TUDelft Beamer

24
Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 1 / 16 Sample presentation using Beamer Delft University of Technology Maarten Abbink April 1, 2014

Transcript of TUDelft Beamer

Page 1: TUDelft Beamer

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 1 / 16

Sample presentation using BeamerDelft University of Technology

Maarten Abbink

April 1, 2014

Page 2: TUDelft Beamer

Outline

1 First SectionSection 1 - Subsection 1Section 1 - Subsection 2Section 1 - Subsection 3

2 Second SectionSection 2 - Subsection 1Section 2 - Last Subsection

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 2 / 16

Page 3: TUDelft Beamer

Next Subsection

1 First SectionSection 1 - Subsection 1Section 1 - Subsection 2Section 1 - Subsection 3

2 Second SectionSection 2 - Subsection 1Section 2 - Last Subsection

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 3 / 16

Page 4: TUDelft Beamer

Section 1 - Subsection 1 - Page 1

Example

0 1 2 3 4 5 6 7 8n

0123456u(n)

u(n) = [3, 1, 4]n

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 4 / 16

Page 5: TUDelft Beamer

Section 1 - Subsection 1 - Page 2

Definition

Let n be a discrete variable, i.e. n ∈ Z. A 1-dimensional periodicnumber is a function that depends periodically on n.

u(n) = [u0, u1, . . . , ud−1]n =

u0 if n ≡ 0 (mod d)

u1 if n ≡ 1 (mod d)...

ud−1 if n ≡ d − 1 (mod d)

d is called the period.

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 5 / 16

Page 6: TUDelft Beamer

Section 1 - Subsection 1 - Page 3

Example

f (n) = −[12 ,

13

]nn2 + 3n − [1, 2]n

=

{−1

3n2 + 3n − 2 if n ≡ 0 (mod 2)

−12n

2 + 3n − 1 if n ≡ 1 (mod 2)

0 1 2 3 4 5 6 7n

−3

−2

−1

0

1

2

3

4

5f(n)=

−[ 1 2,1 3

] nn2+3n

−[1,2] n

−12n2 + 3n− 1

−13n2 + 3n− 2

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 6 / 16

Page 7: TUDelft Beamer

Section 1 - Subsection 1 - Page 4

Definition

A polynomial in a variable x is a linear combination of powers of x :

f (x) =

g∑

i=0

cixi

Definition

A quasi-polynomial in a variable x is a polynomial expression withperiodic numbers as coefficients:

f (n) =

g∑

i=0

ui (n)ni

with ui (n) periodic numbers.

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 7 / 16

Page 8: TUDelft Beamer

Section 1 - Subsection 1 - Page 4

Definition

A polynomial in a variable x is a linear combination of powers of x :

f (x) =

g∑

i=0

cixi

Definition

A quasi-polynomial in a variable x is a polynomial expression withperiodic numbers as coefficients:

f (n) =

g∑

i=0

ui (n)ni

with ui (n) periodic numbers.

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 7 / 16

Page 9: TUDelft Beamer

Next Subsection

1 First SectionSection 1 - Subsection 1Section 1 - Subsection 2Section 1 - Subsection 3

2 Second SectionSection 2 - Subsection 1Section 2 - Last Subsection

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 8 / 16

Page 10: TUDelft Beamer

Section 1 - Subsection 2 - Page 1

Example

0 1 2 3 4 5 6 7x

0

1

2

3

4

5

6

7

y

p =3

x + y ≤ p

p f (p)

3 5

4 85 106 13

5

2p +

[−2,−5

2

]

p

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 9 / 16

Page 11: TUDelft Beamer

Section 1 - Subsection 2 - Page 1

Example

0 1 2 3 4 5 6 7x

0

1

2

3

4

5

6

7

y

p =4

x + y ≤ p

p f (p)

3 54 8

5 106 13

5

2p +

[−2,−5

2

]

p

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 9 / 16

Page 12: TUDelft Beamer

Section 1 - Subsection 2 - Page 1

Example

0 1 2 3 4 5 6 7x

0

1

2

3

4

5

6

7

y

p =5

x + y ≤ p

p f (p)

3 54 85 10

6 13

5

2p +

[−2,−5

2

]

p

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 9 / 16

Page 13: TUDelft Beamer

Section 1 - Subsection 2 - Page 1

Example

0 1 2 3 4 5 6 7x

0

1

2

3

4

5

6

7

y

p =6

x + y ≤ p

p f (p)

3 54 85 106 13

5

2p +

[−2,−5

2

]

p

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 9 / 16

Page 14: TUDelft Beamer

Section 1 - Subsection 2 - Page 1

Example

0 1 2 3 4 5 6 7x

0

1

2

3

4

5

6

7

y

p =6

x + y ≤ p

p f (p)

3 54 85 106 13

5

2p +

[−2,−5

2

]

p

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 9 / 16

Page 15: TUDelft Beamer

Section 1 - Subsection 2 - Page 2

• The number of integer points in a parametric polytope Pp ofdimension n is expressed as a piecewise a quasi-polynomial ofdegree n in p (Clauss and Loechner).

• More general polyhedral counting problems:Systems of linear inequalities combined with ∨,∧,¬, ∀, or ∃(Presburger formulas).

• Many problems in static program analysis can be expressed aspolyhedral counting problems.

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 10 / 16

Page 16: TUDelft Beamer

Section 1 - Subsection 2 - Page 2

• The number of integer points in a parametric polytope Pp ofdimension n is expressed as a piecewise a quasi-polynomial ofdegree n in p (Clauss and Loechner).

• More general polyhedral counting problems:Systems of linear inequalities combined with ∨,∧,¬, ∀, or ∃(Presburger formulas).

• Many problems in static program analysis can be expressed aspolyhedral counting problems.

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 10 / 16

Page 17: TUDelft Beamer

Section 1 - Subsection 2 - Page 2

• The number of integer points in a parametric polytope Pp ofdimension n is expressed as a piecewise a quasi-polynomial ofdegree n in p (Clauss and Loechner).

• More general polyhedral counting problems:Systems of linear inequalities combined with ∨,∧,¬, ∀, or ∃(Presburger formulas).

• Many problems in static program analysis can be expressed aspolyhedral counting problems.

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 10 / 16

Page 18: TUDelft Beamer

Next Subsection

1 First SectionSection 1 - Subsection 1Section 1 - Subsection 2Section 1 - Subsection 3

2 Second SectionSection 2 - Subsection 1Section 2 - Last Subsection

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 11 / 16

Page 19: TUDelft Beamer

Section 1 - Subsection 3 - Page 1A picture made with the package TiKz

Example

1

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 12 / 16

Page 20: TUDelft Beamer

Next Subsection

1 First SectionSection 1 - Subsection 1Section 1 - Subsection 2Section 1 - Subsection 3

2 Second SectionSection 2 - Subsection 1Section 2 - Last Subsection

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 13 / 16

Page 21: TUDelft Beamer

Section 2 - subsection 1 - page 1

Alertblock

This page gives an example with numbered bullets (enumerate)in an ”Example” window:

Example

Discrete domain ⇒ evaluate in each pointNot possible for

1 parametric domains

2 large domains (NP-complete)

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 14 / 16

Page 22: TUDelft Beamer

Section 2 - subsection 1 - page 1

Alertblock

This page gives an example with numbered bullets (enumerate)in an ”Example” window:

Example

Discrete domain ⇒ evaluate in each pointNot possible for

1 parametric domains

2 large domains (NP-complete)

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 14 / 16

Page 23: TUDelft Beamer

Next Subsection

1 First SectionSection 1 - Subsection 1Section 1 - Subsection 2Section 1 - Subsection 3

2 Second SectionSection 2 - Subsection 1Section 2 - Last Subsection

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 15 / 16

Page 24: TUDelft Beamer

Last Page

Summary

End of the beamer demowith a tidy TU Delft lay-out.

Thank you!

Maarten Abbink (TU Delft) Beamer Sample April 1, 2014 16 / 16