True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors...

48
True Muonium Acceptance at 6.6 GeV a true underdog story Bradley Yale Spring 2018 Collaboration Meeting 05/24/2018

Transcript of True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors...

Page 1: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Acceptance at 6.6 GeV

a true underdog story

Bradley Yale

Spring 2018 Collaboration Meeting

05/24/2018

Page 2: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Production• Muon-antimuon bound state

• Two spin ½ fermions, total spin can add to either 0 or 1

• Two mechanisms for production:• Odd # of photons, spin-1 triplet states, “ortho” (𝑇𝑀 → 𝑒+𝑒−)

• Even # of photons, spin-0

singlet states, “para” (𝑇𝑀 → 𝛾𝛾)

Since para-TM decays into photons,HPS is currently unequipped to search for them.

+ …+

+…

The 1-photon mechanism is identical to brems-like A’ production,and peaks in the radiative energy region. The 3-photon mechanism peaks in the BH region, so difficult to search for.

Page 3: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Production• Muon-antimuon bound state

• Two spin ½ fermions, total spin can add to either 0 or 1

• Two mechanisms for production:• Odd # of photons, spin-1 triplet states, “ortho” (𝑇𝑀 → 𝑒+𝑒−)

• The 1-photon mechanism is what HPS is most capable of searching for

• Effectively an A’ with known mass and decay length

+

Page 4: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

TM Production Cross sections (1 vs. 3 photon)

• 𝑥 = 𝐸/𝐸𝑏𝑒𝑎𝑚

Radiative mechanismpeaks at beam energy(“A’-like”)

3-photon mechanism peaks below likely pair1 trigger thresholds

Page 5: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Energy Levels and lifetime

Page 6: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Energy Levels and lifetime

𝑻𝒉𝒆𝒔𝒆 𝒄𝒂𝒏 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒐𝒏 𝒊𝒏𝒕𝒐 𝟏𝑺,𝑰𝒏𝒄𝒓𝒆𝒂𝒔𝒊𝒏𝒈 𝒕𝒉𝒆 𝒐𝒗𝒆𝒓𝒂𝒍𝒍 𝒚𝒊𝒆𝒍𝒅

𝑻𝒉𝒆 𝒔𝒕𝒂𝒕𝒆 𝒕𝒉𝒂𝒕 𝑯𝑷𝑺 𝒊𝒔𝒄𝒖𝒓𝒓𝒆𝒏𝒕𝒍𝒚 𝒔𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒆 𝒕𝒐

Page 7: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Part I: True Muonium Production Rate

• To estimate how many detectable True Muonium events will be produced, both the production and dissociation cross sections must be calculated

• Total 1S produced = produced 1S + 2𝑆, 2𝑃 → 1𝑆 − dissociations

• The small production rate and extremely high dissociation in the target is what makes these events so difficult to detect

Page 8: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Primary Production Cross Section (radiative)• Banburski Schuster - arXiv:1206.3961v1 [hep-ph] 18 Jun 2012

• Integrate (up to 𝑥 = 1 − 𝑚𝑒/𝐸𝑏𝑒𝑎𝑚 where 𝑑𝜎

𝑑𝑥= 0)

𝑑𝜎

𝑑𝑥𝑟𝑎𝑑 1𝑆

=1

4

𝛼7742

𝑚𝜇2

𝑥 1 − 𝑥

1 − 𝑥 + Τ𝑚𝑒 2𝑚𝜇2 2 1 − 𝑥 +

1

3𝑥2

∗ 2 ൧Log[ Τ𝐸𝐵𝑒𝑎𝑚 𝑚𝜇 + 2 ሿLog[1 − 𝑥 − ቃLog[1 − 𝑥 + Τ𝑚𝑒 2𝑚𝜇2− 1

𝜎(𝟒. 𝟒 𝑮𝒆𝑽)𝑟𝑎𝑑 1𝑆 = 0.113724 pb𝜎(𝟔. 𝟔 𝑮𝒆𝑽)𝑟𝑎𝑑 1𝑆 = 0.26614 pb

1S production cross section for radiative process only

Page 9: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Secondary Production/Dissociation (target interaction)

• Transition cross section (to all other bound states + dissociation)

= 5.67937×1016 pb

1S state-> all states + dissociation (“X”)Thomas-Fermi-Moliere FF

Transfer matrix elements

Page 10: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Dissociation Cross Section (1S)

• Transition cross section (bound state to another bound state)

• To get dissociation, 𝜎𝑡𝑟𝑎𝑛𝑠+𝑑𝑖𝑠𝑠. − 𝜎𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 = 2.21044 ×1016pb

• Note that 𝜎𝑑𝑖𝑠𝑠 is 17 orders of magnitude greater than 𝜎𝑝𝑟𝑜𝑑!

Published value for Pb (Schuster):2.65 ×1016 pb

Page 11: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Expected True Muonium Rate (1S)

• Solving

𝑁1𝑆 𝑙 = 𝑁𝑒𝜎 𝑒− → 1𝑆

𝜎 1𝑆 → 𝑋1 − 𝑒

−𝑙

𝑙1𝑆→𝑋

=5625 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

2𝑛𝑠

0.26614 𝑝𝑏

5.67937 ∗ 1016 𝑝𝑏1 − 𝑒

−8.750𝜇𝑚2.792𝜇𝑚

= 𝟑𝟑. 𝟏𝟑 𝒆𝒗𝒆𝒏𝒕𝒔/𝒎𝒐𝒏𝒕𝒉(6.6 GeV, 1S state only)

𝑑𝑁1𝑆𝑑𝑧

= 𝑁𝑒(𝑧)𝜎 𝑒− → 1𝑆

𝜎 1𝑆 → 𝑋− 𝑁1𝑆

Proposed 6.6 GeV target1-photon mechanism

The number of radiative 1S TM events before HPS acceptance

Page 12: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Expected True Muonium Rate (1S)

• Solving

𝑁1𝑆 𝑙 = 𝑁𝑒𝜎 𝑒− → 1𝑆

𝜎 1𝑆 → 𝑋1 − 𝑒

−𝑙

𝑙1𝑆→𝑋

=5625 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

2𝑛𝑠

1.27455 𝑝𝑏

5.67937 ∗ 1016 𝑝𝑏1 − 𝑒

−8.750𝜇𝑚2.792𝜇𝑚

= 𝟏𝟔𝟖. 𝟑𝟔 𝒆𝒗𝒆𝒏𝒕𝒔/𝒎𝒐𝒏𝒕𝒉(6.6 GeV, 1S state only)

𝑑𝑁1𝑆𝑑𝑧

= 𝑁𝑒(𝑧)𝜎 𝑒− → 1𝑆

𝜎 1𝑆 → 𝑋− 𝑁1𝑆

Proposed 6.6 GeV target1-photon + 3-photon

Add to this the transitions from 2S,2P to 1S…

Page 13: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Expected True Muonium Rate (1S,2S,2P)

• 1S yield:

• 2S yield:

• 2P yield:

𝑑𝑁2𝑃𝑑𝑧

=1

𝜎 1𝑆 → 𝑋[

𝑁𝑒 ∗ 𝜎 𝑒− → 2𝑃 +𝑁1𝑆 ∗ 𝜎 1𝑆 → 2𝑃 +𝑁2𝑆 ∗ 𝜎 2𝑆 → 2𝑃

− 𝑁2𝑃 ∗ 𝜎 2𝑃 → 𝑋

𝑑𝑁2𝑆𝑑𝑧

=1

𝜎 1𝑆 → 𝑋𝑁𝑒 ∗ 𝜎 𝑒− → 2𝑆 − 𝑁2𝑆 ∗ 𝜎 2𝑆 → 𝑋 + 𝑁2𝑃 ∗ 𝜎 2𝑃 → 2𝑆

𝑑𝑁1𝑆𝑑𝑧

= 𝑁𝑒𝜎 𝑒− → 1𝑆

𝜎 1𝑆 → 𝑋− 𝑁1𝑆 + 𝑁2𝑃

𝜎 1𝑆 → 2𝑃

𝜎 1𝑆 → 𝑋

Page 14: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Expected True Muonium Rate (1S,2S,2P)

• 1S yield:

• 2S yield:

• 2P yield:

𝑑𝑁1𝑆𝑑𝑧

= 𝑁𝑒𝜎 𝑒− → 1𝑆

𝜎 1𝑆 → 𝑋− 𝑁1𝑆 + 𝑁2𝑃

𝜎 1𝑆 → 2𝑃

𝜎 1𝑆 → 𝑋

𝑑𝑁2𝑆𝑑𝑧

=1

𝜎 1𝑆 → 𝑋𝑁𝑒 ∗ 𝜎 𝑒− → 2𝑆 − 𝑁2𝑆 ∗ 𝜎 2𝑆 → 𝑋 + 𝑁2𝑃 ∗ 𝜎 2𝑃 → 2𝑆

𝑑𝑁2𝑃𝑑𝑧

=1

𝜎 1𝑆 → 𝑋[

𝑁𝑒 ∗ 𝜎 𝑒− → 2𝑃 +𝑁1𝑆 ∗ 𝜎 1𝑆 → 2𝑃 +𝑁2𝑆 ∗ 𝜎 2𝑆 → 2𝑃

− 𝑁2𝑃 ∗ 𝜎 2𝑃 → 𝑋

1.27455 𝑝𝑏 (1 + 3 𝑝ℎ𝑜𝑡𝑜𝑛 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚𝑠)

5.67937 ∗ 1016 𝑝𝑏

0.0332675 𝑝𝑏= 𝜎 𝑒− → 1𝑆 /8

4.90741×1017𝑝𝑏

6.30545×1017𝑝𝑏

3.1625×1017𝑝𝑏

2.6437×1016

Page 15: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Solving the coupled DE’s…• In one month of running at 6.6 GeV:

• 𝑁1𝑆 = 168.36

• 𝑁2𝑆 = 9.46

• 𝑁2𝑃 = 15.37

from both production diagrams

Page 16: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Solving the coupled DE’s…• In one month of running at 6.6 GeV:

• 𝑁1𝑆 = 168.36

• 𝑁2𝑆 = 9.46

• 𝑁2𝑃 = 15.37

• If only considering radiative events:• 𝑁1𝑆 = 33.13

from both production diagrams

Page 17: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Solving the coupled DE’s…• In one month of running at 6.6 GeV:

• 𝑁1𝑆 = 168.36

• 𝑁2𝑆 = 9.46

• 𝑁2𝑃 = 15.37

• If only considering radiative events:• 𝑁1𝑆 = 33.13

• What about acceptance?

from both production diagrams

Page 18: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Part II: Simulating True Muonium events

• Lifetime depends on energy level 𝑛

• These parameters can be used by MadGraph/stdhep to generate the 13𝑆 state.

• The idea is to find the acceptance of a known # of events, to scale the theoretical yield

𝜏 𝑛3𝑆1 → 𝑒+𝑒− =6ℏ𝑛3

𝛼5𝑚𝑐2

= 1.81 ps for 1S

Γ =6.582∗10−25𝐺𝑒𝑉𝑠

1.81∗10−12𝑠

= 3.627 ∗ 10−13𝐺𝑒𝑉Only used to calculate cross section,so we don’t really need this…

Page 19: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Acceptance @ 6.6 GeV

• Initial 6.6 GeV trigger cuts (scaled up from 2.3 GeV)<seedEnergyLow> 300 MeV

<minHitCount> 2<pairCoincidence> 3ns

<clusterEnergyLow> 150 MeV<clusterEnergyHigh> 4.2 GeV

<energySumLow> 1.800 GeV<energySumHigh> 6 GeV

<energyDifferenceHigh> 3.3 GeV

<coplanarityHigh> 35 deg<energySlopeParamF> 0.0055 GeV/mm

<energySlopeLow> 700 MeV

6.6 GeV Layer-0 detector used:HPS-Proposal2017-Nominal-v2-6pt6-fieldmap

Page 20: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Acceptance @ 6.6 GeV

• Initial 6.6 GeV trigger cuts (scaled up from 2.3 GeV)<seedEnergyLow> 300 MeV

<minHitCount> 2<pairCoincidence> 3ns

<clusterEnergyLow> 150 MeV<clusterEnergyHigh> 4.2 GeV

<energySumLow> 1.800 GeV<energySumHigh> 6 GeV

<energyDifferenceHigh> 3.3 GeV

<coplanarityHigh> 35 deg<energySlopeParamF> 0.0055 GeV/mm

<energySlopeLow> 700 MeV

Quick check of the events…

6.6 GeV Layer-0 detector used:HPS-Proposal2017-Nominal-v2-6pt6-fieldmap

Page 21: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

TM Vertex Acceptance (1S)

mm

Zvtx after recon

Generated vertices unconstrained vertices

2S and 2P would be more displaced

Page 22: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Momentum vs. Cluster Energy

Universal shift in cluster E(calibration-related?)

Edge effect seen at other energies

Page 23: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Invariant Mass

Page 24: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

(Very) preliminary 6.6 GeV MC resolution

𝜎𝑚

𝑚= 1.8%

Should compare with “non-L0” detector

Page 25: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Estimated TM Yield @ 6.6 GeV

• Initial 6.6 GeV trigger cuts<seedEnergyLow> 300 MeV

<minHitCount> 2<pairCoincidence> 3ns

<clusterEnergyLow> 150 MeV<clusterEnergyHigh> 4.2 GeV

<energySumLow> 1.800 GeV<energySumHigh> 6 GeV

<energyDifferenceHigh> 3.3 GeV

<coplanarityHigh> 35 deg<energySlopeParamF> 0.0055 GeV/mm

<energySlopeLow> 700 MeV

Events generated/month:Radiative 1S only: 33.13 eventsRadiative + 3g: 168.36 events

Page 26: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Estimated TM Yield @ 6.6 GeV

• Initial 6.6 GeV trigger cuts<seedEnergyLow> 300 MeV

<minHitCount> 2<pairCoincidence> 3ns

<clusterEnergyLow> 150 MeV<clusterEnergyHigh> 4.2 GeV

<energySumLow> 1.800 GeV<energySumHigh> 6 GeV

<energyDifferenceHigh> 3.3 GeV

<coplanarityHigh> 35 deg<energySlopeParamF> 0.0055 GeV/mm

<energySlopeLow> 700 MeV

Events generated/month:Radiative 1S only: 33.13 eventsRadiative + 3g: 168.36 events

True Muonium trigger acceptance91355/470000 = 19.43%

+ Tracking/Vertexing acceptance56004/470000 = 11.91%

Page 27: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Estimated TM Yield @ 6.6 GeV

• Initial 6.6 GeV trigger cuts<seedEnergyLow> 300 MeV

<minHitCount> 2<pairCoincidence> 3ns

<clusterEnergyLow> 150 MeV<clusterEnergyHigh> 4.2 GeV

<energySumLow> 1.800 GeV<energySumHigh> 6 GeV

<energyDifferenceHigh> 3.3 GeV

<coplanarityHigh> 35 deg<energySlopeParamF> 0.0055 GeV/mm

<energySlopeLow> 700 MeV

True Muonium trigger acceptance91355/470000 = 19.43%

+ Tracking/Vertexing acceptance56004/470000 = 11.91%

Number of analyzable TM events/month:Radiative 1S only: 3.94 eventsRadiative + 3g: up to 20.06 events

Events generated/month:Radiative 1S only: 33.13 eventsRadiative + 3g: 168.36 events

This assumes a similar acceptance for 3-photon events,which we can’t actually know without a generator…

Page 28: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Summary and future plans• The bad news

• < 4 events/month accepted, if only looking for the radiative 1S1 state• We are currently only sensitive to the radiative 1S1 state.

• This doesn’t even include analysis cuts• We don’t have a generator for the 3-photon diagram

• The good news• Since the mass is known, the search itself becomes much easier

• Analysis can be tuned to a single mass• No “look-elsewhere effect”• More efficient background studies

• Generator mass cut can be exploited

• The 2S and 2P states can possibly add a few events • only differ by decay length (8x larger lifetime)

• Probing the BH (low 𝑥) region would cement the feasibility of the TM search

Page 29: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Summary and future plans

• What is needed• 6.6 GeV background to analyze, mix, find cuts, etc.

• See if the hodoscope geometry picks up additional events

• What is probably also needed• A way to conduct a search in the Bethe-Heitler region

• simulation of 3-photon events (not trivial)

=/=

Page 30: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Bonus Slides

Page 31: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

True Muonium Production• Muon-antimuon bound state

• Two spin ½ fermions, total spin can add to either 0 or 1

• Two mechanisms for production:• Odd # of photons, spin-1 triplet states, “ortho” (𝑇𝑀 → 𝑒+𝑒−)

• 1-photon: “radiative-like”, 3-photon: “Bethe-Heitler-like” kinematics

• Branching ratio beyond 3-photon diagram makes those yields negligible.

+

Page 32: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Primary Production Cross Sections• Banburski Schuster - arXiv:1206.3961v1 [hep-ph] 18 Jun 2012

Radiative (1-photon) mechanism: 3-photon mechanism:Additional 𝑍2dependence

Page 33: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Expected True Muonium Rate (1S)• Using the production and dissociation cross sections for the 1S state

Where

𝑑𝑁1𝑆𝑑𝑧

= 𝑁𝑒(𝑧)𝜎 𝑒− → 1𝑆

𝜎 1𝑆 → 𝑋− 𝑁1𝑆

𝑧 =𝑙

𝑙11𝑆→𝑋

𝑁𝑒 𝑧 ≈ 𝑁𝑒 =5625 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

2𝑛𝑠

𝑙1𝑆→𝑋 =1

𝑁𝜎𝑏=

1

(6.306 ∗ 1022𝑐𝑚−3)(5.67937 ∗ 10−20𝑐𝑚2)= 2.792 𝜇𝑚

(dissociation length, to all final states)

450 nA for 6.6 GeV

(average distance traveled before breakup)

(atomic density) (breakup cross section)

8𝜇𝑚𝑊 HPS target is ~3x the 1S dissociation length

2S and 2P dissociate more easily in target,by an order of magnitude.

Page 34: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Generated True Muonium 13𝑆 events

𝑀𝑎𝑑𝐺𝑟𝑎𝑝ℎ4 𝐴′𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 > 𝑒+𝑒− , 𝐴𝑙𝑝ℎ𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

:𝑀𝑎𝑠𝑠 = 0.211 𝐺𝑒𝑉

𝑊𝑖𝑑𝑡ℎ = 3.627 ∗ 10−13 𝐺𝑒𝑉𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1

= 4.9349×1017 pb

Page 35: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Banburski-Schuster TM Yield (corrected)

Assumes 1018 incident e-HPS has 7.391* 1018

Page 36: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Secondary Production/Dissociation (target interaction)

• Transfer matrix elements

• Transition cross section (to all other bound states + dissociation)

= 4.90741×1017 pb

0∞𝑑𝑖𝑓𝑓𝑇𝑜𝑡𝐸1𝐺𝑟𝑜𝑢𝑛𝑑 𝑍, 𝑞 𝑑𝑞

0 =:∞

Z2α2/π (1−F[2,0,0,2,0,0,q]) 1/𝒂𝑻𝑴𝟐 ∆[q,Z] ∆[q,Z] q𝑑𝑞

𝑀𝑎𝑑𝐺𝑟𝑎𝑝ℎ4 𝐴′𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 > 𝑒+𝑒− , 𝐴𝑙𝑝ℎ𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

:𝑀𝑎𝑠𝑠 = 0.211 𝐺𝑒𝑉

𝑊𝑖𝑑𝑡ℎ = 3.627 ∗ 10−13 𝐺𝑒𝑉𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1

= 4.9349×1017 pbSimilar for 4.4 and 6.6 GeV

2S state-> all states + dissoc.

Page 37: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Thomas-Fermi-Molier vs. HPS G2 Factors

• Form Factors Thomas-Fermi-Molier:

HPS G2 elastic form factor (used by MG4, ∝ 𝑑𝜎/𝑑𝑥):

Page 38: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

2S and 2P True Muonium States

• Unlike the “primarily produced” 1S state, which survives the target, the 2S and 2P dissociate far more easily in the target.

• Their primary production yields are also an order of magnitude lower.

• The displaced 2S and 2P states will then come from a 1S state transitioning into them within the target (“secondary production”).

• While these states are difficult to detect, the 2P state is able to transition to additional 1S states that may survive the target, contributing to its overall yield.

Page 39: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Secondary Production/Dissociation (target interaction)

• Transfer matrix elements

• Transition cross section (to all other bound states + dissociation)

= 5.67937×1016 pb

0∞𝑑𝑖𝑓𝑓𝑇𝑜𝑡𝐸1𝐺𝑟𝑜𝑢𝑛𝑑 𝑍, 𝑞 𝑑𝑞:=

0∞

Z2α2/π (1−F[1,0,0,1,0,0,q]) 1/𝒂𝑻𝑴𝟐 ∆[q,Z] ∆[q,Z] q𝑑𝑞

න0

∞Z2α2/π (1−F[1,0,0,1,0,0,q]) 1/𝒂𝟎

𝟐 ∆0[q,Z] ∆0[q,Z]

q /(127.9/137)^2q𝑑𝑞= 6.88469 ×1018 pb

Page 40: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Secondary Production/Dissociation (target interaction)

• Transfer matrix elements

• Transition cross section (to all other bound states + dissociation)

= 5.67937×1016 pb

0∞𝑑𝑖𝑓𝑓𝑇𝑜𝑡𝐸1𝐺𝑟𝑜𝑢𝑛𝑑 𝑍, 𝑞 𝑑𝑞:=

0∞

Z2α2/π (1−F[1,0,0,1,0,0,q]) 1/𝒂𝑻𝑴𝟐 ∆[q,Z] ∆[q,Z] q𝑑𝑞

න0

∞Z2α2/π (1−F[1,0,0,1,0,0,q]) 1/𝒂𝟎

𝟐 ∆0[q,Z] ∆0[q,Z]

∗ ∆HPS[q,Z] /(127.9/137)^2 q𝑑𝑞= 4.13904×1018 pb

Page 41: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Secondary Production/Dissociation (target interaction)

• Transfer matrix elements

• Transition cross section (to all other bound states + dissociation)

= 5.67937×1016 pb

0∞𝑑𝑖𝑓𝑓𝑇𝑜𝑡𝐸1𝐺𝑟𝑜𝑢𝑛𝑑 𝑍, 𝑞 𝑑𝑞:=

0∞

Z2α2/π (1−F[1,0,0,1,0,0,q]) 1/𝒂𝑻𝑴𝟐 ∆[q,Z] ∆[q,Z] q𝑑𝑞

න0

∞Z2α2/π (1−F[1,0,0,1,0,0,q]) 1/𝒂𝑻𝑴

𝟐 ∆[q,Z] ∆[q,Z]

∗ ∆HPS[q,Z] /(127.9/137)^2 q𝑑𝑞= 2.34739×1017 pb

Page 42: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Secondary Production/Dissociation (target interaction)

• Transfer matrix elements

• Transition cross section (to all other bound states + dissociation)

= 5.67937×1016 pb

0∞𝑑𝑖𝑓𝑓𝑇𝑜𝑡𝐸1𝐺𝑟𝑜𝑢𝑛𝑑 𝑍, 𝑞 𝑑𝑞

0 =:∞

Z2α2/π (1−F[1,0,0,1,0,0,q]) 1/𝒂𝑻𝑴𝟐 ∆[q,Z] ∆[q,Z] q𝑑𝑞

𝑀𝑎𝑑𝐺𝑟𝑎𝑝ℎ4 𝐴′𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 > 𝑒+𝑒− , 𝐴𝑙𝑝ℎ𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛

:𝑀𝑎𝑠𝑠 = 0.211 𝐺𝑒𝑉

𝑊𝑖𝑑𝑡ℎ = 3.627 ∗ 10−13 𝐺𝑒𝑉𝐸𝑝𝑠𝑖𝑙𝑜𝑛 = 1

= 4.9349×1017 pbSimilar for 4.4 and 6.6 GeV

1S state-> all states + dissoc.

Page 43: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

TM Theory vs. MadGraph A’ generator XS• If MadGraph assumes no state transitions, only 1S production and dissociation of a hydrogen-like atom,

correcting for α in MadGraph4:

𝑀𝐺4 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑇𝑀 𝑇ℎ𝑒𝑜𝑟𝑦 (1𝑆 → 𝑒+𝑒−)=

4.9349 ∗ 1017 𝑝𝑏

2.21044 ∗ 1016 𝑝𝑏= 22.32

• If also using HPS’s G2 form factor for A’ production:

𝑀𝐺4 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑇𝑀 𝑇ℎ𝑒𝑜𝑟𝑦 (1𝑆 → 𝑒+𝑒−)) + 𝐻𝑃𝑆 𝐹𝐹=4.9349 ∗ 1017 𝑝𝑏

2.0005 ∗ 1017 𝑝𝑏= 2.466

• If Assuming all state transitions + dissociation, not just 1S

𝑀𝐺4 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑

𝑇𝑀 𝑇ℎ𝑒𝑜𝑟𝑦(𝐴𝑙𝑙 → 𝑒+𝑒−) + 𝐻𝑃𝑆 𝐹𝐹=

4.9349 ∗ 1017 𝑝𝑏

2.34739 ∗ 1017 𝑝𝑏= 2.10

Page 44: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Integrated Production Cross Section (radiative)

Page 45: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

Cluster hit times

Page 46: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝
Page 47: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝
Page 48: True Muonium Search at 4.4 and 6.6 GeV · 2018. 5. 24. · Thomas-Fermi-Molier vs. HPS G2 Factors •Form Factors Thomas-Fermi-Molier: HPS G2 elastic form factor (used by MG4, ∝

clusterAngle1 = atan(position1[0]/position1[1])clusterAngle2 = atan(position2[0]/position2[1])