Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve...

94
Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University Conference in Honor of Ioannis Karatzas Columbia University June 4–8, 2012 1 / 94

Transcript of Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve...

Page 1: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Trivariate Density Revisited

Steven E. ShreveCarnegie Mellon University

–Conference in Honor of Ioannis Karatzas

Columbia UniversityJune 4–8, 2012

June 1, 2012

1 / 94

Page 2: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Outline

Rank-based diffusion

Bang-bang control

Trivariate density

Personal reflections

2 / 94

Page 3: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Rank-based diffusion

E. R. Fernholz, T. Ichiba, I. Karatzas & V. Prokaj, Planardiffusions with rank-based characteristics and perturbed Tanakaequation, Probability Theory and Related Fields, to appear.

dX1 = −h dt + ρ dB1

dX2 = g dt + σ dB2

dX1 = g dt + σ dB1

dX2 = −h dt + ρ dB2

ρ2 + σ2 = 1g + h > 0

B1, B2 independent Br. motions

3 / 94

Page 4: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Remarks

Karatzas, et. al. examine:

I Weak and strong existence and uniqueness in law;

I Properties of X1 ∨ X2 and X1 ∧ X2;

I The reversed dynamics of (X1,X2);

I Transition probabilities (X1,X2).

4 / 94

Page 5: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Remarks

Karatzas, et. al. examine:

I Weak and strong existence and uniqueness in law;

I Properties of X1 ∨ X2 and X1 ∧ X2;

I The reversed dynamics of (X1,X2);

I Transition probabilities (X1,X2).

5 / 94

Page 6: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The difference processDefine

Y (t) = X1(t)− X2(t).

Then

dY = lI{Y≤0}(g + h) dt − lI{Y>0}(g + h) dt

+lI{Y≤0}σ dB1 − lI{Y≤0}ρ dB2 + lI{Y>0}ρ dB1 − lI{Y>0}σ dB2

= −λ sgn(Y (t)

)dt + dW ,

where

λ = g + h > 0,

dW = σ(lI{Y≤0} dB1 − lI{Y>0} dB2

)︸ ︷︷ ︸dW1

+ρ(lI{Y>0} dB1 − lI{Y≤0} dB2

)︸ ︷︷ ︸dW2

.

6 / 94

Page 7: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The difference processDefine

Y (t) = X1(t)− X2(t).

Then

dY = lI{Y≤0}(g + h) dt − lI{Y>0}(g + h) dt

+lI{Y≤0}σ dB1 − lI{Y≤0}ρ dB2 + lI{Y>0}ρ dB1 − lI{Y>0}σ dB2

= −λ sgn(Y (t)

)dt + dW ,

where

λ = g + h > 0,

dW = σ(lI{Y≤0} dB1 − lI{Y>0} dB2

)︸ ︷︷ ︸dW1

+ρ(lI{Y>0} dB1 − lI{Y≤0} dB2

)︸ ︷︷ ︸dW2

.

7 / 94

Page 8: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The difference processDefine

Y (t) = X1(t)− X2(t).

Then

dY = lI{Y≤0}(g + h) dt − lI{Y>0}(g + h) dt

+lI{Y≤0}σ dB1 − lI{Y≤0}ρ dB2 + lI{Y>0}ρ dB1 − lI{Y>0}σ dB2

= −λ sgn(Y (t)

)dt + dW ,

where

λ = g + h > 0,

dW = σ(lI{Y≤0} dB1 − lI{Y>0} dB2

)︸ ︷︷ ︸dW1

+ρ(lI{Y>0} dB1 − lI{Y≤0} dB2

)︸ ︷︷ ︸dW2

.

8 / 94

Page 9: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The difference processDefine

Y (t) = X1(t)− X2(t).

Then

dY = lI{Y≤0}(g + h) dt − lI{Y>0}(g + h) dt

+lI{Y≤0}σ dB1 − lI{Y≤0}ρ dB2 + lI{Y>0}ρ dB1 − lI{Y>0}σ dB2

= −λ sgn(Y (t)

)dt + dW ,

where

λ = g + h > 0,

dW = σ(lI{Y≤0} dB1 − lI{Y>0} dB2

)︸ ︷︷ ︸dW1

+ρ(lI{Y>0} dB1 − lI{Y≤0} dB2

)︸ ︷︷ ︸dW2

.

9 / 94

Page 10: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The difference processDefine

Y (t) = X1(t)− X2(t).

Then

dY = lI{Y≤0}(g + h) dt − lI{Y>0}(g + h) dt

+lI{Y≤0}σ dB1 − lI{Y≤0}ρ dB2 + lI{Y>0}ρ dB1 − lI{Y>0}σ dB2

= −λ sgn(Y (t)

)dt + dW ,

where

λ = g + h > 0,

dW = σ(lI{Y≤0} dB1 − lI{Y>0} dB2

)︸ ︷︷ ︸dW1

+ρ(lI{Y>0} dB1 − lI{Y≤0} dB2

)︸ ︷︷ ︸dW2

.

10 / 94

Page 11: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The sum processDefine

Z (t) = X1(t) + X2(t).

Then

dZ = (g − h) dt + lI{Y≤0}σ dB1 + lI{Y≤0}ρ dB2

+lI{Y>0}ρ dB1 + lI{Y>0}σ dB2

= ν dt + dV ,

where

ν = g − h,

dV = σ(lI{Y≤0} dB1 + lI{Y>0} dB2

)︸ ︷︷ ︸dV1

+ρ(lI{Y>0} dB1 + lI{Y≤0} dB2

)︸ ︷︷ ︸dV2

.

11 / 94

Page 12: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The sum processDefine

Z (t) = X1(t) + X2(t).

Then

dZ = (g − h) dt + lI{Y≤0}σ dB1 + lI{Y≤0}ρ dB2

+lI{Y>0}ρ dB1 + lI{Y>0}σ dB2

= ν dt + dV ,

where

ν = g − h,

dV = σ(lI{Y≤0} dB1 + lI{Y>0} dB2

)︸ ︷︷ ︸dV1

+ρ(lI{Y>0} dB1 + lI{Y≤0} dB2

)︸ ︷︷ ︸dV2

.

12 / 94

Page 13: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The sum processDefine

Z (t) = X1(t) + X2(t).

Then

dZ = (g − h) dt + lI{Y≤0}σ dB1 + lI{Y≤0}ρ dB2

+lI{Y>0}ρ dB1 + lI{Y>0}σ dB2

= ν dt + dV ,

where

ν = g − h,

dV = σ(lI{Y≤0} dB1 + lI{Y>0} dB2

)︸ ︷︷ ︸dV1

+ρ(lI{Y>0} dB1 + lI{Y≤0} dB2

)︸ ︷︷ ︸dV2

.

13 / 94

Page 14: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The sum processDefine

Z (t) = X1(t) + X2(t).

Then

dZ = (g − h) dt + lI{Y≤0}σ dB1 + lI{Y≤0}ρ dB2

+lI{Y>0}ρ dB1 + lI{Y>0}σ dB2

= ν dt + dV ,

where

ν = g − h,

dV = σ(lI{Y≤0} dB1 + lI{Y>0} dB2

)︸ ︷︷ ︸dV1

+ρ(lI{Y>0} dB1 + lI{Y≤0} dB2

)︸ ︷︷ ︸dV2

.

14 / 94

Page 15: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

The sum processDefine

Z (t) = X1(t) + X2(t).

Then

dZ = (g − h) dt + lI{Y≤0}σ dB1 + lI{Y≤0}ρ dB2

+lI{Y>0}ρ dB1 + lI{Y>0}σ dB2

= ν dt + dV ,

where

ν = g − h,

dV = σ(lI{Y≤0} dB1 + lI{Y>0} dB2

)︸ ︷︷ ︸dV1

+ρ(lI{Y>0} dB1 + lI{Y≤0} dB2

)︸ ︷︷ ︸dV2

.

15 / 94

Page 16: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Summary

X1(t) + X2(t) = Z (t)

= X1(0) + X2(0) + νt + V (t),

X1(t)− X2(t) = Y (t)

= X1(0) + X2(0)− λ∫ t

0sgn(Y (s)

)ds + W (t),

where V and W are correlated Brownian motions.

I To determine transition probabilities for (X1,X2), it suffices todetermine transition probabilites for (Z ,Y ).

I (Z ,W ) is a Gaussian process.I Y is determined by W by

dY (t) = −λ sgn(Y (t)

)dt + dW (t).

I It suffices to determine the distribution of (W (t),Y (t)).

16 / 94

Page 17: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Summary

X1(t) + X2(t) = Z (t)

= X1(0) + X2(0) + νt + V (t),

X1(t)− X2(t) = Y (t)

= X1(0) + X2(0)− λ∫ t

0sgn(Y (s)

)ds + W (t),

where V and W are correlated Brownian motions.

I To determine transition probabilities for (X1,X2), it suffices todetermine transition probabilites for (Z ,Y ).

I (Z ,W ) is a Gaussian process.I Y is determined by W by

dY (t) = −λ sgn(Y (t)

)dt + dW (t).

I It suffices to determine the distribution of (W (t),Y (t)).

17 / 94

Page 18: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Summary

X1(t) + X2(t) = Z (t)

= X1(0) + X2(0) + νt + V (t),

X1(t)− X2(t) = Y (t)

= X1(0) + X2(0)− λ∫ t

0sgn(Y (s)

)ds + W (t),

where V and W are correlated Brownian motions.

I To determine transition probabilities for (X1,X2), it suffices todetermine transition probabilites for (Z ,Y ).

I (Z ,W ) is a Gaussian process.I Y is determined by W by

dY (t) = −λ sgn(Y (t)

)dt + dW (t).

I It suffices to determine the distribution of (W (t),Y (t)).

18 / 94

Page 19: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Summary

X1(t) + X2(t) = Z (t)

= X1(0) + X2(0) + νt + V (t),

X1(t)− X2(t) = Y (t)

= X1(0) + X2(0)− λ∫ t

0sgn(Y (s)

)ds + W (t),

where V and W are correlated Brownian motions.

I To determine transition probabilities for (X1,X2), it suffices todetermine transition probabilites for (Z ,Y ).

I (Z ,W ) is a Gaussian process.I Y is determined by W by

dY (t) = −λ sgn(Y (t)

)dt + dW (t).

I It suffices to determine the distribution of (W (t),Y (t)).

19 / 94

Page 20: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Bang-bang control

Minimize

E∫ ∞

0e−tX 2

t dt,

Subject to

Xt = x +

∫ t

0us ds + Wt , a ≤ ut ≤ b, t ≥ 0.

Benes, Shepp & Witsenhausen (1980): Solution is ut = f (Xt),where

f (x) =

{b, if x < δ,a, if x ≥ δ,

and δ = (√

b2 + 2 + b)−1 − (√

a2 + 2− a)−1.What is the transition density for the controlled process X ?(Benes, et. al. computed its Laplace transform.)

20 / 94

Page 21: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Bang-bang control

Minimize

E∫ ∞

0e−tX 2

t dt,

Subject to

Xt = x +

∫ t

0us ds + Wt , a ≤ ut ≤ b, t ≥ 0.

Benes, Shepp & Witsenhausen (1980): Solution is ut = f (Xt),where

f (x) =

{b, if x < δ,a, if x ≥ δ,

and δ = (√

b2 + 2 + b)−1 − (√

a2 + 2− a)−1.

What is the transition density for the controlled process X ?(Benes, et. al. computed its Laplace transform.)

21 / 94

Page 22: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Bang-bang control

Minimize

E∫ ∞

0e−tX 2

t dt,

Subject to

Xt = x +

∫ t

0us ds + Wt , a ≤ ut ≤ b, t ≥ 0.

Benes, Shepp & Witsenhausen (1980): Solution is ut = f (Xt),where

f (x) =

{b, if x < δ,a, if x ≥ δ,

and δ = (√

b2 + 2 + b)−1 − (√

a2 + 2− a)−1.What is the transition density for the controlled process X ?(Benes, et. al. computed its Laplace transform.)

22 / 94

Page 23: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by GirsanovCompute the transition density for X , where

Xt = x +

∫ t

0f (Xs) ds + Wt .

Start with a probability measure PX under which X is a Brownianmotion. Define W by

Wt = Xt − x −∫ t

0f (Xs) ds.

Change to a probability measure P under which W is a Brownianmotion. Compute the transition density for X under P.

P{Xt ∈ B} = EX

[lI{Xt∈B}

dPdPX

∣∣∣∣Ft

],

where

dPdPX

∣∣∣∣Ft

= exp

[∫ t

0f (Xs) dXs −

1

2

∫ t

0f 2(Xs) ds

].

23 / 94

Page 24: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by GirsanovCompute the transition density for X , where

Xt = x +

∫ t

0f (Xs) ds + Wt .

Start with a probability measure PX under which X is a Brownianmotion. Define W by

Wt = Xt − x −∫ t

0f (Xs) ds.

Change to a probability measure P under which W is a Brownianmotion. Compute the transition density for X under P.

P{Xt ∈ B} = EX

[lI{Xt∈B}

dPdPX

∣∣∣∣Ft

],

where

dPdPX

∣∣∣∣Ft

= exp

[∫ t

0f (Xs) dXs −

1

2

∫ t

0f 2(Xs) ds

].

24 / 94

Page 25: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by GirsanovCompute the transition density for X , where

Xt = x +

∫ t

0f (Xs) ds + Wt .

Start with a probability measure PX under which X is a Brownianmotion. Define W by

Wt = Xt − x −∫ t

0f (Xs) ds.

Change to a probability measure P under which W is a Brownianmotion. Compute the transition density for X under P.

P{Xt ∈ B} = EX

[lI{Xt∈B}

dPdPX

∣∣∣∣Ft

],

where

dPdPX

∣∣∣∣Ft

= exp

[∫ t

0f (Xs) dXs −

1

2

∫ t

0f 2(Xs) ds

].

25 / 94

Page 26: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by GirsanovCompute the transition density for X , where

Xt = x +

∫ t

0f (Xs) ds + Wt .

Start with a probability measure PX under which X is a Brownianmotion. Define W by

Wt = Xt − x −∫ t

0f (Xs) ds.

Change to a probability measure P under which W is a Brownianmotion. Compute the transition density for X under P.

P{Xt ∈ B} = EX

[lI{Xt∈B}

dPdPX

∣∣∣∣Ft

],

where

dPdPX

∣∣∣∣Ft

= exp

[∫ t

0f (Xs) dXs −

1

2

∫ t

0f 2(Xs) ds

].

26 / 94

Page 27: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by Girsanov (continued)To compute P{Xt ∈ B}, we need the joint distribution of

Xt ,

∫ t

0f (Xs) dXs ,

∫ t

0f 2(Xs) ds.

Assume without loss of generality that δ = 0. Define

F (x) =

∫ x

0f (ξ) dξ =

{bx , if x ≤ 0,ax , if x ≥ 0.

Tanaka’s formula implies

F (Xt) =

∫ t

0f (Xs) dXs +

1

2(a− b)LX

t

so ∫ t

0f (Xs) dXs = F (Xt)−

1

2(a− b)LX

t .

We need the joint distribution of

Xt , LXt ,

∫ t

0f 2(Xs) ds.

27 / 94

Page 28: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by Girsanov (continued)To compute P{Xt ∈ B}, we need the joint distribution of

Xt ,

∫ t

0f (Xs) dXs ,

∫ t

0f 2(Xs) ds.

Assume without loss of generality that δ = 0. Define

F (x) =

∫ x

0f (ξ) dξ =

{bx , if x ≤ 0,ax , if x ≥ 0.

Tanaka’s formula implies

F (Xt) =

∫ t

0f (Xs) dXs +

1

2(a− b)LX

t

so ∫ t

0f (Xs) dXs = F (Xt)−

1

2(a− b)LX

t .

We need the joint distribution of

Xt , LXt ,

∫ t

0f 2(Xs) ds.

28 / 94

Page 29: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by Girsanov (continued)To compute P{Xt ∈ B}, we need the joint distribution of

Xt ,

∫ t

0f (Xs) dXs ,

∫ t

0f 2(Xs) ds.

Assume without loss of generality that δ = 0. Define

F (x) =

∫ x

0f (ξ) dξ =

{bx , if x ≤ 0,ax , if x ≥ 0.

Tanaka’s formula implies

F (Xt) =

∫ t

0f (Xs) dXs +

1

2(a− b)LX

t

so ∫ t

0f (Xs) dXs = F (Xt)−

1

2(a− b)LX

t .

We need the joint distribution of

Xt , LXt ,

∫ t

0f 2(Xs) ds.

29 / 94

Page 30: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by Girsanov (continued)

Define

Γ+(t) =

∫ t

0lI(0,∞)

(X (s)

)ds,

Γ−(t) =

∫ t

0lI(−∞,0)

(X (s)

)ds = t − Γ+(t).

Then∫ t

0f 2(Xs) ds = b2Γ−(t) + a2Γ+(t) = b2t + (a2 − b2)Γ+(t).

We need the joint distribution of

Xt , LXt , Γ+(t) =

∫ t

0lI(0,∞)(Xs) ds,

where X is a Brownian motion.

30 / 94

Page 31: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by Girsanov (continued)

Define

Γ+(t) =

∫ t

0lI(0,∞)

(X (s)

)ds,

Γ−(t) =

∫ t

0lI(−∞,0)

(X (s)

)ds = t − Γ+(t).

Then∫ t

0f 2(Xs) ds = b2Γ−(t) + a2Γ+(t) = b2t + (a2 − b2)Γ+(t).

We need the joint distribution of

Xt , LXt , Γ+(t) =

∫ t

0lI(0,∞)(Xs) ds,

where X is a Brownian motion.

31 / 94

Page 32: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Transition density by Girsanov (continued)

Define

Γ+(t) =

∫ t

0lI(0,∞)

(X (s)

)ds,

Γ−(t) =

∫ t

0lI(−∞,0)

(X (s)

)ds = t − Γ+(t).

Then∫ t

0f 2(Xs) ds = b2Γ−(t) + a2Γ+(t) = b2t + (a2 − b2)Γ+(t).

We need the joint distribution of

Xt , LXt , Γ+(t) =

∫ t

0lI(0,∞)(Xs) ds,

where X is a Brownian motion.

32 / 94

Page 33: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Trivariate density

Theorem (Karatzas & Shreve (1984))

Let W be a Brownian motion, let L be its local time at zero, andlet

Γ+(t) ,∫ t

0lI(0,∞)(Ws) ds

denote the occupation time of the right half-line. Then for a ≤ 0,b ≥ 0, and 0 < t < T ,

P{WT ∈ da, LT ∈ db, Γ+(T ) ∈ dt}

=b(b − a)

π√

t3(T − t)3exp

[−b2

2t− (b − a)2

2(T − t)

]da db dt.

33 / 94

Page 34: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

RemarkBecause the occupation time of the left half-line is

Γ−(T ) ,∫ T

0lI(−∞,0)(Wt) dt = T − Γ+(T ),

we also know P{WT ∈ da, LT ∈ db, Γ−(T ) ∈ dt} for a ≤ 0, b ≥ 0,and 0 < t < T . Applying this to −W , we obtain a formula for

P{WT ∈ da, LT ∈ db, Γ+(T ) ∈ dt}, a ≥ 0, b ≥ 0, 0 < t < T .

34 / 94

Page 35: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Classic trivariate density

Theorem (Levy (1948))

Let W be a Brownian motion, let MT = max0≤t≤T Wt , and let θTbe the (almost surely unique) time when W attains its maximumon [0,T ]. Then for a ∈ R, b ≥ max{a, 0}, and 0 < t < T ,

P{WT ∈ da,MT ∈ db, θT ∈ dt}

=b(b − a)

π√

t3(T − t)3exp

[−b2

2t− (b − a)2

2(T − t)

]da db dt.

The elementary proof uses the reflection principle and the Markovproperty.

35 / 94

Page 36: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Positive part of Brownian motion

W

T t0

T t0

Γ+

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

36 / 94

Page 37: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Positive part of Brownian motion

W

T t0

T t0

Γ+

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

37 / 94

Page 38: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Positive part of Brownian motion

W

T t0

T t0

Γ+

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

38 / 94

Page 39: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Full decomposition

W

T t0

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

W−(t) , −WΓ−1− (t)

T t

39 / 94

Page 40: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Full decomposition

W

T t0

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

W−(t) , −WΓ−1− (t)

T t

40 / 94

Page 41: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Full decomposition

W

T t0

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

W−(t) , −WΓ−1− (t)

T t

41 / 94

Page 42: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Full decomposition

W

T t0

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

W−(t) , −WΓ−1− (t)

T t

42 / 94

Page 43: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Local time

Local time at zero of W :

Lt =1

2

∫ t

0δ0(Ws) ds = lim

ε↓0

1

∫ t

0lI(−ε,ε)(Ws) ds

= limε↓0

1

∫ t

0lI(0,ε)(Ws) ds = lim

ε↓0

1

∫ t

0lI(−ε,0)(Ws) ds.

43 / 94

Page 44: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Tanaka’s formulaTanaka formula:

max{Wt , 0} =

∫ t

0lI(0,∞)(Ws) dWs +

1

2

∫ t

0δ0(Ws) ds

= −Bt + Lt ,

where

Bt = −∫ t

0lI(0,∞)(Ws) dWs , 〈B〉t = Γ+(t).

Then B+(t) , BΓ−1+ (t) is a Brownian motion.

Time-changed Tanaka formula:

W+(t) = −B+(t) + L+(t),

where L+(t) = LΓ−1+ (t).

Conclusion: W+ is a reflected Brownian motion. It is the Brownianmotion −B+ plus the nondecreasing process L+ that grows onlywhen W+ is at zero.

44 / 94

Page 45: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Tanaka’s formulaTanaka formula:

max{Wt , 0} =

∫ t

0lI(0,∞)(Ws) dWs +

1

2

∫ t

0δ0(Ws) ds

= −Bt + Lt ,

where

Bt = −∫ t

0lI(0,∞)(Ws) dWs ,

〈B〉t = Γ+(t).

Then B+(t) , BΓ−1+ (t) is a Brownian motion.

Time-changed Tanaka formula:

W+(t) = −B+(t) + L+(t),

where L+(t) = LΓ−1+ (t).

Conclusion: W+ is a reflected Brownian motion. It is the Brownianmotion −B+ plus the nondecreasing process L+ that grows onlywhen W+ is at zero.

45 / 94

Page 46: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Tanaka’s formulaTanaka formula:

max{Wt , 0} =

∫ t

0lI(0,∞)(Ws) dWs +

1

2

∫ t

0δ0(Ws) ds

= −Bt + Lt ,

where

Bt = −∫ t

0lI(0,∞)(Ws) dWs , 〈B〉t = Γ+(t).

Then B+(t) , BΓ−1+ (t) is a Brownian motion.

Time-changed Tanaka formula:

W+(t) = −B+(t) + L+(t),

where L+(t) = LΓ−1+ (t).

Conclusion: W+ is a reflected Brownian motion. It is the Brownianmotion −B+ plus the nondecreasing process L+ that grows onlywhen W+ is at zero.

46 / 94

Page 47: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Tanaka’s formulaTanaka formula:

max{Wt , 0} =

∫ t

0lI(0,∞)(Ws) dWs +

1

2

∫ t

0δ0(Ws) ds

= −Bt + Lt ,

where

Bt = −∫ t

0lI(0,∞)(Ws) dWs , 〈B〉t = Γ+(t).

Then B+(t) , BΓ−1+ (t) is a Brownian motion.

Time-changed Tanaka formula:

W+(t) = −B+(t) + L+(t),

where L+(t) = LΓ−1+ (t).

Conclusion: W+ is a reflected Brownian motion. It is the Brownianmotion −B+ plus the nondecreasing process L+ that grows onlywhen W+ is at zero.

47 / 94

Page 48: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Tanaka’s formulaTanaka formula:

max{Wt , 0} =

∫ t

0lI(0,∞)(Ws) dWs +

1

2

∫ t

0δ0(Ws) ds

= −Bt + Lt ,

where

Bt = −∫ t

0lI(0,∞)(Ws) dWs , 〈B〉t = Γ+(t).

Then B+(t) , BΓ−1+ (t) is a Brownian motion.

Time-changed Tanaka formula:

W+(t) = −B+(t) + L+(t),

where L+(t) = LΓ−1+ (t).

Conclusion: W+ is a reflected Brownian motion. It is the Brownianmotion −B+ plus the nondecreasing process L+ that grows onlywhen W+ is at zero.

48 / 94

Page 49: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Tanaka’s formulaTanaka formula:

max{Wt , 0} =

∫ t

0lI(0,∞)(Ws) dWs +

1

2

∫ t

0δ0(Ws) ds

= −Bt + Lt ,

where

Bt = −∫ t

0lI(0,∞)(Ws) dWs , 〈B〉t = Γ+(t).

Then B+(t) , BΓ−1+ (t) is a Brownian motion.

Time-changed Tanaka formula:

W+(t) = −B+(t) + L+(t),

where L+(t) = LΓ−1+ (t).

Conclusion: W+ is a reflected Brownian motion. It is the Brownianmotion −B+ plus the nondecreasing process L+ that grows onlywhen W+ is at zero.

49 / 94

Page 50: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Skorohod representation

Time-changed Tanaka formula:

W+(t) = −B+(t) + L+(t).

Skorohod representation:The nondecreasing process added to −B+ that grows only whenW+ = 0 is

L+(t) = max0≤s≤t

B+(s).

In particular,

B+(t) = −W+(t) + L+(t) = −W+(t) + max0≤s≤t

B+(s).

50 / 94

Page 51: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+

B+(t) = −W+(t) + L+(t) = −W+(t) + max0≤s≤t

B+(s).

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

−W+

B+ L+(T ) = max0≤t≤Γ+(t) B+(t)

51 / 94

Page 52: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+

B+(t) = −W+(t) + L+(t) = −W+(t) + max0≤s≤t

B+(s).

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

−W+

B+ L+(T ) = max0≤t≤Γ+(t) B+(t)

52 / 94

Page 53: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+

B+(t) = −W+(t) + L+(t) = −W+(t) + max0≤s≤t

B+(s).

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

−W+

B+

L+(T ) = max0≤t≤Γ+(t) B+(t)

53 / 94

Page 54: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+

B+(t) = −W+(t) + L+(t) = −W+(t) + max0≤s≤t

B+(s).

Γ+(T ) t0

W+(t) , WΓ−1+ (t)

t0

−W+

B+ L+(T ) = max0≤t≤Γ+(t) B+(t)

54 / 94

Page 55: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

55 / 94

Page 56: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

56 / 94

Page 57: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

57 / 94

Page 58: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

58 / 94

Page 59: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

59 / 94

Page 60: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+

B− run backwards

60 / 94

Page 61: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

61 / 94

Page 62: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

62 / 94

Page 63: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

W+ and B+. W− and B−.B+(t) = −W+(t) + L+(t) = −W+(t) + max

0≤s≤tB+(s)

B−(t) = −W−(t) + L−(t) = −W−(t) + max0≤s≤t

B−(s).

Γ+(T ) tT0

W+

W− run backwards

T t0

−W+

−W− run backwards

B+ B− run backwards

Local time L+(T ) = LT time has become the maximum.Γ+(T ) has become the time of the maximum.

63 / 94

Page 64: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Personal reflections

64 / 94

Page 65: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

In the beginning....S. Shreve, Reflected Brownian motion in the “bang-bang” controlof Browian drift, SIAM J. Control Optimization 19, 469–478,(1981).

Acknowledgment in the paper

The author wishes to acknowledge the aid of V. E.Benes, who found an error in some preliminary work onthis subject and suggested the applicability of Tanaka’sformula. He also wishes to thank the referee for pointingout the uniqueness of the transition densitycorresponding to the weak solution in Section 5.

I Work on stochastic control (monotone follower, boundedvariation follower, finite-fuel, ....)

I Work on optimal investment, consumption and duality withJohn Lehoczky, Suresh Sethi, Gan-Lin Xu, Jaksa Cvitanic ....

65 / 94

Page 66: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

In the beginning....S. Shreve, Reflected Brownian motion in the “bang-bang” controlof Browian drift, SIAM J. Control Optimization 19, 469–478,(1981).

Acknowledgment in the paper

The author wishes to acknowledge the aid of V. E.Benes, who found an error in some preliminary work onthis subject and suggested the applicability of Tanaka’sformula. He also wishes to thank the referee for pointingout the uniqueness of the transition densitycorresponding to the weak solution in Section 5.

I Work on stochastic control (monotone follower, boundedvariation follower, finite-fuel, ....)

I Work on optimal investment, consumption and duality withJohn Lehoczky, Suresh Sethi, Gan-Lin Xu, Jaksa Cvitanic ....

66 / 94

Page 67: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

In the beginning....S. Shreve, Reflected Brownian motion in the “bang-bang” controlof Browian drift, SIAM J. Control Optimization 19, 469–478,(1981).

Acknowledgment in the paper

The author wishes to acknowledge the aid of V. E.Benes, who found an error in some preliminary work onthis subject and suggested the applicability of Tanaka’sformula. He also wishes to thank the referee for pointingout the uniqueness of the transition densitycorresponding to the weak solution in Section 5.

I Work on stochastic control (monotone follower, boundedvariation follower, finite-fuel, ....)

I Work on optimal investment, consumption and duality withJohn Lehoczky, Suresh Sethi, Gan-Lin Xu, Jaksa Cvitanic ....

67 / 94

Page 68: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

In the beginning....S. Shreve, Reflected Brownian motion in the “bang-bang” controlof Browian drift, SIAM J. Control Optimization 19, 469–478,(1981).

Acknowledgment in the paper

The author wishes to acknowledge the aid of V. E.Benes, who found an error in some preliminary work onthis subject and suggested the applicability of Tanaka’sformula. He also wishes to thank the referee for pointingout the uniqueness of the transition densitycorresponding to the weak solution in Section 5.

I Work on stochastic control (monotone follower, boundedvariation follower, finite-fuel, ....)

I Work on optimal investment, consumption and duality withJohn Lehoczky, Suresh Sethi, Gan-Lin Xu, Jaksa Cvitanic ....

68 / 94

Page 69: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

....and then THE BOOK,

69 / 94

Page 70: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

....and then THE BOOK,

70 / 94

Page 71: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

and mathematical finance took off.

71 / 94

Page 72: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

and mathematical finance took off.

72 / 94

Page 73: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis Karatzas

I Greek culture10. Macedonia is a province in Greece.

9. All Greeks plan to return home some day, until the opportunityto do so actually arises.

I Spelling8. Lemmata (From the Greek ληµµατα; not commonly used in

West Virginia dialect.)7. Coordinate (Diaeresis: [Ancient Greek] The separate

pronunciation of two vowels in a diphthong.)I Scholarship

6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

73 / 94

Page 74: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

74 / 94

Page 75: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.

9. All Greeks plan to return home some day, until the opportunityto do so actually arises.

I Spelling8. Lemmata (From the Greek ληµµατα; not commonly used in

West Virginia dialect.)7. Coordinate (Diaeresis: [Ancient Greek] The separate

pronunciation of two vowels in a diphthong.)I Scholarship

6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

75 / 94

Page 76: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day,

until the opportunityto do so actually arises.

I Spelling8. Lemmata (From the Greek ληµµατα; not commonly used in

West Virginia dialect.)7. Coordinate (Diaeresis: [Ancient Greek] The separate

pronunciation of two vowels in a diphthong.)I Scholarship

6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

76 / 94

Page 77: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.

I Spelling8. Lemmata (From the Greek ληµµατα; not commonly used in

West Virginia dialect.)7. Coordinate (Diaeresis: [Ancient Greek] The separate

pronunciation of two vowels in a diphthong.)I Scholarship

6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

77 / 94

Page 78: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

78 / 94

Page 79: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata

(From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

79 / 94

Page 80: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

80 / 94

Page 81: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate

(Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

81 / 94

Page 82: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

82 / 94

Page 83: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship

6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

83 / 94

Page 84: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.

5. Revise, revise, revise.I Advising

4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

84 / 94

Page 85: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

85 / 94

Page 86: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising

4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

86 / 94

Page 87: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.

3. Teach students to appreciate the work of others and to revise,revise, revise.

I Administration2. Avoid it.

87 / 94

Page 88: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.

I Administration2. Avoid it.

88 / 94

Page 89: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

89 / 94

Page 90: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Ten things I learned from Ioannis KaratzasI Greek culture

10. Macedonia is a province in Greece.9. All Greeks plan to return home some day, until the opportunity

to do so actually arises.I Spelling

8. Lemmata (From the Greek ληµµατα; not commonly used inWest Virginia dialect.)

7. Coordinate (Diaeresis: [Ancient Greek] The separatepronunciation of two vowels in a diphthong.)

I Scholarship6. Appreciate the work of others.5. Revise, revise, revise.

I Advising4. Choose excellent students.3. Teach students to appreciate the work of others and to revise,

revise, revise.I Administration

2. Avoid it.

90 / 94

Page 91: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Number one

1. A professional colleague who is also a friend is more preciousthan Euros/Drachmae.

Thank you, Yannis,

for all you have done

I for your students,

I for your colleagues,

I for science,

I and for me personally.

91 / 94

Page 92: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Number one

1. A professional colleague who is also a friend is more preciousthan Euros/Drachmae.

Thank you, Yannis,

for all you have done

I for your students,

I for your colleagues,

I for science,

I and for me personally.

92 / 94

Page 93: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Number one

1. A professional colleague who is also a friend is more preciousthan Euros/Drachmae.

Thank you, Yannis,

for all you have done

I for your students,

I for your colleagues,

I for science,

I and for me personally.

93 / 94

Page 94: Trivariate Density Revisited - Columbia University · Trivariate Density Revisited Steven E. Shreve Carnegie Mellon University {Conference in Honor of Ioannis Karatzas Columbia University

Number one

1. A professional colleague who is also a friend is more preciousthan Euros/Drachmae.

Thank you, Yannis,

for all you have done

I for your students,

I for your colleagues,

I for science,

I and for me personally.

94 / 94