Tumour Photosensitizers Approaches to Enhance the Selectivity

download Tumour Photosensitizers Approaches to Enhance the Selectivity

of 7

Transcript of Tumour Photosensitizers Approaches to Enhance the Selectivity

  • 8/10/2019 Tumour Photosensitizers Approaches to Enhance the Selectivity

    1/7

    ~ e f

    AND

    ~ f J G Y

    E L S E V I E R Journal of Photochemistryand PhotobiologyB: Biology36 (1996) 87-93

    Tum our photosensit izers approaches to enhance the selec t iv i ty and

    efficiency of photodynam ic therapy

    G i u l i o J o r i

    Department o f Biology, University of Pa dova, via Trieste 75. 35121 P adova. Italy

    Abs t r ac t

    While Photofrin, the photosensitizer currently in clinical use for photndynaraic therapy (P DT ) of tumours, has been show n to be both

    efficacious and safe in the treatm ent of a variety of huma n ~:ancers, ts chem ical heterogeneity and low absorbance in the phototherape utically

    useful wavelt:ngth range (600-850 nm) make the developlrtent of new pho tosensitizers with improve d characteristics desirable. A suitable

    manipulation of the molecular structure of porphyrins offers several interesting possibilities for controlling the optical and photophysical

    properties of the photosensitizer, as well as its bindistribution between tumour and pe ri tu ~ ra l tissues or at the subtissular and subcellular

    level. The achievem ent of these goals m ay also be facilitated by the association of the photoseasitizer w ith selected delivery systems, opening

    the way to a qualitative and quantitative improvement of PD T.

    Keywords: Tumourphotosensitizers;Photofrin

    1 I n t r o d u c t i o n

    The r ecen t r egu la to ry app rova l o f Pho to f r in as a tumour -

    pho to sens i t i z ing agen t fo r the pho todynam ic therapy (PD T)

    o f lung , oesophagea l and b ladder cancer opens new cha l -

    lenges to bo th c l in ic ians and bas ic inves t iga to r s s ince t ime

    now seems r ipe fo r a qua l i t a t ive improvemen t o f the tech -

    n ique a long d i f f e r en t gu ide l ines , such as : ( a ) def in i t ion o f

    PD T p ro toco ls w h ich y ie ld op t imal r esu l t s w i th sp ec i f ic turn-

    ou r types ( e .g . tu rnou ts a t d i f f e r en t ana tomica l s i t es , o r hav -

    ing d i f f e r en t th ickness , h i s to log ica l f ea tu res , deg ree o f

    vascu la r iza t ion , e tc . ) and assessme n t o f the po ten t ia l o f PDT

    to com pete w i th ex is t ing therap ies fo r the same tumour s ; ( b )

    e n h a n c e m e n t o f t h e e f f i c a c y o f P D T ( e . g . i n c r e as e d s e l e ct i v -

    i ty o f tumour ta rge t ing p oss ib ly th rough con juga t ion o f the

    pho to sens i t i ze r to tumour - spec i f ic de l ivery sy s tems ; in t r a -

    opera to r ia l app l ica t ion o f PDT fo r the s te r i l i za t ion o f the

    tumour bed a f te r su rg ica l r esec t ion ) ; and ( c ) expans ion o f

    the scope o f PD T to t r ea t cond i t ions o ther t it an m al ignanc ies ,

    inc lud ing a theromas , r es tenos is o f a r te r ies a f te r ang iop las ty ,

    pso r ias i s and sex ua l ly t r an smi t ted d i seases , v i r a l o r microb ia l

    in f ec t ions and b loo d bank ing [ 1 ] .

    Mo s t p r e - c l in ica l and c l in ica l s tud tes have been per fo rme d

    so f a r w i th Pho to f r in I I , a chem ica l ly p r epared der iva t ive o f

    haematopo rphy r in , and an impress ive body o f in fo rmat ion

    has been co l le c ted on the in v i t r o / in v ivo behav iou r o f th i s

    d rug [2 - 4 ] in sp i te o f it s in tr in s ic l imi ta t ions , such as the

    la rge deg ree o f chemica l he te rogene i ty and the low mo lar

    1011-1344/96/$15.00 1996 Else vierScienceS.A. All ngMs reserved

    P i l S I O I I - 1344 (96 )0735 2 -6

    ex t inc t ion coef f ic ien t in the r ed spec t r a l r eg ion [5 ] . T hese

    da ta were u sed as a bas i s to deve lop and tes t a l a rge number

    o f second genera t ion tum our - loca l ize r s and -pho to sens i t i ze r s ,

    f rom wh ich a hand fu l o f pho to therapeu t ic agen ts has been

    se lec ted ~ ,d p r esen t ly a r e in phase I / I I c l in ica l t r i a l s ( see

    Tab le 1 ) . Un l ike Pho to f r in , a l l newly proposed PDT agen ts

    a r e charac te r ized by a h igh deg ree o f chemica l pu r i ty and a

    h i g h m o l a r e x t i n c ti o n c o e f f i c i e n t a t t h e a b s o r p t i o n m a x i m u m

    in the r ed spec t r a l r eg ion , wh ich i s l a rger by one o r two o ther s

    o f magn i tude than tha t typ ica l o f Pho to f r in a t 630 nm. Th is

    a r t ic le r ev iew s the com mo n f ea tu res and spec i f ic p roper t ies

    o f such pho to sens i t i ze r s in an a t temp t to d r aw som e conc lu -

    s ions of genera l in terest .

    2 . G e n e r a l p r o p e r t i e s o f a p h o t o d y n a m l c t u m o u r

    s e n s i t i z e r

    Some proper t ies wh ich have been iden t i f ied as typ ica l o f

    an e f f ic ien t pho todynamic tu rnou t sens i t i ze r a r e l i s ted in

    Tab le 2 . Such proper t ies can be opera t iona l ly subd iv ided in to

    pbys ico -cbem ica l , pho tophys ica l , pharm aco log ica l and pho -

    to therapeu t ic . I t i s obv ious f rom Ta b le 2 tha t the success o f

    a PD T t r ea tmen t r equ i r es an op t im al in te rp lay am ong a num-

    ber o f severa l d i f f e r en t pa ramete r s and none o f the p r esen t ly

    ava i lab le tumour pho to sens i t i ze r s mee ts a l l r equ i r emen ts to

    a sa t i s f ac tory ex ten t . How ever , po rphy r in s and th e i r ana logs

    (ch lo r in s , ph tha locyan ines , naph tha locvan ines , po rphyce-

    nes ) a r e endowed w i th two f av 'mrab le tea tu res :

  • 8/10/2019 Tumour Photosensitizers Approaches to Enhance the Selectivity

    2/7

    ~8 G. Jor i /Jo urn al o f Photochemis try and Photobio logy B: Bio logy 36 (1996) 87- 93

    "' able I

    "l'amourphotosensitizerspresently used in clinical rials for PDT of tumoars

    '1 oto~ nsitiz er Remarks Absorption maximum Molar Reference

    in the red absorptivity ~

    n m ) M -

    Is cm-~)

    Phot. )frin contains main lycovalentHp oligomers,plu s 630 3 200 ~' [41

    Hp, Pp and HVD

    Benz~,,~orphyrinderivativ e requires lipid-baseddelivery ystems 690 43 000 [6]

    Mono.~spartyl-chlorine6 fast clearanc e rom umo ur/skin 675 47 000 17]

    m-Tetrahydroxypbenyl-chlorin to be administered n alkaline solutionsor 35 000 [ 8]

    water/DMSO mixtures

    $n ( IV -etioparpurin requires lipid-baseddelivery ystems 660 28 000 [9 ]

    Zn( il)-phthalocya nine requires lipid-baseddelive ry ystems 675 243 000 {10]

    Hp = haematoporphyrin; Pp = pm toporphyrin; HVD = hydroxyethyl-vinyl-deatemporphyrin

    a Da ta for n,,onomericcompounds, with he exceptionof Photofrin

    t, App roximatevaluedue to inhomogeneityof the preparalion and scarse reproducibilityof monomer.oligomer quilibria

    1 . The po ;s ib i l i ty to m od i fy the chem ica l s t ruc tu re a t d i f -

    f e r en t loc i and w i th var ious leve ls o f complex i ty , inc lud ing

    the s ize ~ f the ma crocyc le and the ex tens ion o f the a romat ic

    e lec t ron c loud , the coo rd ina t ion o f meta l ions w i th the fou r

    central n i trogen ,~toms, and the nature of the per ipheral sub-

    s t i tuen ts and /o r , ax ia l i igands ( see F ig . 1 ) . Th is a l lows a

    r emarkab le f lex ib i l i ty in the des ign o f the pho to sens i t i z ing

    agen t , so tha t d if fe r< .;nt l eve ls o f hyd ro - / l ip o -ph i l ic i ty , t en -

    dency to unde rgo agg rega t ion , sub t i s su la r o r subce l lu la r d i s -

    t r ibu tion , spec t ro scop k ' and pho toph ys ica l p roper t ies can be

    impar ted to the pho to se l : s i t i ze r mo lecu le [ I 1 ] .

    Thus , the in se r t ion o f two p o la r subs ti tuen ts ( e .g . ca rbox -

    y la te , su lphona te o r hyd roxy l g roup s ) on two ad jacen t r ings

    o f t h e m a c r o c y c l e a n d t h e c o n s e q u e n t p r e s e n c e o f a h y d r o -

    p h o b i c m a t r i x o n t h e o p p o s i t ~ s i d e o f t h e m o l e c u l e ( t w o

    unsubs t i tu ted r ings ) makes the pho to sens i t i ze r an amph i -

    ph i l ic spe c ies ; in th i s way , the po rphy r in a ch ieves a su f fic ien t

    wate r - so lub i l i ty , to a l low i t s sy s temic in jec t ion in v ivo , wh i le

    i t r e ta in s a h igh tendency to c ro ss the l ip id bar r ie r o f the

    c y t o p l a s m i c m e m b r a n e o f t u m o u r c e l l s a n d l o c a l i z e a t e n d o-

    ce l lu la r s i t es [ 12 ] . I n par t icu la r , a p r e le r en t ia l t a rge t ing o f

    ly sosom es has been propose d to occu r [ 13 ] fo r amph iph i l ie

    d isu lphona ted ph tha iocyan ines . Even in the case o f deep ly

    hyd roph ob ic p o rphy r ino id s , such as those ha 'Ang one o r no

    po la r subs t i tuen ts , sy s tem ic in jec t ion in to the b loods t r eam i s

    poss ib le , p rov ided the pho to sens i t i ze r s a r e p r e - il , co rpo ra ted

    in to su itab le de l ivery sy s tems (Ta b le 3 ) .

    A t the sam e t ime , the p r esence o f e lec t r ica l ly charged func-

    t iona l g roups p ro t rud ing f rom the p y r ro le r ings o r bulk) " ax ia l

    i igands perp end icu la r to the p lane o f the po rphy r in mo le~.ule

    genera tes e lec t ro s ta t ic r epu ls ion and s te r ic h ind rance , the reby

    preven t ing the fo rm at ion o f agg rega tes [ 17 ] wh ich w ou ld

    d ras t ica l ly inh ib i t the pho to sens i t i z ing ac t iv i ty [18 ,19 ] .

    A c t u a l l y , a l t ho u g h t h e o l i g o m e r i c c o m p o n e n t s o f P h o t o fr i n

    are known to g ive the main con t r ibu t ion to the tumour - loca i -

    iz ing proper t ies , i t is now genera l ly accep ted tha t on ly mon-

    omer ic po rphy r ino id s ac t as e f f ic ien t pho to sens i t i ze r s o f

    b io log ica l sy s tem s , espe c ia l ly in d i f fu s ion -con t ro l led pho to -

    processes [20 ] .

    Typica l ly , in neu t ra l aqueo us so lu t ions a t 10 p ,M conc en -

    t r a t ions , on ly abou t 50% o f d ica rboxy l ic haematopo rphy r in

    and deu te ropo rphy r in ex is t in a monomer ic s ta te , compared

    wi th 100% m onom er iza t ion fo r the oc tad icarboxy l ic u ropo r -

    p h y r in [ 1 7 ] . S i m i l a rl y , A l ( I I I ) - p h t h a l o c y a n i n e s s h o w a

    much smal le r t endency to agg rega te than the co r r espond ing

    Z n ( I I ) - d e r i v a t i v e s o w i n g t o t h e p r e s e n c e o f a n a d d i t i o n a l

    o r thogona l l igand ( e .g . ch lo r ine) fo r the AI ion [21 ] . An

    ana logous inh ib i t ion o f agg rega t ion was ob ta ined by fu s ion

    o f ou t -o f -p lane cyc l ic hyd rocarbon s t ruc tu res w i th the i so in -

    do le r ings , o f ph tha locyan ine , such as in Zn ( I I ) - te t r ab enz o -

    d ibar r e leno -oc tabu toxy -ph tha locyan ine [ 22 ] .

    2 . The pr esence o f ab so rp t ion bands in the 600 -850 nm

    wavelen g th reg ion , co r r esponds w i th ma x im al l igh t pene t r a -

    t ion in to mam mal ian t i s sues [23 ] . F o r ligh t ly p igm en ted

    tumour s the t r an smiss ion o f inc iden t l igh t inc reases up to

    a b o u t 7 0 0 n m , w h i l e i n t h e p r e s e n c e o f a n e x t e n s i v e p i g m e n -

    t a ti o n ( s u c h a s i n m e l a n o t ic m e l a n o m a ) o n l y a t w a v e l e n g th s

    longer than 780 nm i s some t i s su la r t r an sparency i s observed

    [ 23 ] : a s a consequen ce , p igm en ted me lanom a i s in sens i t ive

    to PDT wi th Pho to f r in and undergoes an impor tan t pho to -

    damage on ly in the p r esence o f naph tha locyan ines wh ich

    d i s p l a y a n in t e n se a b s o rb a n c e ( E a b o u t 5 0 0 0 0 0 M - ~ c m - ~ )

    a t 780 nm, thereby e f f ic ien t ly compet ing wi th melan in fo r

    l igh t ab so rp t ion [24 ] .

    In genera l , the u se o f pho to sens i t i ze rs w i th a h igh ex t inc-

    t ion coef f ic ien t o f f e r s the p oss ib i l i ty to in jec t sm al le r d rug

    doses , wh ich g ives fu r ther advan tages over Pho to f r in and

    o ther haematopo rphy r in - r e la ted po rphy r in s wh ich exh ib i t a

    w e a k a b s o r b a nc e a b o v e 6 0 0 n m ( T a b l e 1 ) . A n i n g e n i ou s

    man ipu la t ion o f the chemica l s t ruc tu re o f the pho to sens i t i ze r

    o f ten a l lows one to enhance the mo lar ab so rp t iv i ty , as wel l

    as to sh i ft the abso rp t ion bands in o rder to ob ta in an op t im al

    match ing to the op t ica l charac te r i s ti cs o f any g iven tumour .

    Typica l examp les a r e summ ar ized in Tab le 4 . C lear ly , the

    a , ld i t ion o f one o r two benzene mo ie t ies to each py r ro le o r

    the in se r tion o f add it iona l doub le bonds in to the 18 z - e lec t ro n

    c loud o f the po rphy r in m acroc yc le r esu l ts in a r ed sh i f t o f the

    a b s o ~ t i o n m a x i m u m a n d h y p e r c h ro m i c i t y . A " f i n e t u n i n g "

  • 8/10/2019 Tumour Photosensitizers Approaches to Enhance the Selectivity

    3/7

    G. Jori /Journal of Phowchemistry and Photobiology B: Biology 36 1996) 87-93

    Table 2

    Main features of an efficient photodynamic agent for tun,ours

    Property Related structural and biological features

    Physico-chemical

    High chemical purity

    Large mo lar extinction coefficient in the red

    Low tendency to aggregation in an aqueous m ilieu

    Photophysical

    Long triplet lifetime

    High yield of nO2 generation an d/or electron transfer to substrate molecules

    Pharmacological

    Efficient and selective targeting of the tumou r tissue

    Fast clearance from serum and healthy tissues

    Low system ic toxicity

    Phototherapeutic

    Efficient and preferential killing of m alignant cells

    Lack o f side effects

    Lack of mutagenic potential

    Purification may be especially laborious in the p resence of two or more

    peripheral substituents and/or chiral centers

    Extensive conjug ation of 'x electrons alon g the n~.acrocycle

    Presence of electrically charged perip heral substituents or bulky axial

    ligands to the central metal ion

    Extensive monomerization ( favoured by distribution in apolar regioos of

    membranous systems )

    Easy accessibility by m olecular oxygen or close p roximity to substrates with

    suitable redox potential

    Hydmphobic or amphiphilic properties; association with suitable delivery

    systems

    High affinity for serum proteios responsible for transport of dyes from

    peripheral tissues to liver

    Lethal dost: (LD-50) higher than ca. 300 mg k g- t body weight

    Large concentration difference between tumourlpentumoural tissues and/o r

    fast healing of any p butodemag~l healthy tissue

    Minimal accumulation in skin to avoid cutaneous p hotosensitivity

    No photoeffect on D NA

    o f t h e a b s o r p t i o n p r o p e r t i e s c a n b e a l s o a c h i e v e d : t h u s , p a r t i al

    h y d r o g e n a t i o n o f o n e o r t w o p y r r o l e r i n g s c o n v e r ts p o r p h i n e s

    t o c h l o r i n s a n d , r e s p e c t i v e l y , b a c t e r i o c h i o r i n s w i t h a s i m u l -

    t a n e o u s b a t h o c .h r o m i c s h i f t o f 5 0 - 1 5 0 n m [ 2 6 ] ; h o w e v e r , t h e

    i n t r o d u c t i o n o f e i g h t a l k o x y s u b s t i t u e n t s i n t h e / 3 p o s i t i o n o f

    t h e p h e n y l r i n g o f t h e p h t h a l o c y a n i n e i s o i n d o l e s , a s w e l l a s

    t h e r e p l a c e m e n t o f t h e ce n t r a l G e ( I V ) i o n by P d ( l I ) , a l l o w s

    o n e t o s h i f t t h e a b s o r p t i o n b a n d t o s e le c t e d w a v e l e n g t h s i n

    t h e 7 0 0 - 8 0 0 n m i n t e r va l [ 2 7 ] .

    I n a n y c a s e , n o a p p r e c i a b l e c y t o t o x i c i t y i s s h o w n b y t h e

    p h o t o s e n s i t i z e r o r l i g h t a l o n e , a t l e a s t a t t h e p h o t o t h e r a p e u b

    i c a l l y a c t i v e d r u g d o s e s a n d f l u e n c e r a t e s : o n l y t h e c o m b i -

    n a t i o n o f t h e t w o a g e n t s c a u s e s t u m o u r d a m a g e [ 2 , 2 5 ] .

    A c t u a l l y , L D - 5 0 v a l u e s f o r m o s t p o r p h y r i n o i d s r a n g e

    b e t w e e n 2 0 0 - 5 0 0 m g k g - t b o d y w e i g h t a s c o m p a r e d w i t h

    i n j e c te d d o s e s l o w e r t h a n 5 , an d s o m e t i m e s I m g k g - t w h i c h

    a r e r e c o m m e n d e d i n c u r r e n t P D T p r o t o c o ls . M o r e o v e r , n o

    f u n c t i o n a l o r m o r p h o l o g i c a l a l t e ra t i o n s h a v e b e e n f o u n d i n

    p o r p h y r i n - l o a d e d t i ss u e s [ 2 8 ] ; o n e p o s s i b le e x c e p t i o n i s

    r e p r e s e n t e d b y m e s o - t e t r a ( 4 - s u l p h o n a t o p h e n y l ) p o r p h i n e

    ( T P P S 4 ) , f o r w h i c h k i d n e y a n d n e u r a l t o x i c i t y h a s b e e n

    c l a i m e d [ 2 9 ] . A t t h e s a m e t i m e , i r r a d i a t i o n o f t i s s u e s w i t h

    l i g h t w a v e l e n g t h s l o n g e r t h a n 6 0 0 n m c a u s e s n o d e t e c ta b l e

    e f f e c t s , p r o v i d e d t h e f l u e n c e r a t e i s k e p t b e l o w a b o u t

    1 5 0 m W c m - 2 i n o r d e r t o a v o i d h e a t d e p o s it i o n i n t h e t i s su e

    a n d t h e c o n s e q u e n t o n s e t o f t h e r m a l d a m a g e .

    I n t h e n e x t p a r a g r a p h s t h e p h a r m a c o k i n c t i c a n d p h o t o -

    b i o l o g i c al p a r a m e t e r s w h i c h c o n t r o l t h e e f fi c a cy o f t h e P D T

    t r e a t m e n t w i l l b e d i s c u s s e d .

    3 , S e l e ct i v it y o f P D T a c t i o n o n t h e t u m o u r t i s s u e

    T h e e s s e n t ia l g o a l o f P D T i s to i n d u c e a n e f f i c i en t p h o t o -

    s e n s i ti z e d n e c r o s i s o f t h e t u m o u r m a s s w h i l e m i n i m i z i n g t h e

    d a m a g e o f t h e p e r i t u m o u r a l t i s s ue s .

    A f i rs t c r i t e r i o n t o a s s e s s t h e p o t e n t i a l s e l e c t i v i t y o f P D T

    t r e a t m e n t i s t h e r a ti o b e t w e e n t h e p h o t o s e n s i t i z e r c o n c e n t ra -

    t i o n i n t h e t u r n o u t a n d t h e t i s s u e f r o m w h i c h t h e t u r n o u t

    o r i g i n a t e s o r i n t o w h i c h t h e t u m o u r g r o w s . T h i s r a t i o i s h a r d l y

    p r e d i c t ab l e s i n c e t h e d e t e r m i n a n t s o f p o r p h y r i n u p t a k e a n d

    c l e a r a n c e b y t u r n o u t s a r e p o o r l y u n d e r s t o o d a n d i t i s l i k e l y

    t h a t t h e o v e r a l l p r o c e s s i s t h e r e s u l t a n t o f v a r i o u s p r o p e r t i e s

    t y p i c a l o f m o s t n e o p l a s t i c t i s s u e s , i n c l u d i n g t h e l e a k y v a s -

    c u l a t u r e , h i g h c e l l p r o l i f e r a t i o n r a t e , l o w e r p H v a l u e , a n d

    i n e f f i c i e n t l y m p h a t i c d r a i n a g e [ 4 ] . F o r P h o t o f r i n , re p o r t e d

    r a t io s v a ry f r o m 1 - 1 . 5 ( s k i n t u r n o u t s ) t o a b o v e 1 0 ( b r a i n

    t u m o u r s , a s o n e w o u l d e x p e c t o w i n g t o t h e i n a b il i t y o f p o r -

    p h y r i n d e r i v a t i v e s t o c r o s s t h e i n t a c t b l o o d - b r a i n b a r r i e r )

    [ 5 , 1 4 ] . I n g e n e r a l , t h e s e l e c t i v i t y o f m m o u r t a r g e t i n g i s

    e n h a n c e d u p o n i n c r e a s i n g t h e d e g r e e o f h y d r o p h o b i c i t y o f

    t h e p h o t o s e n s i t iz e r o r b y i m p a r t i n g a m p h i p h i l i c p r o p e r t i e s t o

    i t s m o l e c u l e [ 1 2 ] . I n o r d e r t o i n d u c e a m o r e s p e c i f i c l o c a l i -

    z a t i o n o f t h e i n j e c t e d p h o t o s e n s i t i z e r i n t h e t u r n o u t t i s s u e ,

    o n e c a n t a k e a d v a n t a g e o f t h e i n t r i n s ic f e a t u r e s o f t h e m a l i g -

    n a n t c e ll s ( T a b l e 5 ) . W h i l e t h e p o t en t i a l o f t h e s e a p p r o a c h e s

    h a s n o t b e e n f u ll y e x p l o it e d , e n c o u r a g i n g r e s u l ts h a v e b e e n

    o b t a i n e d i n s e v e r a l c e ll a n d a n i m a l s t u d i e s [ 1 6 , 3 0 ] , s o t h a t

    f u r t h e r i n v e s t i g a t i o n s a l o n g t h e s e d i r e c t i o n s a r e c e r t a i n l y w a r -

    r a n t e d . I n p a r t i c u l a r, t h e r e a r e i n d i c a t i o n s [ 1 4 - 1 6 ] t h a t t h e

    a s s o c i at i o n o f th e p o r p h y r i n o i d c o m p o u n d s w i t h m o n o c l o n a l

  • 8/10/2019 Tumour Photosensitizers Approaches to Enhance the Selectivity

    4/7

    90 G. Jori /Jo urn al o f Photochemistry and Photokio logy B: Biology 36 (1996) 87- 93

    Porphycene

    Naphthalocyanine

    I-2

    M = m etal ion

    R : p eripheral substttuent

    L : axial hgand

    Fig . I . a ) Basic chemica l s t ructure o f porphyd ns and re la ted compounds

    wi th enhanced ahsorbance a t wave lengths longer than 600 nm. b) Scheme

    of the ~hemical structure o f a me~allo-phthalocyanine ndicating possible

    peripheral substituents (R ) and axial ligands (L) to the metal ion.

    Table 3

    a n t i b o d i es o r L D L m a r k e d l y r e d u c e s t h e s k i n l e v el s c f p h o -

    t o s e n si t iz e r , t h u s p r e v e n t i n g t h e d e v e l o p m e n t o f g e n e r a l i z e d

    c u t a n e o u s p h o t o s e n s i ti v i ty , w h i c h o f t e n r e p r e s e n t s a n u n d e -

    s i r ed s i de e f f ec t o f P D T [ 3 ] .

    H o w e v e r , e v e n f o r r e l a ti v e ly I o w - t u m o u r / h e a l t h y t i ss u e

    r a t io s o f p h o t o s e n s i t iz e r c o n c e n t r a t i o n , t h e s e l e c ti v i t y o f P D T

    a c t i o n c a n s t i l l b e a c h i e v e d p r o v i d e d t h e p e r i t u m o u r a l c o m -

    p a r t m e n t s a r e l e s s r e s p o n s i v e t o r e d l i g h t - i r r a d i a t i o n o r h e a l

    m o r e r a p i d l y f r o m p h o t o d a m a g e a s c o m p a r e d w i t h t u m o u r

    t i s s u e s [ 3 1 ] . A g a i n , n o g e n e r a l p r e d i c t i o n i s p o s s i b l e a t t h e

    p r e s e n t s t a g e o f o u r r e s e a r c h i n t h i s f i e l d , s i n c e t h e p h o t o -

    c h e m i c a l b e h a v i o u r o f a t i s s u e i s s t r i c t l y d e p e n d e n t o n i t s

    b i o c h e m i c a l c o m p o s i t i o n a n d p h y s i o l o g i c a l p r o p e r t i e s [ 3 2 ] ;

    f o r e x a m p l e , s i n c e p h o t o d y n a m i c a c t i o n o c c u r s v i a p h o t o o x -

    i d a t i v e s t e p s , th e l o c a l c o n c e n t r a t i o n o f a n t i o x i d a n t s p l a y s a

    m a j o r r o l e [ 3 , 1 4 ] . I t m u s t b e a l s o e m p h a s i z e d t h a t t h e m a i n

    c e l l u l a r c o n s t i t u e n t s , s u c h a s p r o t e i n s , s a t u r a t e d o r u n s a t u -

    r a t e d l i p i d s , n u c l e i c a c i d s a n d c a r b o h y d r a t e s d i s p l a y a v e r y

    d i f f e r e n t s u s c e p t i b i l i t y t o p h o t o s e n s i t i z e d o x i d a t i o n [ 3 2 ] . A

    v e r y i n t e r e s t in g s t a r t in t h i s d i re c t i o n w a s p e r f o r m e d b y B o w n

    a n d c o w o r k e r s w h o u n d e r t o o k a s y s t e m a t i c s t u d y o n t h e

    r e s p o n s i v e n e s s o f n o r m a l t i s s u e s , s u c h a s l i v e r , p a n c r e a s o r

    c o l o n , to P D T [ 3 1 , 3 3 ] .

    4 E f fi ci en c y o f t h e p h o t o t h e r a p e u t i c tr e a t m e n t

    S e v e r al a u t h o r s i n d e p e n d e n t l y r e p o r t e d [ 3 5 , 3 6 ] t h a t t h e

    e x t e n t o f P D T - i n d u c e d t u m o u r n e c r o s i s i s r e l a t ed t o t h e c o n -

    c e n t r a t i o n o f t h e p h o t o s e n s i t i z e r i n t h e n e o p l a s t i c t i s s u e . O n l y

    f o r re l a ti v e l y h i g h i n t r a t u m o u r a l a c c u m u l a t i o n o f t h e p h o t o -

    s e n s i t i z e r, m a y a d e c r e a s e i n t h e e f f ic i e n c y o f t u m o u r p b o -

    t o r e s p o n s e o c c u r d u e t o t h e l i g h t - f i l t e r i n g a c t i o n e x e r t e d b y

    t h e d y e m o l e c u l e s p r e s e n t i n t h e s u p e r f i c i a l l a y e r s o f t h e

    t i s s u e . I n t h i s c o n n e c t i o n , i t h a s b e e n o b s e r v e d t h a t h y d r o -

    p h o b i c p o r p h y r i n d e r i v a t i v e s a r e a c c u m u l a t e d i n l a r g e r

    a m o u n t s a n d r e t a i n e d f o r lo n g e r p e r i o d s o f t i m e b y a v a r i et y

    o f e x p e r i m e n t a l t u r n o u t s [ 4 , 2 5 ] . A n i m p o r t a n t c o n t r i b u t i o n

    t o t hi s e n h a n c e d u p t a k e c o u l d b e g i v e n b y t h e a s s o c ia t i o n o f

    s u c h p h o t o s e n s i t i z e r s w i t h l i p i d - t y p e d e l i v e r y s y s t e m s

    Delivery systems used for the in vivo administration of tumour photosensitizers (see ref. 14-16 for a more detailed discussion)

    Delivery system Photosensitizer Observed hehaviour of the photosensitizer

    Liposomes made by

    DPPC Hp, ZnPc, SnET2

    DMPC ZnPc, SnET2

    POPC, OOPC ZnPc

    Cremophor EL emulsion SnET2, ZnPc

    LDL Hp, ZnPc, BPD

    Albumin Photofrin

    Epidermal growth factor (EG F) Hp

    Antibodies Hp. chlorin e6, BPD

    Highly preferential delivery to lipopmteins in the serum

    Delivery to both lipopmteins and albumin

    Selective release to lipop roteins

    Preferential delivery to serum LDL as compared to liposome-delivered dyes

    Fast redistribution among all members of the lipoprotein family: targeting of malignant cells

    in the turnout tissue

    Exchange with lipoproteins in serum: large amou nts recovered in the vascular stroma

    Efficient binding to EG F cell receptor

    Highly selective targeting of turnout cells (most enco uraging results in cell cultures )

    Abbreviations: DPPC , dipalmitoyl-phosphatidylcholine, DM PC, dimiristoyl-phosphatidylcholine; POPC, monopalmitoyl-monooleyl-pbosphatidylcholine;

    OOi"S. dioleyl-pho sphatidylserine, LDL, low-density lipoproteins; Hp, haematop orphyrin:ZnPc. Zn(ll)-phthalocyanine; SnET2. Sn(IV)-etiopurporin; BPD.

    benzoporphyrin derivative.

  • 8/10/2019 Tumour Photosensitizers Approaches to Enhance the Selectivity

    5/7

    G. Jori / Journa o f Phowchemistry and Photobiology B: Biology 36 (1996) 87-9 3 91

    Table 4

    Modulation of the absorption propetliesof porp byrinoid compounds hrough a manipulation of the ir chemicalstructu~ (data for nmnomericdyes). See Ref.

    [25] for further details.

    Photosensitizerclass Absorption maximum n the red Extinctioncofficivm

    nm)

    (M - I cm - t )

    Hematoporhyrin ( 18 or) 630 2 800

    26 r - porphyrin 780 0 000

    34 r - porphyrin 760 370 000

    AI( ll)-phthalocyanine 675 228 000

    Si( IV -naphthalocyanine 773 557 000

    THP-porphine 646 4 000

    THP-chiorin 650 22 000

    THP-bactefiechlorin 735 910 00

    Ge ( IV -phthalocyanine 678 205 000

    Ge 1V -octabutoxyp hthalocyanine 761 233 0Q0

    Pd (11) octabutoxyp hthalocyanine 732 51 000

    828 279 000

    THP = meso-tetra-hydroxy-phenyl

    (Tab les 1 and 3 ) an d /o r the i r p r e f e r en tia l tr an spo rt in the

    b loods t r eam by l ipopro te in s (T ab le 5 ) . How ever , th i s ru le

    has som e im por tan t excep t ion , s ince a f ew pho to sens i t ize r s ,

    such as mono-asp ar ty l - ch lo r in e6 [7 ] and TPPS4 [2 9 ] , w h ich

    are endowed wi th a good wate r - so lub i l i ty , a r e exce l len t

    tumo ur loca l ize r s .

    T h e e f f i ci e n c y o f t u m o u r t r e a t m e n t b y P D T i s a l s o h e a v i ly

    in f luenced by the sub t i s su la r and subce l lu la r d i s t r ibu t ion o f

    the pho to sens i t i ze r . Th is pa ram ete r i s aga in dependen t on the

    chem ica l s t ruc tu re o f the dye [37 ] . Pho to f r in , p robab ly

    because o f i t s he te rogeneous compos i t ion , i s pa r t i t ioned

    amo ng severa l d i f f e r en t compar tmen ts o f the tumour . As a

    consequence , upon pho toexc i ta t ion , th i s po rphy r in induces

    the mod i f ica t ion o f var ious s i t es , inc lud ing the b lood vesse l s ,

    mal igna n t ce l l s and non -vascu la r s t roma [ 3 ] . I n many cases ,

    vascu la r dam age appear s 1o pr edom ina te [ 13 ] .

    An ex tens ion o f these me chan is t ic s tud ies to po rphy r ino id s

    wi th d i f f e r en t phys ic o -chem ica l p roper t ies s t rong ly sugges t s

    [38 ] tha t a lbumin -car r ied dyes a r e main ly depos i ted in the

    ex t r ace l lu la r mat r ix , hence they cause an ea r ly impa i rmen t o f

    b lood c i r cu la t ion . More hyd rop hob ic dyes , wh ich a r e la rge ly

    t r anspo r ted by l ipopro te in s , a r e r e leased in s ide tumour ce l l s

    (Tab le 5 ) , wh ich s t rong ly f avou r s a d i r ec t ea r ly pho toda-

    ma ge o f such ce l l s [ 3 ,25 ] . R ecen t ly , the ro le o f macrop hages

    in the overa l l pho toprocess has been r e - eva lua ted [ 39 ] ; mac-

    rophages can e f f ic ien t ly accum ula te h igh ly agg rega ted mate -

    Table 5

    r ia l , a s i t i s p r esen t in Pho to f r in , as wel l as l ipo some- o r

    C remophor -de l ivered po rphy r ino id s .

    In any case , i t appear s tha t m os t po rphy r in - type pho to sen -

    s i t ize r s loca l ize in the ce l l m emb ranes [ 14 ,25 ] ; the re fo re ,

    pho to induced ce l l dea th i s u sua l ly a consequence o f

    m e m b r a n e d a m a g e : m i t o c h o nd r i a, r o u g h e n d o p l a s m i c r e t i c -

    a l u m , l y s o s o m e s a n d p l a s m a m e m b r a n e h a v e b e e n i n v o k e d

    as p r imary ta rge ts o f the pho toprocess [ 2 ,3 ,39 ] , the i r r e la t ive

    impor tance p robab ly depend ing on the d i s t r ibu t ion o f the

    spec i f ic pho to sens i ti ze r . I t i s a l so poss ib le tha t the lo ss o f ce l l

    su rv iva l r e f lec ts a co -opera t ive e f f ec t a r i s ing f rom th e s imu l -

    taneous imp ai rmen t o f m u l t ip le s i t es , r a ther than be ing de te r -

    mined by the i r r ever s ib le mod i f ica t ion o f o ne c r i t i ca l t a rge t .

    T o o b t a in m o r e p r e c i s e i n f o r m a t io n o n t h i s t o p i c i t m a y b e

    impor tan t to u se pho to sens i t i ze r s wh ich a r c o r ien ta ted toward

    a spec i f ic ce l l si t e . Th is ap proach i s exemp l i f ied in r ecen t

    a r t ic les showing the p oss ib i l i ty to ob ta in spec i f ic t a rge t ing o f

    ly sosom es by assoc ia t ion o f the po rphy f in w i th a ly sosomo -

    t rop ic agen t [40 ] o r to se lec t ive ly labe l the ou te r o r inner

    m i t o c h o n d r i a l m e m b r a n e b y a n a p p r o p r i a t e c h o i c e o f t h e

    l i p o s o m e c a r r i e r [ 4 1 ] .

    5 . C o n c l u s i o n s

    In sp i te o f pe r s i s t ing uncer ta in t ies abou t de ta i led mecha-

    n isms lead ing to po rphy r in -pho to sens i t i zed ce l l and t i s sue

    Approaches o enhance h e selectivityof tumoor argeting by porphyrin-typephotosensitizer

    App roa ch Rationale Specific example

    Incorporationof photosensitizer nto serum LDL Several ypes of neoplastic cellsexpress a large HI), ZnP c [ 14]

    number of LDL receiaors

    Covalentbinding of photosensitizers o m onoclonalantibod ies Antib odies re directedagainst antigens specifically Hp, chlorin e6 [ 15,16]

    present at the surface of tumonrcells

    Use of cationicphotosensitizers Mitechoodriaof tumonr ceils have an unu sua lly Triphenylmethaneerivatives [ 34]

    high affinity or cationiccompounds

    Hp = haem atoporphyrin;ZnPc= Zn (ll ) -phthalocyanine

  • 8/10/2019 Tumour Photosensitizers Approaches to Enhance the Selectivity

    6/7

    92

    G. Jori /Jo ur nal o f Photochemistry a nd Photobiology B: B iology 36 (I 996) 87-93

    necrosis, it is well ascertained that nuclear damage is a late

    event and ha s a minor influence on the photoprocess. This

    would rule out any risk of a mutagenic effect of PDT, whic h

    is especially i mportant i f the phototherapeutic treatment is to

    be repeated at relatively short time intervals or is used in

    combination with other therapeutic modalities. At the same

    time, the steadily accumulating information on the factors

    which modulate the pharmacokinetic behaviour and the cell/

    tissue distribution of photosensitizers, as well as the effi-

    ciency of tumour photosensitization makes it feasible to

    explore two potentially innovative developments of the

    technique:

    i) The use of a combination of photosensitizers with dif-

    ferent intracellular and intratissular localization patterns

    which act in a synergistic m anne r to improve the efficacy of

    PDT. In particular, it is import ant to assess the possibility to

    stimulate ap optosis of at least som e types of neoplastic cells

    by PDT treatment, as it is suggested by recent findings [42] .

    it) The definition of a variety of integrated PDT systems

    (photosensitizer, delivery system, irradiation modalities)

    which are tailored to the treatment of neoplastic cells with

    specific properties, such as the mitotic index, metastatic

    potential, invasiveness of the extracellular matrix, degree of

    pigmentati on, etc. As ment ioned earlier, there are now several

    possibilities for introducing predetermined physico-chemi-

    cal, biological, photobiol ogical and optical properties into the

    photosensitizer molecule by chemical synthesis.

    Acknowledgements

    This work received financial support from EU in the frame-

    work of the program Hu ma n Mobility Capital , contract

    No. ERB CHRXC T930178 (PDT Network).

    e f e r e n c e s

    [ I ] A. M. Richter, R.K. Chowdhary, L. Ratkay, AK. Jain, A.J. Canaan,

    H. Meadows, M. Obochi, D. Waterfield and J.G. Levy, Nononcologic

    potentials for photodynamic herapy,

    Proc. SPIE, 2078 (1994)

    293-

    304.

    [2] C.J. Gomer, Photodynamic herapy in the treatment of malignancies,

    Sere. Hematol ., 26 (19 89) 27-34.

    [3] C. Zhou, Meci~anisms of tumor necrosis induced by photodynamic

    therapy, J.

    Photochem. Photobiol., B:BioL 3 [

    1989) 299-318.

    [4] T.J. Dougherty, Photosansitizers: herapy and detection of malignant

    tumors,Photochem. Photobiol . , 45 (1987 ) 879-889.

    [51 D.A. Bellnier and B.W. Henderson, Determinants for photodynamic

    tissue destruction, in B.W. Henderson and T.J. Dougherly (eds.),

    Photod ynam ic Therapy. B asic Princip les and Cl in ical Appl icat ions,

    MarceI-Dekker, New York, 1992, pp. 117-128.

    [6] J.G. Levy, E. Waterfield, A.M. Richter, C. Smith, H. Lui, L. Hroza,

    R.R. Anderson and V. Salvatori, Photodynamic therapy of

    malignancies with benzoporphyrinderivative monoaeidring A, Proc.

    S PIE , 2 0 7 8 (1 9 9 4 ) 91-101.

    [7] J.S. Nelson, W.G. Roberts and MW. Berus, In vivo studies on the

    utilization of mono-L-aspartyl-chlorine6 for photodynamic herapy,

    Ca n cer Res. , 4 7 (1 9 8 7 ) 4681-4685.

    [8] H.B. Ris, H.J. Altermatt, R Inderbitzi, R. Hess, B. Nacbbur, J.C.M.

    Stewart, Q. Wang, C.K. Lira. R. Bonnett, M.C. Berenbaum and U.

    AIthans, Photodynamic therapy with chlorins for diffuse malignant

    mesothelioma: initial clinical results,Br. J. Cancer, 64 ( 1991 ) I 116-

    1120.

    [9] S.H. Selman, G.M. Garbo, R.W. Keck, M. Kroimer-Bimbaumand

    A.R. Morgan, A dose response analysis of purpurin derivatives used

    as photosensitizers for the photodynamie reatment of transplantable

    urothelial tumours, . Urol . . 137 (1987) 1255-1257.

    [ 10] K. Schieweck, H.-G. Capraro, U. Isele, P. van Hoogevest,M. Ochsner,

    T. Manrer and E. Batt, CGP 55 847, liposome-delivered zinc(ll)-

    phthaloe.yanine as a phototherapeutic agent for tumors,Proc. SPIE,

    2 0 7 8 (1 9 9 4 ) 107-118.

    [ I I ] G. Jori and E. Reddi. Second generation photosensitizers for the

    photodynamic therapy of tumours, in R.H. Douglas. J. Moan and G.

    Rontb (eds.), Light in Biology and M edi t ia e , Vol. 2, Plenum, London,

    1991, pp. 253-266.

    [12] D. Kessel, Determinants of hematoporphyrin-catalyzed photo-

    sensitization,Photochem. P hotobiol. , 36 (19 82) 99-101.

    [13] J. Moan, K. Berg, H.B. Steen, T. Warloe and K. Madslien,

    Fluorescence and photodynamie effects of phthalocyanines and

    porphyrins in cells, in B.W. Henderson and T.J. Dougherty (eds.),

    Phow dynam ic Therapy. Ba sic Princip les a t td Chnica l Applications,

    MarceI-Dekker, New York, 1992, pp. 19-36.

    [14] G. Jori, Low density lipoproteins-liposome delivery systems for

    turnout photosensitizers in vivo, in B.W. Henderson and T.J.

    Dougherty (eds.),

    Photodynamic Therapy. Basic Principles an d

    ClinicalApplications, MarceI-Dekker, New York, 1992, pp. 173-186.

    I151 D. Mew, C.K. Wat , G.H.N. Towers and J.G. Levy, Photo-

    immanotherapy: reatmant of animal turnouts wi th tumor-specific

    monoclonal antibody-hematoporphyrinconjugates,

    J. Immunol., 130

    (1983) 1473-1477.

    [ 16 ] T. Hasan, Photosensitizerdelivery mediated by macromolecularcarrier

    systems, n B.W. Hendersonand TJ. Dougherty ( eds. ),

    Photodynamic

    Thernpy. Basic Principles an d Clinical Applications, MarceI-Dekker,

    New York, 1992, pp. 187-200.

    [ 171 G. Jori and J.D. Spikes, Photobiochemistry of porphyrins, in K.C.

    Smith ted.),

    Topics in P Itotomedicine,

    Plenum, New York, 1983, pp.

    183-319.

    [ 18] E. Reddi and G. Jori, Steady-state and time-resolved spectroscopic

    studies of photodynamic sensitizers: porphyrinsand phthalocyanines,

    Rev. Chem. In term., I0 (1988) 241-268.

    [19] G. Jor i, Molecular and cellular mechanisms in photomedicine:

    porphyrins in microheterogeneousenvironments, n R.V. Bansasson,

    G. Jori, E. Land and T.G. Troscott (ed~,.),Primary Photoprocesses in

    Biology and Medicine, Plenum Press, New York, 1985, pp. 349-355.

    1201 J.D. Spikes, Phthalocyanines as photosensitizers n biological systems

    and for the photodynamic herapy of tumours,

    Phow chem . Photobiol. ,

    4 3 (1 9 8 6 ) 691-699.

    [21] E. Ben-Hut, Photochemistry and photobiology of phthalocyanines:

    new sensitizers for photodynamic therapy of cancer, in A. Favre, R

    Tyrrell and J. Cadet (eds.), From Photophysics to Pho wbiolo gy,

    Elsevier Science Publisher, New York. 1987, pp. 407-420.

    [ 22 ] B.D. Rihter, M.D. Bohorquez,M.AJ. Rodgersozld M.E. Kanney,Two

    new sterically hindered phthalocyanines: synthetic and photodynamic

    aspects,Photochem. PhotobioL. 55 (1992) 677-680.

    [23] L.O. Svaasand. E. MartineUi, C.J. Gomer and A.E. Prufio, Optical

    characteristics of intraocular urnouts n the visible and near-infrared.,

    Proc. SPIE. 1203 (1990) 2-21.

    [24] R. Biolo, G. Jori, M. Sancta, R. Pratesi, U. Vanni, B. Rihter, M.E.

    Kanney and M.A.J. Rodgers, Photodynamic herapy of B 16 pigmented

    melanoma with liposome-delivered Si(IV)-naphthalocyanine,

    Photochem. Photobiol . . 59 (1 994) 362-365.

    [25] G. Jor i, Far-red absorbing photosensitizars: their use in the

    photodynamic herapy of urnouts,J. Photochem. Photobiol., A :Chem.,

    6 2 ( 1 9 9 2 )

    371-378.

  • 8/10/2019 Tumour Photosensitizers Approaches to Enhance the Selectivity

    7/7

    G. Jori /Jou rna l o f Photochemistry and Photnbiology B: Biology 36 (1996) 87-93

    9 3

    [26 ] R . Benn ett and M. Berenbanm , Porphy rins us photosensitizers, in G.

    Beck and S . Hamet t ( eds . )

    Photosensitizing Compounds their

    Chemistry, Biology and Clinical Use (Ciba Foundation Syml,~sium

    146), J. Wiley , Chichester, 1989, pp. 40-59 .

    [271 B.D. Rihter, M.E, Kenney. W.E. Ford an d M.A.L Rodgers,

    Photodynamic react ions involv ing Pd( l l ) -octabu toxy-na phtha lo-

    cyan ine and molecu lar oxygen , J .

    Am . C hem. Soc.. 115 ( 1992, )

    8 1 4 6 -

    8152.

    [28] G. Jori and E. Reddi, Photochemotherapy of turnouts: mole cula r and

    biop hysi cal bases., in R. Pratesi (ed.)

    Optronic Techniques in

    Diagnostic and Therapeutic Medicine,

    Plenum, N ew York, 1991, pp.

    227-236 .

    [29] J .W. Wink elman . Quant i ta, ive s tudies o n tctraphanylporphine-

    sulfonate and hematopoq3hyrin der ivative, in D, Kessel ted . )

    Methods

    in Porphyrin Photnsensitizatian,

    Vol. 1 93, Plenum, N ew York, 1985,

    pp. 91-102.

    [301 G, Jor i , Factm~ co otm ll ing the select ivi ty and eff iciency of turnout

    damage in photodynamic therapy,

    Lasers Mad. Sei., 5 (1990)

    115-

    120.

    [311 S.G. Bown, Photodynamic therapy to scien t is ts and cl inicians : one

    wor ld o r two? , J .

    Photochem. P hotobiol.. B:BioL.

    6 (1990) 1-12.

    [32] B.C, Wilso n and M .S. Pat terson, Physics of photodynamic therapy.

    Phys. Med. Biol., 31 (1986)

    327-360.

    [33] H. Ban . N. Krasner, P.B. Bou les, P. Chatlani and S.G. Bown,

    Photodynamic thera py for colorectal cancer: a quantitative p ilot study,

    Br. J. Surg., 77 (1990)

    93-96 .

    [341 A.R. Oseroff, C ation ic sensitizers, comb ination therapies, and new

    methodologies, in B.W, Henderson and T.J. Dougherty ( ads .),

    Photodynamic Therapy. Basic Principles and Clinical Applications,

    Ma rceI-De kker Inc. , Ne w York, 1992, pp. 79-96.

    [ 351 C.J. Tralau, H. Bart. A.J. MacR obert an d S.G, Bow n, Relative m erits

    of porphyrin and phthalocyanine sensitize.lion for photodyaamic

    therapy, in D. Kessel ted. ) .

    Photodynamic Therapy of Neoplastic

    Disease,

    Vol. , CRC, Boca Ralon, 1990, pp. 263-278.

    1361 A.J . MaeRohon, S.G . Bown and D . P hi l l i l~, Wha t are the ideal

    photoproperties for a sensitizer. '?, in G. Bec k and S. Hametlt reds .)

    Photoser~itizing Compounds: their Chemistry. Biology and Clinical

    Use (Ciba Foundanon Symposium 1461,

    J. Wile y, Chichester, 1989,

    pp. 4--16.

    [37 ] G. Jori. Photodynamic therapy: a nove l approach t o the treatment of

    tumours.Bull. Mol. Biol. Mad.. 15 t

    1990) 73-83.

    [38] D, Kessel. HPD:

    s m l c t u m

    and d eterminan ts of Iocalizalion, in D.

    Kessei (ed. )

    Photod.vanmic Therapy of Neoplastic Disease,

    CRC,

    Boc a Raton, 1990. pp. 1-14,

    [391 M . Kot'holik, G. IG 'osl and D.J. Chaplin, Photofrin u pla kc by murine

    macmphages,

    Cancer Res.. 51 (

    1991 ) 22 51-2255 .

    [40] C. Candide, P. Modi~re~ J,C. Maziere, S. G oldsle in, R. Santus, L.

    Dubertmt, I.P. Reyflt~lann and J. PolnowskL In vitro interaction o f t ~

    photoact ive ant ican~.er po ~h yrin der ivat iv e Phatofr in I1 with low

    dens i ty l i popmte insand i ts del ivery o cul tured f ibroblas ts ,

    FEBSLett. .

    207

    (1986) 133-138.

    [411 F. R icchelli, S. Gobb~, G. Jori, G. lvloreno, F. V inzen s an d C, Salet,

    Photosensitization of nutochoodria by liposome-houod porpbyrins,

    Photochera. Photobiol., 58

    t 1993 ) 53-58.

    [421 L.C. Penning, J.W,M. Lagethorg, J,H. VanDierendonck, C.J.

    Com elisse, T.M.A.R, Dubbelman and J , Van Steveninck, T he role of

    DNA damage and inh ib i tion of po ly tA DP- r ibos y l ) a t ion in los s o f

    clonogenici ty of ma rine L929 f ibroblasts , caused by ph otedyna mical ly

    induced oxid ative stress, Cancer Res.. 54 (1994) 5561-5567 .