upward to concave downward at

and from concave downward to concave upward at , so both and are inflec-tion points.

Because , we know that if is positive, then is an increasing func-tion and so is concave upward. Similarly, if is negative, then is decreasingand is concave downward. Thus, we have the following test for concavity.

Concavity Test

(a) If for all in , then the graph of is concave upward on .

(b) If for all in , then the graph of is concave downward on .

In view of the Concavity Test, there is a point of inflection at any point where thesecond derivative changes sign. A consequence of the Concavity Test is the followingtest for maximum and minimum values.

The Second Derivative Test Suppose is continuous near .

(a) If and , then has a local minimum at .

(b) If and , then has a local maximum at .

For instance, part (a) is true because near c and so is concave upwardnear . This means that the graph of lies above its horizontal tangent at c and sohas a local minimum at . (See Figure 6.)

EXAMPLE 4 Discuss the curve with respect to concavity, points ofinflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION If , then

f ��x� � 12x 2 � 24x � 12x�x � 2�

f �x� � 4x 3 � 12x 2 � 4x 2�x � 3�

f �x� � x 4 � 4x 3

y � x 4 � 4x 3

cffc

ff ��x� � 0

cff ��c� � 0f �c� � 0

cff ��c� � 0f �c� � 0

cf �

IfIxf ��x� � 0

IfIxf ��x� � 0

ff f ��x�f

f f ��x�f � � � f �

QPQP

a b c

P Q

x

y

0

CU CD CUFIGURE 5

�b, c�ff �b, c�

�a, b�f�a, b�

ff �a, b�

284 � CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

f ª(c)=0f(c)

ƒ

c

P

x x

y

0

FIGURE 6f ·(c)>0, concave upward

Resources / Module 3/ Concavity

/ Introduction

Explore concavity on a roller coaster.

dısbukey icbukey dısbukey

Page 16: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Bir egrinin bukeyliginin yonunun degistigi noktaya bukum noktası denir.

Notice in Figure 5 that the slopes of the tangent lines increase from left to right onthe interval , so is increasing and is concave upward (abbreviated CU) on

. [It can be proved that this is equivalent to saying that the graph of lies aboveall of its tangent lines on .] Similarly, the slopes of the tangent lines decreasefrom left to right on , so is decreasing and is concave downward (CD) on

.

A point where a curve changes its direction of concavity is called an inflectionpoint. The curve in Figure 5 changes from concave upward to concave downward at

and from concave downward to concave upward at , so both and are inflec-tion points.

Because , we know that if is positive, then is an increasing func-tion and so is concave upward. Similarly, if is negative, then is decreasingand is concave downward. Thus, we have the following test for concavity.

Concavity Test

(a) If for all in , then the graph of is concave upward on .

(b) If for all in , then the graph of is concave downward on .

In view of the Concavity Test, there is a point of inflection at any point where thesecond derivative changes sign. A consequence of the Concavity Test is the followingtest for maximum and minimum values.

The Second Derivative Test Suppose is continuous near .

(a) If and , then has a local minimum at .

(b) If and , then has a local maximum at .

For instance, part (a) is true because near c and so is concave upwardnear . This means that the graph of lies above its horizontal tangent at c and sohas a local minimum at . (See Figure 6.)

EXAMPLE 4 Discuss the curve with respect to concavity, points ofinflection, and local maxima and minima. Use this information to sketch the curve.

SOLUTION If , then

f ��x� � 12x 2 � 24x � 12x�x � 2�

f �x� � 4x 3 � 12x 2 � 4x 2�x � 3�

f �x� � x 4 � 4x 3

y � x 4 � 4x 3

cffc

ff ��x� � 0

cff ��c� � 0f �c� � 0

cff ��c� � 0f �c� � 0

cf �

IfIxf ��x� � 0

IfIxf ��x� � 0

ff f ��x�f

f f ��x�f � � � f �

QPQP

a b c

P Q

x

y

0

CU CD CUFIGURE 5

�b, c�ff �b, c�

�a, b�f�a, b�

ff �a, b�

284 � CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

f ª(c)=0f(c)

ƒ

c

P

x x

y

0

FIGURE 6f ·(c)>0, concave upward

Resources / Module 3/ Concavity

/ Introduction

Explore concavity on a roller coaster.

dısbukey icbukey dısbukey

Sekildeki egri P ’de dısbukeylikten icbukeylige ve Q’da icbukeyliktendısbukeylige degisir. Dolayısıyla P ve Q noktaları egrinin bukumnoktalarıdır.

Page 17: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Bukeylik Testi

(a) I aralıgındaki her x icin f ′′(x) > 0 ise I uzerinde f ’nin grafigidısbukeydir.

(b) I aralıgındaki her x icin f ′′(x) < 0 ise I uzerinde f ’nin grafigiicbukeydir.

Bukeylik testinden dolayı ikinci turevin isaretinin degistigi herhangi birnoktada bir bukum noktası vardır. Bukeylik testinin bir sonucumaksimum ve minimum degerleri veren asagıdaki testtir.

Ikinci Turev Testif ′′’nun c’nin yakınında surekli oldugunu varsayalım.

(a) f ′(c) = 0 ve f ′′(c) > 0 ise f ’nin c’de bir yerel minimumu vardır.

(b) f ′(c) = 0 ve f ′′(c) < 0 ise f ’nin c’de bir yerel maksimumu vardır.

Page 18: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Notf ′′(c) = 0 oldugunda Ikinci Turev Testi sonuc vermez.

Diger bir deyisle, bu noktada bir maksimum veya bir minimum olabilir yada her ikisi de olmayabilir.

Bu test, f ′′(c) tanımlı olmadıgında da gecerli degildir. Boyle durumlardaBirinci Turev Testi kullanılmalıdır.

Her iki testin kullanılabildigi durumlarda Birinci Turev Testini kullanmakcogu kez daha kolaydır.

Page 19: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Ornek 7y = x4 − 4x3 egrisinin bukeyligini, bukum noktalarını, yerel maksimum veyerel minimum degerlerini tartısınız. Bu bilgileri kullanarak egriningrafigini ciziniz.

Cozum.

f(x) = x4 − 4x3 ise

f ′(x) = 4x3 − 12x2 = 4x2(x− 3)

f ′′(x) = 12x2 − 24x = 12x(x− 2)

olur. Kritik noktaları bulmak icin f ’nin turevini sıfıra esitlersek

f ′(x) = 4x3 − 12x2 = 4x2(x− 3) = 0

x = 0 ve x = 3 buluruz.

Page 20: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

Ikinci turev testini kullanmak icin kritik sayılarda

f ′′(0) = 0 f ′′(3) = 36 > 0

f ′′(3) = 0 ve f ′′(3) > 0 oldugundan ikinci turev testi 0 kritik noktasıhakkında bilgi vermez, f(3) = −27 yerel minimum degeridir.Fakat, x < 0 ve 0 < x < 3 icin f ′(x) negatif oldugundan birinci turevtesti bize f ’nin 0’da bir yerel maksimumu ya da yerel minimumuolmadıgını soyler.

Page 21: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

Ikinci turevin koklerini

f ′′(x) = 12x(x− 2) = 0 ⇒ x = 0 ve x = 2

olarak buluruz.

x

x − 2

x

f ′′(x)

0 2

− − 0 +

− 0 + +

+ − +

(0, 0) noktasında bukeylik dısbukeylikten icbukeylige degistigi icin bukumnoktasıdır.

Page 22: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

To find the critical numbers we set and obtain and . To usethe Second Derivative Test we evaluate at these critical numbers:

Since and , is a local minimum. Since ,the Second Derivative Test gives no information about the critical number 0. Butsince for and also for , the First Derivative Test tells usthat does not have a local maximum or minimum at 0. [In fact, the expression for

shows that f decreases to the left of 3 and increases to the right of 3.]Since when or , we divide the real line into intervals with these

numbers as endpoints and complete the following chart.

The point is an inflection point since the curve changes from concaveupward to concave downward there. Also is an inflection point since thecurve changes from concave downward to concave upward there.

Using the local minimum, the intervals of concavity, and the inflection points, wesketch the curve in Figure 7.

NOTE � The Second Derivative Test is inconclusive when . In other words,at such a point there might be a maximum, there might be a minimum, or there mightbe neither (as in Example 4). This test also fails when does not exist. In suchcases the First Derivative Test must be used. In fact, even when both tests apply, theFirst Derivative Test is often the easier one to use.

EXAMPLE 5 Sketch the graph of the function .

SOLUTION Calculation of the first two derivatives gives

Since when and does not exist when or , thecritical numbers are , and .

To find the local extreme values we use the First Derivative Test. Since changes from negative to positive at 0, is a local minimum. Since changes from positive to negative at 4, is a local maximum. The sign of

does not change at 6, so there is no minimum or maximum there. (The SecondDerivative Test could be used at 4 but not at 0 or 6 since does not exist there.)f �f

f �4� � 25�3f f �0� � 0

f

60, 4x � 6x � 0f �x�x � 4f �x� � 0

f ��x� ��8

x 4�3�6 � x�5�3f �x� �4 � x

x 1�3�6 � x�2�3

f �x� � x 2�3�6 � x�1�3

f ��c�

f ��c� � 0

�2, �16��0, 0�

2x � 0f ��x� � 0f �x�

f0 � x � 3x � 0f �x� � 0

f ��0� � 0f �3� � �27f ��3� � 0f �3� � 0

f ��3� � 36 � 0f ��0� � 0

f �x � 3x � 0f �x� � 0

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 285

Interval Concavity

(�, 0) � upward(0, 2) � downward(2, ) � upward

f ��x� � 12x�x � 2�

FIGURE 7

x

y

2 3

(2, _16)

(3, _27)

y=x$-4˛

inflectionpoints

(0, 0)

Interval f

� � � � decreasing on (�, 0)� � � � increasing on (0, 4)� � � � decreasing on (4, 6)� � � � decreasing on (6, ) x � 6

4 � x � 6 0 � x � 4

x � 0

f �x��6 � x�2�3x 1�34 � x

� Use the differentiation rules to checkthese calculations.

Page 23: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Ornek 8f(x) = x2/3(6− x)1/3 fonksiyonunun grafigini ciziniz.

Cozum.

Fonksiyonun birinci ve ikinci turevleri

f ′(x) =4− x

x1/3(6− x)2/3f ′′(x) =

−8

x4/3(6− x)5/3

seklindedir. x = 4 icin f ′(x) = 0 olup x = 0 veya x = 6 icin f ′(x)tanımlı olmadıgından 0, 4, 6 noktaları kritik noktalardır.

Page 24: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

Yerel uc degerlerini bulmak icin birinci turev testini kullanırız.

x

4 − x

x1/3

(6 − x)2/3

f ′(x)

0 4 6

+ + 0 − −

− + + +

+ + + +

− + − −

Page 25: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

f ′ turevi 0’da negatiften pozitife degistiginden f(0) = 0 yerel birminimumdur.f ′ turevi 4’te pozitiften negatife degistiginden f(4) = 25/3 bir yerelmaksimumdur.f ′ nun isareti x = 6’da degismediginden bu noktada maksimum ya daminimum yoktur.

f ′′(x) =−8

x4/3(6− x)5/3

Ikinci turev testi, 4’te kullanılabilir fakat 0 ve 6’da f ′′ tanımlıolmadıgından kullanılamaz.

Page 26: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

f ′′(x)’in ifadesine bakılırsa

x

x4/3

(6 − x)5/3

−8

x4/3(6− x)5/3

0 6

+ + +

− + −

− − +

(−∞, 0)icbukey

(0, 6)icbukey

(6,∞)dısbukey

(6, 0) noktasının tek bukum noktası oldugu gorulur.

Page 27: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

Looking at the expression for and noting that for all , we havefor and for and for . So is concave

downward on and and concave upward on , and the only inflec-tion point is . The graph is sketched in Figure 8. Note that the curve has verti-cal tangents at and because as and as .

EXAMPLE 6 Use the first and second derivatives of , together with asymp-totes, to sketch its graph.

SOLUTION Notice that the domain of is , so we check for vertical asymp-totes by computing the left and right limits as . As , we know that

, so

and this shows that is a vertical asymptote. As , we have , so

As , we have and so

This shows that is a horizontal asymptote.Now let’s compute the derivative. The Chain Rule gives

Since and for all , we have for all . Thus, isdecreasing on and on . There is no critical number, so the function hasno local maximum or minimum. The second derivative is

Since and , we have when and when . So the curve is concave downward on and concave upward on and on . The inflection point is .(�1

2, e�2)�0, �(�12, 0)

(�, �12 )x � �

12

f ��x� � 0�x � 0�x � �12f ��x� � 0x 4 � 0e 1�x � 0

f ��x� � �x 2e 1�x��1�x 2 � � e 1�x�2x�

x 4 �e 1�x�2x � 1�

x 4

�0, ���, 0�fx � 0f �x� � 0x � 0x 2 � 0e 1�x � 0

f �x� � �e 1�x

x 2

y � 1

limx l �

e 1�x � e 0 � 1

1�x l 0x l �

limx l 0�

e 1�x � limt l �

e t � 0

t � 1�x l �x l 0�x � 0

limx l 0�

e 1�x � limt l

e t �

t � 1�x l x l 0�x l 0

�x x � 0 f

f �x� � e 1�x

FIGURE 8

y

x0

2

3

4

1 2 3 4 5 7

(4, 2%?# )

y=x@ ?#(6-x)! ?#

x l 6x l 0 f �x� l �6, 0��0, 0��6, 0�

�6, ��0, 6���, 0�fx � 6f ��x� � 00 � x � 6x � 0f ��x� � 0xx 4�3 � 0f ��x�

286 � CHAPTER 4 APPLICATIONS OF DIFFERENTIATION

In Module 4.3 you can practiceusing information about , ,

and asymptotes to determine the shape ofthe graph of .f

f �f

� Try reproducing the graph in Figure 8with a graphing calculator or computer.Some machines produce the completegraph, some produce only the portion tothe right of the -axis, and some produceonly the portion between and

. For an explanation and cure, seeExample 7 in Section 1.4. An equivalentexpression that gives the correct graph is

y � �x 2 �1�3 �6 � x

6 � x 6 � x 1�3

x � 6x � 0

y

Egrinin (0, 0) ve (6, 0)’da dusey tegetleri vardır. Cunku x→ 0 ve x→ 6iken |f ′(x)| → ∞ olur.

Page 28: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Ornek 9f(x) = e1/x fonksiyonunun asimptotlarla birlikte birinci ve ikinciturevlerini kullanarak grafigini ciziniz.

Cozum.

f ’nin tanım kumesi {x | x 6= 0} kumesidir. Dolayısıyla, x→ 0 iken f ’ninsagdan ve soldan limitlerini hesaplayarak dusey asimptotlarını kontroledebiliriz.x→ 0+ iken t = 1

x →∞ oldugunu biliyoruz. Buradan,

limx→0+

e1/x =∞

olur. x→ 0− iken 1/x→ −∞ oldugunu biliyoruz. Buradan,

limx→0−

e1/x = 0

olur.

Page 29: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

To sketch the graph of we first draw the horizontal asymptote (as adashed line), together with the parts of the curve near the asymptotes in a prelimi-nary sketch [Figure 9(a)]. These parts reflect the information concerning limits andthe fact that is decreasing on both and . Notice that we have indi-cated that as even though does not exist. In Figure 9(b) wefinish the sketch by incorporating the information concerning concavity and theinflection point. In Figure 9(c) we check our work with a graphing device.

EXAMPLE 7 A population of honeybees raised in an apiary started with 50 bees attime and was modeled by the function

where is the time in weeks, . Use a graph to estimate the time at whichthe bee population was growing fastest. Then use derivatives to give a more accurateestimate.

SOLUTION The population grows fastest when the population curve has thesteepest tangent line. From the graph of in Figure 10, we estimate that the steepesttangent occurs when , so the bee population was growing most rapidly afterabout 12 weeks.

For a better estimate we calculate the derivative , which is the rate ofincrease of the bee population:

We graph in Figure 11 and observe that has its maximum value when .To get a still better estimate we note that has its maximum value when

changes from increasing to decreasing. This happens when changes from concaveupward to concave downward, so we ask a CAS to compute the second derivative:

We could plot this function to see where it changes from positive to negative, butinstead let’s have the CAS solve the equation . It gives the answer

.t � 12.3318P��t� � 0

P ��t� �119555093144e�1.1864t

�1 � 1503e�0.5932t�3 �39772153e�0.5932t

�1 � 1503e�0.5932t�2

ff f

t � 12.3PP

P�t� � �67,046,785.92e�0.5932t

�1 � 1503e�0.5932t�2

P�t�

t � 12P

y � P�t�

0 � t � 25t

P�t� �75,200

1 � 1503e�0.5932t

t � 0

(a) Preliminary sketch (b) Finished sketch

FIGURE 9

(c) Computer confirmation

4

0_3 3x0

y

y=1

y=‰

inflectionpoint

x0

y

y=1

f �0�x l 0�f �x� l 0�0, ���, 0�f

y � 1f

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 287

80000

0 25

P

FIGURE 10

12000

0 25

FIGURE 11

Page 30: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

x→ ±∞ iken 1x → 0 ve

limx→∓∞

e1/x = e0 = 1

olur. Yani, y = 1 yatay asimptottur.

Page 31: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

To sketch the graph of we first draw the horizontal asymptote (as adashed line), together with the parts of the curve near the asymptotes in a prelimi-nary sketch [Figure 9(a)]. These parts reflect the information concerning limits andthe fact that is decreasing on both and . Notice that we have indi-cated that as even though does not exist. In Figure 9(b) wefinish the sketch by incorporating the information concerning concavity and theinflection point. In Figure 9(c) we check our work with a graphing device.

EXAMPLE 7 A population of honeybees raised in an apiary started with 50 bees attime and was modeled by the function

where is the time in weeks, . Use a graph to estimate the time at whichthe bee population was growing fastest. Then use derivatives to give a more accurateestimate.

SOLUTION The population grows fastest when the population curve has thesteepest tangent line. From the graph of in Figure 10, we estimate that the steepesttangent occurs when , so the bee population was growing most rapidly afterabout 12 weeks.

For a better estimate we calculate the derivative , which is the rate ofincrease of the bee population:

We graph in Figure 11 and observe that has its maximum value when .To get a still better estimate we note that has its maximum value when

changes from increasing to decreasing. This happens when changes from concaveupward to concave downward, so we ask a CAS to compute the second derivative:

We could plot this function to see where it changes from positive to negative, butinstead let’s have the CAS solve the equation . It gives the answer

.t � 12.3318P��t� � 0

P ��t� �119555093144e�1.1864t

�1 � 1503e�0.5932t�3 �39772153e�0.5932t

�1 � 1503e�0.5932t�2

ff f

t � 12.3PP

P�t� � �67,046,785.92e�0.5932t

�1 � 1503e�0.5932t�2

P�t�

t � 12P

y � P�t�

0 � t � 25t

P�t� �75,200

1 � 1503e�0.5932t

t � 0

(a) Preliminary sketch (b) Finished sketch

FIGURE 9

(c) Computer confirmation

4

0_3 3x0

y

y=1

y=‰

inflectionpoint

x0

y

y=1

f �0�x l 0�f �x� l 0�0, ���, 0�f

y � 1f

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 287

80000

0 25

P

FIGURE 10

12000

0 25

FIGURE 11

Page 32: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

Simdi f ’nin birinci ve ikinci turevlerini hesaplayalım. Zincir kuralı ile

f ′(x) = −e1/x

x2

hesaplanır.Her x 6= 0 icin x2 > 0 ve e1/x > 0 oldugundan her x 6= 0 icinf ′(x) < 0’dır.Dolayısıyla, f fonksiyonu (−∞, 0) ve (0,∞) aralıklarında azalandır.Kritik nokta olmadıgından f ’nin yerel maksimumu ve yerel minimumuyoktur.

Page 33: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

Ikinci turev

f ′′(x) = −x2e1/x(−1/x2)− e1/x(2x)

x4=e1/x(2x+ 1)

x4

olarak hesaplanır. e1/x > 0 ve x4 > 0 oldugundan

x > −1

2(x 6= 0) iken f ′′(x) > 0

ve

x < −1

2iken f ′′(x) < 0

olur.Boylece, egri (−∞,−1/2) aralıgında icbukey (−1/2, 0) ve (0,∞)aralıklarında dısbukeydir. (−1/2, e−2) bukum noktasıdır.

Page 34: Turevler ve Bir E grinin Bi˘cimi Artan ve Azalan ...kisi.deu.edu.tr/kaan.gurbuzer/matematik1009/turevveegri.pdf · The function is said to be increasing on the interval , decreasing

Turevler ve Bir Egrinin Bicimi Bukeylik

Cozum (devamı).

To sketch the graph of we first draw the horizontal asymptote (as adashed line), together with the parts of the curve near the asymptotes in a prelimi-nary sketch [Figure 9(a)]. These parts reflect the information concerning limits andthe fact that is decreasing on both and . Notice that we have indi-cated that as even though does not exist. In Figure 9(b) wefinish the sketch by incorporating the information concerning concavity and theinflection point. In Figure 9(c) we check our work with a graphing device.

EXAMPLE 7 A population of honeybees raised in an apiary started with 50 bees attime and was modeled by the function

where is the time in weeks, . Use a graph to estimate the time at whichthe bee population was growing fastest. Then use derivatives to give a more accurateestimate.

SOLUTION The population grows fastest when the population curve has thesteepest tangent line. From the graph of in Figure 10, we estimate that the steepesttangent occurs when , so the bee population was growing most rapidly afterabout 12 weeks.

For a better estimate we calculate the derivative , which is the rate ofincrease of the bee population:

We graph in Figure 11 and observe that has its maximum value when .To get a still better estimate we note that has its maximum value when

changes from increasing to decreasing. This happens when changes from concaveupward to concave downward, so we ask a CAS to compute the second derivative:

We could plot this function to see where it changes from positive to negative, butinstead let’s have the CAS solve the equation . It gives the answer

.t � 12.3318P��t� � 0

P ��t� �119555093144e�1.1864t

�1 � 1503e�0.5932t�3 �39772153e�0.5932t

�1 � 1503e�0.5932t�2

ff f

t � 12.3PP

P�t� � �67,046,785.92e�0.5932t

�1 � 1503e�0.5932t�2

P�t�

t � 12P

y � P�t�

0 � t � 25t

P�t� �75,200

1 � 1503e�0.5932t

t � 0

(a) Preliminary sketch (b) Finished sketch

FIGURE 9

(c) Computer confirmation

4

0_3 3x0

y

y=1

y=‰

inflectionpoint

x0

y

y=1

f �0�x l 0�f �x� l 0�0, ���, 0�f

y � 1f

SECTION 4.3 DERIVATIVES AND THE SHAPES OF CURVES � 287

80000

0 25

P

FIGURE 10

12000

0 25

FIGURE 11