TRITON STELLAR OCCULTATION CANDIDATES: 2000...

9
THE ASTRONOMICAL JOURNAL, 119 : 936È944, 2000 February 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. ( TRITON STELLAR OCCULTATION CANDIDATES : 2000È2009 S. W. MCDONALD AND J. L. ELLIOT1 Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 ; mcdonald=mit.edu, jle=mit.edu Received 1999 October 18 ; accepted 1999 November 10 ABSTRACT As part of our ongoing program of predictions and observations of stellar occultations by solar system bodies, we have completed a search for candidates for occultations by Triton over the decade 2000 to 2009. Star positions near TritonÏs projected orbit as determined by the DE405 ephemeris and NEP016 orbit model were measured on (unÐltered) CCD strip scans recorded with the 0.6 m telescope at the George R. Wallace Astrophysical Observatory to a depth of 16th to 18th magnitude, depending on the quality of individual strip scans. Within of the predicted orbit of Triton during this period, 128 stars 1A .0 were found, including 12 stars brighter than 14th magnitude. Only appulses with geocentric minimum separations of less than about will result in an occultation visible from Earth, but potential errors 0A .37 in the ephemeris and in the positions of our candidates preclude accurate prediction of actual occultation events without further astrometry. Key words : astrometry È occultations È planets and satellites : individual (Triton) 1. INTRODUCTION Stellar occultations have been used many times in the past to study the rings and atmospheres of solar system bodies (Elliot, Dunham, & Olkin 1995 ; Elliot & Olkin 1996). The atmosphere of Triton has proved to be particu- larly interesting since from recent stellar occultation data we found that it exhibits an unexpectedly large ellipticity (Elliot et al. 1997) and an increasing pressure since the V oyager encounter (Elliot et al. 1998 ; Sicardy et al. 1998). The large ellipticity is likely due to winds circulating with nearly sonic velocities, while the increasing pressure is caused by a slight warming of the nitrogen surface frost, since this frost is in vapor-pressure equilibrium with the principal atmospheric gas. In order to facilitate continued probing of TritonÏs atmo- sphere with the high spatial resolution a†orded by stellar occultations, we have extended our identiÐcations of poten- tial occultations by Triton (McDonald & Elliot 1992, 1995) into the Ðrst decade of the next century. This paper presents 128 stars measured on CCD strip scans that lie within of 1A .0 the apparent path of Triton over the period of 2000 through 2009. Occultations observed for stars from our previous candidate lists (Table 1) show astrometric errors of a few tenths of an arcsecond, and at TritonÏs distance from Earth, the angles subtended by TritonÏs atmospheric half-light radius and by the radius of Earth are about and 0A .07 0A .30, respectively. Hence, further astrometry of these candidates will be necessary before we can predict which will be involved in an occultation visible from Earth, and an even more extensive astrometric e†ort will be required to predict the path of TritonÏs shadow accurately enough to facilitate observations. 2. OBSERVATIONS AND ANALYSIS This section gives an overview of the analysis procedures we used for this project, focusing on the changes introduced since the last Triton candidate paper (McDonald & Elliot ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ 1 Also Department of Physics, Massachusetts Institute of Technology, and Lowell Observatory. 1995). Some of these procedures have become more automated. The data were recorded with the 61 cm telescope at MITÏs Wallace Astrophysical Observatory, located in Westford, Massachusetts. Our Portable CCD Camera (PCCD ; Buie et al. 1993) has replaced the SNAPSHOT CCD camera (Dunham et al. 1985), which was used for previous candidate searches. Images were taken in strip- scan mode on the PCCD with no Ðlter in order to maximize the number of stars detected. The typical full width at half- maximum of the star images was about 2 pixels, at an image scale of pixel~1. Each strip-scan Ðeld overlapped its 2A .57 neighbors by 50% to get redundant coverage of the entire star Ðeld near TritonÏs orbit (see Fig. 1). Each image was Ñattened in IRAF (Tody 1986) and pro- cessed by IRAFÏs DAOPHOT routines (Stetson 1987) to automatically identify and measure the positions and instrumental magnitudes of stars down to the limiting mag- nitude. Astrometric reduction of the strip scan is begun by visually inspecting the frame and establishing three corre- spondences with stars in the US Naval ObservatoryÏs A2.0 star catalog, which are then used for a preliminary astrom- etric solution. This solution is accurate enough so that all USNO-A2.0 stars detected on the frame (several thousand) can be identiÐed, and a Ðnal astrometric solution is carried out. We Ðnd that the rms residual of the USNO-A2.0 star positions is about We have not found any signiÐcant 0A .25. systematic errors in the USNO-A2.0 catalog, so registering to a large number of stars should give us a good mean reference frame. In previous astrometric analysis of CCD strip scans, we have observed deviations between the observed coordinates of stars on a single scan compared with either a good catalog of star positions or with a mean position taken from numerous observations of the same Ðeld (Dunham, McDonald, & Elliot 1991). These deviations are highly cor- related for neighboring stars. On a CCD strip scan, each star image is exposed for a time interval that depends on its right ascension. Since the right ascension exposed within a strip scan is a linear function of time, a variation in right ascension and declination with respect to right ascension implies a time-dependent error in both coordinates. The 936

Transcript of TRITON STELLAR OCCULTATION CANDIDATES: 2000...

  • THE ASTRONOMICAL JOURNAL, 119 :936È944, 2000 February2000. The American Astronomical Society. All rights reserved. Printed in U.S.A.(

    TRITON STELLAR OCCULTATION CANDIDATES: 2000È2009

    S. W. MCDONALD AND J. L. ELLIOT1Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 ;

    mcdonald=mit.edu, jle=mit.eduReceived 1999 October 18 ; accepted 1999 November 10

    ABSTRACTAs part of our ongoing program of predictions and observations of stellar occultations by solar system

    bodies, we have completed a search for candidates for occultations by Triton over the decade 2000 to2009. Star positions near TritonÏs projected orbit as determined by the DE405 ephemeris and NEP016orbit model were measured on (unÐltered) CCD strip scans recorded with the 0.6 m telescope at theGeorge R. Wallace Astrophysical Observatory to a depth of 16th to 18th magnitude, depending on thequality of individual strip scans. Within of the predicted orbit of Triton during this period, 128 stars1A.0were found, including 12 stars brighter than 14th magnitude. Only appulses with geocentric minimumseparations of less than about will result in an occultation visible from Earth, but potential errors0A.37in the ephemeris and in the positions of our candidates preclude accurate prediction of actualoccultation events without further astrometry.Key words : astrometry È occultations È planets and satellites : individual (Triton)

    1. INTRODUCTION

    Stellar occultations have been used many times in thepast to study the rings and atmospheres of solar systembodies (Elliot, Dunham, & Olkin 1995 ; Elliot & Olkin1996). The atmosphere of Triton has proved to be particu-larly interesting since from recent stellar occultation datawe found that it exhibits an unexpectedly large ellipticity(Elliot et al. 1997) and an increasing pressure since theV oyager encounter (Elliot et al. 1998 ; Sicardy et al. 1998).The large ellipticity is likely due to winds circulating withnearly sonic velocities, while the increasing pressure iscaused by a slight warming of the nitrogen surface frost,since this frost is in vapor-pressure equilibrium with theprincipal atmospheric gas.

    In order to facilitate continued probing of TritonÏs atmo-sphere with the high spatial resolution a†orded by stellaroccultations, we have extended our identiÐcations of poten-tial occultations by Triton (McDonald & Elliot 1992, 1995)into the Ðrst decade of the next century. This paper presents128 stars measured on CCD strip scans that lie within of1A.0the apparent path of Triton over the period of 2000 through2009. Occultations observed for stars from our previouscandidate lists (Table 1) show astrometric errors of a fewtenths of an arcsecond, and at TritonÏs distance from Earth,the angles subtended by TritonÏs atmospheric half-lightradius and by the radius of Earth are about and0A.07 0A.30,respectively. Hence, further astrometry of these candidateswill be necessary before we can predict which will beinvolved in an occultation visible from Earth, and an evenmore extensive astrometric e†ort will be required to predictthe path of TritonÏs shadow accurately enough to facilitateobservations.

    2. OBSERVATIONS AND ANALYSIS

    This section gives an overview of the analysis procedureswe used for this project, focusing on the changes introducedsince the last Triton candidate paper (McDonald & Elliot

    ÈÈÈÈÈÈÈÈÈÈÈÈÈÈÈ1 Also Department of Physics, Massachusetts Institute of Technology,

    and Lowell Observatory.

    1995). Some of these procedures have become moreautomated.

    The data were recorded with the 61 cm telescope atMITÏs Wallace Astrophysical Observatory, located inWestford, Massachusetts. Our Portable CCD Camera(PCCD; Buie et al. 1993) has replaced the SNAPSHOTCCD camera (Dunham et al. 1985), which was used forprevious candidate searches. Images were taken in strip-scan mode on the PCCD with no Ðlter in order to maximizethe number of stars detected. The typical full width at half-maximum of the star images was about 2 pixels, at an imagescale of pixel~1. Each strip-scan Ðeld overlapped its2A.57neighbors by 50% to get redundant coverage of the entirestar Ðeld near TritonÏs orbit (see Fig. 1).

    Each image was Ñattened in IRAF (Tody 1986) and pro-cessed by IRAFÏs DAOPHOT routines (Stetson 1987) toautomatically identify and measure the positions andinstrumental magnitudes of stars down to the limiting mag-nitude. Astrometric reduction of the strip scan is begun byvisually inspecting the frame and establishing three corre-spondences with stars in the US Naval ObservatoryÏs A2.0star catalog, which are then used for a preliminary astrom-etric solution. This solution is accurate enough so that allUSNO-A2.0 stars detected on the frame (several thousand)can be identiÐed, and a Ðnal astrometric solution is carriedout. We Ðnd that the rms residual of the USNO-A2.0 starpositions is about We have not found any signiÐcant0A.25.systematic errors in the USNO-A2.0 catalog, so registeringto a large number of stars should give us a good meanreference frame.

    In previous astrometric analysis of CCD strip scans, wehave observed deviations between the observed coordinatesof stars on a single scan compared with either a goodcatalog of star positions or with a mean position taken fromnumerous observations of the same Ðeld (Dunham,McDonald, & Elliot 1991). These deviations are highly cor-related for neighboring stars. On a CCD strip scan, eachstar image is exposed for a time interval that depends on itsright ascension. Since the right ascension exposed within astrip scan is a linear function of time, a variation in rightascension and declination with respect to right ascensionimplies a time-dependent error in both coordinates. The

    936

  • 21h22h 20h20m20h40m21h21h20m21h40m22h

    -20˚

    -10˚

    -20˚

    -10˚

    -28˚

    -26˚

    -24˚

    -22˚

    -20˚

    -18˚

    -16˚

    -14˚

    -12˚

    -10˚

    -08˚

    -06˚

    δ δ

    β β

    α2α2

    γ γ

    ζ ζ

    ε ε

    θ θ

    ω ω

    ψ ψ

    α1α1

    ι ι

    ι ι

    2424

    ν ν

    3636

    ε ε

    ξ ξ

    µ µ

    κ κ

    ν ν

    ρ ρ

    η η

    µ µ

    4646

    υ υ

    4242

    τ τ

    φ φ

    4141

    π π

    σ σ

    2929

    χ χ 3333

    3030

    1818

    77

    3030

    λ λ

    3737

    1919

    88

    1919

    3535

    3535

    ξ2ξ2

    44

    4444

    1717

    ο ο

    1717

    4545

    AGAG

    AOAO

    2727

    33 ξ1ξ1

    DXDX

    6565

    ο ο

    3131

    CAPRICORNUS

    AQUARIUS

    Right Ascension and Declination [J2000]

    TRITON STELLAR OCCULTATION CANDIDATES 937

    TABLE 1

    RESULTS OF PREVIOUS OCCULTATIONS

    CLOSEST APPROACH CLOSEST APPROACH(candidate search) (observed)

    OCCULTED OCCULTATION Min. Sep. P.A. of Triton Min. Sep. P.A. of Triton DIFFERENCESTAR DATE (arcsec) (deg) (arcsec) (deg) (arcsec) REFERENCES

    Tr60 . . . . . . . 1993 Jul 10 0.02 360 0.03 180 [0.05 1, 2Tr148 . . . . . . 1995 Aug 14 0.42 348 0.28a 348 [0.14 2, 3Tr176 . . . . . . 1997 Jul 18 0.09 162 0.07 342 0.16 3, 4Tr180 . . . . . . 1997 Nov 4 0.06 158 0.21 338 0.27 3, 5

    a Tr148 was discovered to be a double star ; the observed minimum separation is calculated for the center of light.REFERENCES.È(1) McDonald & Elliot 1992 ; (2) Olkin et al. 1997 ; (3) McDonald & Elliot 1995 ; (4) Elliot et al. 2000 ; (5) Elliot et al.

    1998.

    pattern of deviation varies with each frame but generallyexhibits irregular variability on timescales longer than 30 s.The best explanation we have for this e†ect is time-variableatmospheric distortion, which is consistent with both thelocal correlation and the timescale of the e†ect (each star isexposed for 90 s on our strip scans).

    During most of our previous searches for occultationcandidates that used CCD strip scans, we did not have anadequate star catalog to remove the variable deviation, andwe could not take enough images to produce mean starpositions, so we were unable to correct the positions of ouroccultation candidates for the deviation. However, theUSNO-A2.0 catalog is dense enough for this purpose, so wewere able to correct for the deviation in this candidatesearch. After registering each image against the catalog and

    converting the observed star positions into right ascensionand declination, we plotted the remaining residuals fromthe catalog versus right ascension using Mathematica 3.0(Wolfram 1996). We then Ðtted a Fourier series to theresiduals in right ascension, and independently to theresiduals in declination. The resulting functions were sub-tracted from the full set of observed star positions on theimage to produce what we believe is an improved positionfor each star (see Fig. 2). This is of course critically depen-dent on the lack of systematic errors in the USNO-A2.0catalog. If there are systematic errors in the catalog, thismethod will introduce them into our star positions.

    The observed stellar magnitudes were calibrated in asimilar fashion. For most stars we have found that ourunÐltered CCD observations follow the R magnitude scale

    FIG. 1.ÈLayout of strip-scan Ðelds. The odd-numbered Ðelds are depicted, along with a plot of TritonÏs orbit from 2000 through 2009. Even-numberedÐelds overlap the odd-numbered Ðelds by 50% on each side. Each Ðeld is about 15@ wide.

  • TABLE 2

    STRIP SCANS USED IN SEARCH

    MagnitudeStrip Date Limit Notes

    04a . . . . . . 1996 Aug 15 16.5 104b . . . . . . 1996 Aug 6 16.704c . . . . . . 1996 Aug 23 16.7 1, 204d . . . . . . 1998 Aug 22 17.905a . . . . . . 1996 Aug 6 17.705b . . . . . . 1996 Aug 23 17.0 1, 206a . . . . . . 1996 Aug 6 17.0 306b . . . . . . 1996 Aug 23 16.806c . . . . . . 1998 Sep 18 18.107a . . . . . . 1996 Aug 6 17.0 207b . . . . . . 1996 Aug 22 17.107c . . . . . . 1998 Sep 18 17.908a . . . . . . 1996 Aug 7 17.108b . . . . . . 1996 Aug 23 17.1 208c . . . . . . 1998 Sep 18 16.4 109a . . . . . . 1996 Aug 7 16.509b . . . . . . 1996 Aug 23 17.110a . . . . . . 1996 Aug 7 17.110b . . . . . . 1996 Aug 23 17.111a . . . . . . 1996 Aug 7 17.011b . . . . . . 1996 Aug 23 17.312a . . . . . . 1996 Aug 7 17.012b . . . . . . 1996 Aug 23 17.113a . . . . . . 1996 Aug 8 16.513b . . . . . . 1996 Aug 22 17.213c . . . . . . 1996 Sep 4 17.014b . . . . . . 1996 Sep 4 17.2 315a . . . . . . 1996 Aug 8 17.215b . . . . . . 1996 Sep 4 17.2 216a . . . . . . 1996 Aug 9 17.3 116b . . . . . . 1996 Aug 21 17.2 117a . . . . . . 1996 Aug 9 17.817b . . . . . . 1996 Sep 4 17.518a . . . . . . 1996 Aug 9 17.918b . . . . . . 1996 Sep 4 17.6 218c . . . . . . 1998 Aug 22 17.819a . . . . . . 1996 Aug 9 17.619b . . . . . . 1996 Sep 4 17.4 319c . . . . . . 1998 Aug 22 17.620a . . . . . . 1996 Aug 7 17.020b . . . . . . 1996 Sep 4 17.2 320c . . . . . . 1998 Aug 22 17.621a . . . . . . 1996 Aug 8 16.721b . . . . . . 1996 Sep 20 17.821c . . . . . . 1998 Jul 21 15.522a . . . . . . 1996 Aug 8 16.922b . . . . . . 1996 Sep 20 17.722c . . . . . . 1998 Aug 3 17.623a . . . . . . 1996 Aug 8 17.023b . . . . . . 1996 Sep 20 17.623c . . . . . . 1998 Aug 3 18.324a . . . . . . 1996 Aug 8 16.624b . . . . . . 1996 Sep 20 17.624c . . . . . . 1998 Aug 3 18.225a . . . . . . 1996 Aug 9 17.325b . . . . . . 1996 Sep 20 18.125c . . . . . . 1998 Aug 3 17.9 326a . . . . . . 1996 Aug 9 17.326b . . . . . . 1996 Sep 20 17.526c . . . . . . 1998 Aug 3 17.9 327a . . . . . . 1996 Aug 9 16.6 227b . . . . . . 1996 Aug 21 17.427c . . . . . . 1998 Aug 3 18.128a . . . . . . 1996 Aug 12 16.4 128b . . . . . . 1996 Aug 18 16.9 1, 228c . . . . . . 1996 Aug 21 17.428d . . . . . . 1998 Aug 3 18.229b . . . . . . 1996 Aug 21 17.529c . . . . . . 1998 Aug 3 18.1 130a . . . . . . 1996 Aug 19 17.630b . . . . . . 1996 Aug 23 17.130c . . . . . . 1998 Aug 3 17.5 131a . . . . . . 1996 Aug 19 17.3

    TABLE 2ÈContinued

    MagnitudeStrip Date Limit Notes

    31b . . . . . . 1996 Sep 20 17.531c . . . . . . 1998 Jul 21 17.932a . . . . . . 1996 Aug 19 18.232b . . . . . . 1996 Sep 20 17.832c . . . . . . 1998 Aug 2 18.433a . . . . . . 1996 Aug 19 18.033b . . . . . . 1996 Sep 21 17.1 133c . . . . . . 1998 Aug 2 17.734a . . . . . . 1996 Aug 19 18.134b . . . . . . 1996 Sep 21 17.234c . . . . . . 1998 Aug 2 18.235a . . . . . . 1996 Aug 19 17.435b . . . . . . 1996 Sep 21 17.635c . . . . . . 1998 Aug 2 17.936a . . . . . . 1996 Aug 19 18.136b . . . . . . 1996 Sep 21 17.436c . . . . . . 1998 Aug 2 17.937a . . . . . . 1996 Aug 19 17.837b . . . . . . 1996 Sep 21 17.337c . . . . . . 1998 Aug 2 18.038a . . . . . . 1996 Aug 19 17.338b . . . . . . 1996 Aug 21 17.938c . . . . . . 1998 Aug 2 17.639a . . . . . . 1996 Aug 19 18.139b . . . . . . 1996 Sep 21 18.139c . . . . . . 1998 Aug 2 17.740a . . . . . . 1996 Aug 19 18.140b . . . . . . 1996 Sep 21 18.340c . . . . . . 1998 Jul 25 17.841a . . . . . . 1996 Aug 19 18.141b . . . . . . 1996 Sep 21 18.041c . . . . . . 1998 Jul 21 18.142b . . . . . . 1996 Aug 21 17.0 242c . . . . . . 1998 Jul 25 17.5 343a . . . . . . 1996 Aug 20 17.9 143b . . . . . . 1996 Aug 23 16.943c . . . . . . 1996 Sep 21 18.243d . . . . . . 1998 Jul 25 17.8 444a . . . . . . 1996 Aug 20 17.9 1, 244b . . . . . . 1996 Sep 21 18.044c . . . . . . 1998 Jul 25 18.144d . . . . . . 1998 Sep 17 17.045a . . . . . . 1996 Aug 20 18.045b . . . . . . 1996 Sep 21 17.845c . . . . . . 1998 Jul 25 17.646a . . . . . . 1996 Aug 20 17.546b . . . . . . 1996 Sep 21 17.646c . . . . . . 1998 Jul 25 17.547a . . . . . . 1996 Aug 20 17.6 347b . . . . . . 1996 Sep 20 17.447c . . . . . . 1998 Jul 19 17.548a . . . . . . 1996 Aug 20 18.248b . . . . . . 1996 Sep 20 17.548c . . . . . . 1998 Jul 19 18.049a . . . . . . 1996 Aug 20 17.849b . . . . . . 1996 Sep 20 17.249c . . . . . . 1998 Jul 19 17.4 450b . . . . . . 1996 Sep 20 17.350c . . . . . . 1998 Jul 19 17.751a . . . . . . 1996 Aug 20 17.951b . . . . . . 1996 Sep 20 17.151c . . . . . . 1998 Jul 19 17.652a . . . . . . 1996 Aug 20 18.2 352b . . . . . . 1996 Sep 20 17.052c . . . . . . 1998 Jul 19 17.653a . . . . . . 1996 Aug 20 17.2 253b . . . . . . 1996 Sep 21 17.453c . . . . . . 1998 Jul 19 17.553d . . . . . . 1998 Sep 29 17.754d . . . . . . 1998 Jul 19 17.1 5

    NOTES.È(1) High background ([15% ofsaturation) ; (2) part of image washed out ; (3) haze orclouds ; (4) focus problems ; (5) low altitude.

    938

  • TA

    BL

    E3

    PO

    SSIB

    LE

    OC

    CU

    LT

    AT

    ION

    SB

    YT

    RIT

    ON

    CLO

    SEST

    APPR

    OA

    CH

    Min

    imum

    P.A

    .of

    Shad

    owSO

    LA

    RE

    AST

    Sepa

    ration

    Trito

    nV

    eloc

    ity

    CC

    DA

    NG

    LE

    LO

    NG.

    R.A

    .D

    EC

    L.

    DIS

    TA

    NC

    E

    EV

    EN

    TD

    ate

    UT

    (arc

    sec)

    (deg

    )(k

    ms~

    1)M

    AG.

    S/N

    a(d

    eg)

    (deg

    )(J

    2000

    )(J

    2000

    )(A

    U)

    STR

    IPS

    Tr2

    05..

    ..20

    00M

    ar11

    2214

    0.19

    163

    30.6

    17.0

    646

    164

    2032

    3.17

    1[

    1837

    30.4

    130

    .80

    08c,

    09a

    Tr2

    06..

    ..20

    00A

    pr16

    0201

    0.29

    338

    15.0

    17.2

    780

    7420

    3502

    .565

    [18

    2650

    .43

    30.2

    710

    aT

    r207

    ....

    2000

    May

    1910

    560.

    1535

    47.

    917

    .29

    112

    [93

    2035

    27.8

    82[

    1825

    46.7

    629

    .72

    10b

    Tr2

    08..

    ..20

    00Ju

    n7

    2019

    0.81

    178

    9.9

    16.8

    1213

    110

    720

    3435

    .855

    [18

    2841

    .05

    29.4

    410

    a,b,

    11a,

    bT

    r209

    ....

    2000

    Jun

    1700

    290.

    2716

    221

    .317

    .64

    140

    3520

    3358

    .645

    [18

    3121

    .69

    29.3

    309

    a,10

    bT

    r210

    ....

    2000

    Jul4

    0803

    0.30

    340

    25.4

    17.3

    515

    7[

    9620

    3225

    .803

    [18

    3703

    .63

    29.1

    808

    b,c,

    09b

    Tr2

    11..

    ..20

    00Ju

    l18

    2055

    0.05

    174

    20.2

    17.7

    417

    157

    2030

    51.9

    94[

    1842

    29.9

    529

    .11

    08a

    Tr2

    12..

    ..20

    00Ju

    l19

    2235

    0.45

    163

    19.9

    15.5

    2717

    231

    2030

    46.0

    33[

    1842

    46.5

    929

    .11

    08a,

    b,09

    a,b

    Tr2

    13..

    ..20

    00Ju

    l25

    0429

    0.98

    350

    19.6

    16.6

    1017

    7[

    6320

    3010

    .520

    [18

    4458

    .77

    29.1

    007

    b,08

    a,b,

    cT

    r214

    ....

    2000

    Aug

    1713

    320.

    0317

    417

    .916

    .216

    160

    137

    2027

    37.9

    30[

    1854

    13.8

    429

    .16

    06a,

    b,07

    bT

    r215

    ....

    2000

    Aug

    1811

    320.

    9434

    218

    .517

    .74

    159

    166

    2027

    33.3

    89[

    1854

    30.2

    529

    .17

    07c

    Tr2

    16..

    ..20

    00A

    ug22

    1159

    0.50

    355

    20.3

    17.3

    515

    515

    620

    2707

    .934

    [18

    5614

    .55

    29.1

    907

    cT

    r217

    ....

    2000

    Sep

    1520

    050.

    8035

    79.

    314

    .781

    131

    1020

    2508

    .771

    [19

    0319

    .91

    29.4

    405

    a,b,

    06a,

    bT

    r218

    ....

    2000

    Oct

    1212

    100.

    1114

    81.

    017

    .422

    104

    102

    2024

    13.6

    46[

    1907

    17.3

    529

    .85

    04d

    Tr2

    19..

    ..20

    00N

    ov3

    0635

    0.86

    359

    11.7

    16.6

    1383

    164

    2024

    37.8

    95[

    1905

    58.5

    230

    .22

    04d,

    05a,

    b,06

    a,b,

    cT

    r220

    ....

    2000

    Nov

    2520

    320.

    8916

    625

    .116

    .114

    60[

    6720

    2609

    .560

    [19

    0101

    .15

    30.5

    805

    a,b,

    06a,

    bT

    r221

    ....

    2000

    Dec

    616

    230.

    0316

    027

    .716

    .97

    50[

    1520

    2715

    .159

    [18

    5732

    .53

    30.7

    406

    c,07

    cT

    r222

    ....

    2001

    Mar

    2605

    530.

    0234

    217

    .513

    .514

    857

    3820

    4220

    .538

    [18

    0354

    .44

    30.6

    313

    a,b,

    c,14

    bT

    r223

    ....

    2001

    Apr

    102

    200.

    9834

    914

    .917

    .27

    6386

    2042

    52.4

    66[

    1801

    55.4

    630

    .55

    14b

    Tr2

    24..

    ..20

    01A

    pr4

    2139

    0.96

    171

    20.3

    14.1

    8567

    153

    2043

    11.0

    18[

    1800

    21.3

    030

    .48

    13a,

    b,c,

    14b

    Tr2

    25..

    ..20

    01A

    pr12

    1231

    0.89

    176

    9.6

    17.1

    1074

    [78

    2043

    43.3

    80[

    1758

    40.2

    430

    .36

    13b,

    cT

    r226

    ....

    2001

    Jun

    1621

    570.

    9534

    620

    .117

    .54

    137

    7620

    4309

    .808

    [18

    0119

    .97

    29.3

    513

    b,c,

    14b

    Tr2

    27..

    ..20

    01Ju

    l14

    1547

    0.52

    337

    24.0

    17.4

    416

    414

    120

    4038

    .446

    [18

    1058

    .19

    29.1

    212

    bT

    r228

    ....

    2001

    Jul25

    0954

    0.02

    163

    20.8

    17.2

    617

    5[

    142

    2039

    27.8

    12[

    1815

    19.3

    929

    .09

    11b

    Tr2

    29..

    ..20

    01A

    ug4

    0143

    0.31

    172

    23.9

    16.8

    817

    5[

    2920

    3822

    .363

    [18

    1945

    .39

    29.0

    912

    aT

    r230

    ....

    2001

    Aug

    2101

    390.

    8835

    024

    .617

    .54

    159

    [45

    2036

    34.0

    52[

    1826

    49.3

    229

    .16

    11a

    Tr2

    31..

    ..20

    01A

    ug25

    2148

    0.29

    162

    25.1

    12.9

    186

    154

    720

    3606

    .539

    [18

    2835

    .54

    29.1

    909

    b,10

    a,11

    aT

    r232

    ....

    2001

    Aug

    2610

    480.

    9216

    624

    .810

    .959

    815

    317

    220

    3602

    .776

    [18

    2850

    .10

    29.1

    909

    b,10

    a,b,

    11a,

    bT

    r233

    ....

    2001

    Nov

    2017

    340.

    1017

    617

    .417

    .07

    68[

    1520

    3435

    .093

    [18

    3514

    .85

    30.4

    609

    aT

    r234

    ....

    2001

    Nov

    2022

    360.

    9817

    716

    .514

    .665

    68[

    9120

    3436

    .136

    [18

    3513

    .14

    30.4

    609

    a,b,

    10a,

    bT

    r235

    ....

    2001

    Dec

    1509

    570.

    5317

    023

    .517

    .54

    4376

    2037

    02.5

    34[

    1826

    47.8

    430

    .81

    11a

    Tr2

    36..

    ..20

    01D

    ec20

    2210

    0.98

    172

    26.4

    16.6

    938

    [11

    320

    3744

    .025

    [18

    2414

    .53

    30.8

    710

    b,11

    bT

    r237

    ....

    2001

    Dec

    2515

    520.

    8217

    132

    .817

    .15

    33[

    2320

    3821

    .181

    [18

    2145

    .77

    30.9

    111

    a,b,

    12a

    Tr2

    38..

    ..20

    02F

    eb27

    1504

    0.46

    166

    35.8

    17.1

    529

    [72

    2047

    49.5

    49[

    1746

    04.1

    430

    .95

    15a,

    16a

    Tr2

    39..

    ..20

    02M

    ar5

    1848

    0.12

    167

    33.5

    13.8

    8535

    [13

    420

    4839

    .581

    [17

    4251

    .71

    30.9

    016

    a,b,

    17a,

    bT

    r240

    ....

    2002

    Mar

    2103

    580.

    6633

    724

    .918

    .12

    5074

    2050

    29.4

    14[

    1735

    58.6

    030

    .72

    17b

    Tr2

    41..

    ..20

    02A

    pr10

    0110

    0.19

    170

    19.3

    17.9

    369

    9720

    5219

    .332

    [17

    2831

    .30

    30.4

    318

    bT

    r242

    ....

    2002

    Apr

    2103

    210.

    9716

    215

    .017

    .36

    8054

    2052

    58.8

    12[

    1725

    54.6

    930

    .25

    18b,

    19a,

    cT

    r243

    a..

    .20

    02M

    ay4

    1702

    0.38

    312.

    417

    .99

    93[

    165

    2053

    27.9

    58[

    1724

    19.7

    230

    .02

    19c

    Tr2

    43b

    ...

    2002

    May

    2118

    160.

    9911

    36.

    817

    .95

    110

    160

    2053

    27.9

    58[

    1724

    19.7

    229

    .74

    19c

    Tr2

    44..

    ..20

    02Ju

    n29

    0346

    0.14

    353

    18.9

    14.0

    9914

    7[

    2120

    5118

    .528

    [17

    3333

    .46

    29.2

    317

    a,b,

    18a,

    b,c

    Tr2

    45..

    ..20

    02Ju

    l17

    1029

    0.74

    352

    20.0

    17.0

    716

    5[

    140

    2049

    32.0

    86[

    1740

    42.2

    629

    .11

    16b,

    17b

    Tr2

    46..

    ..20

    02Ju

    l25

    1002

    0.09

    337

    23.3

    17.3

    517

    3[

    142

    2048

    42.8

    57[

    1744

    03.3

    729

    .08

    15a

    Tr2

    47..

    ..20

    02A

    ug7

    0951

    0.55

    160

    27.8

    16.2

    1317

    5[

    152

    2047

    17.1

    70[

    1750

    05.7

    229

    .08

    15b

    Tr2

    48..

    ..20

    02A

    ug7

    1227

    0.29

    161

    28.0

    15.2

    2917

    516

    920

    4716

    .368

    [17

    5010

    .08

    29.0

    815

    a,b,

    16a,

    bT

    r249

    ....

    2002

    Oct

    2804

    180.

    0421

    83.

    017

    .116

    94[

    151

    2042

    20.6

    35[

    1810

    13.3

    030

    .01

    13a

    939

  • TA

    BL

    E3È

    Con

    tinue

    d

    CLO

    SEST

    APPR

    OA

    CH

    Min

    imum

    P.A

    .of

    Shad

    owSO

    LA

    RE

    AST

    Sepa

    ration

    Trito

    nV

    eloc

    ity

    CC

    DA

    NG

    LE

    LO

    NG.

    R.A

    .D

    EC

    L.

    DIS

    TA

    NC

    E

    EV

    EN

    TD

    ate

    UT

    (arc

    sec)

    (deg

    )(k

    ms~

    1)M

    AG.

    S/N

    a(d

    eg)

    (deg

    )(J

    2000

    )(J

    2000

    )(A

    U)

    STR

    IPS

    Tr2

    50..

    .20

    02N

    ov12

    0010

    0.94

    154

    15.2

    15.7

    2579

    [10

    320

    4249

    .584

    [18

    0822

    .50

    30.2

    612

    a,b,

    13b,

    cT

    r251

    ...

    2002

    Dec

    318

    450.

    5234

    318

    .515

    .920

    57[

    4320

    4428

    .390

    [18

    0239

    .27

    30.6

    113

    a,b,

    c,14

    bT

    r252

    ...

    2002

    Dec

    1009

    320.

    7715

    823

    .715

    .818

    5189

    2045

    08.3

    15[

    1800

    02.5

    830

    .70

    13a,

    b,c,

    14b

    Tr2

    53..

    .20

    03Ja

    n2

    1247

    0.17

    342

    29.4

    14.6

    4628

    1820

    4802

    .572

    [17

    4902

    .20

    30.9

    515

    a,b,

    16a,

    bT

    r254

    ...

    2003

    Mar

    1201

    500.

    6735

    127

    .718

    .42

    3911

    820

    5804

    .245

    [17

    0900

    .07

    30.8

    521

    bT

    r255

    ...

    2003

    Mar

    1321

    240.

    4334

    125

    .214

    .939

    41[

    178

    2058

    16.3

    84[

    1708

    20.8

    430

    .83

    20a,

    b,c,

    21a,

    b,c

    Tr2

    56..

    .20

    03A

    pr13

    1106

    0.32

    333

    18.1

    15.3

    3570

    [53

    2101

    15.1

    89[

    1655

    56.1

    430

    .41

    22a,

    b,c,

    23a,

    b,c

    Tr2

    57..

    .20

    03Ju

    n28

    0844

    0.78

    172

    18.6

    16.4

    1214

    4[

    9221

    0029

    .354

    [17

    0006

    .08

    29.2

    621

    bT

    r258

    ...

    2003

    Jul7

    1822

    0.44

    335

    23.1

    16.1

    1415

    311

    420

    5941

    .739

    [17

    0332

    .62

    29.1

    722

    a,b,

    cT

    r259

    ...

    2003

    Aug

    1007

    100.

    1034

    419

    .617

    .84

    174

    [11

    220

    5609

    .143

    [17

    1823

    .59

    29.0

    719

    aT

    r260

    ...

    2003

    Aug

    1706

    340.

    6915

    622

    .816

    .79

    167

    [11

    020

    5525

    .238

    [17

    2136

    .23

    29.0

    918

    a,b,

    c,19

    a,c,

    20b,

    cT

    r261

    ...

    2003

    Aug

    2014

    410.

    6017

    221

    .713

    .810

    216

    412

    520

    5502

    .084

    [17

    2319

    .00

    29.1

    018

    a,b,

    c,19

    a,b,

    cT

    r262

    ...

    2003

    Aug

    3008

    270.

    7134

    025

    .216

    .510

    155

    [15

    220

    5405

    .262

    [17

    2730

    .70

    29.1

    618

    c,19

    b,c

    Tr2

    63..

    .20

    03Se

    p28

    2313

    0.31

    160

    15.4

    14.9

    5312

    5[

    4320

    5150

    .370

    [17

    3658

    .03

    29.4

    916

    a,b,

    17a,

    b,18

    bT

    r264

    ...

    2003

    Nov

    1820

    170.

    8617

    216

    .417

    .45

    75[

    4920

    5202

    .859

    [17

    3618

    .32

    30.3

    217

    b,18

    a,b

    Tr2

    65..

    .20

    03N

    ov19

    1526

    0.47

    178

    13.2

    17.1

    874

    2320

    5206

    .390

    [17

    3614

    .38

    30.3

    416

    bT

    r266

    ...

    2003

    Nov

    2903

    480.

    2115

    822

    .513

    .315

    464

    [17

    220

    5245

    .900

    [17

    3333

    .97

    30.4

    917

    a,b,

    18a,

    b,c

    Tr2

    67..

    .20

    04M

    ar7

    1848

    0.45

    338

    33.3

    13.7

    9233

    [13

    121

    0609

    .425

    [16

    3836

    .65

    30.9

    024

    a,b,

    25b

    Tr2

    68..

    .20

    04M

    ar20

    1443

    0.19

    163

    30.8

    17.4

    446

    [82

    2107

    45.3

    12[

    1631

    40.1

    530

    .76

    25a,

    b,c

    Tr2

    69..

    .20

    04M

    ar30

    2140

    0.48

    335

    23.9

    17.3

    556

    163

    2108

    50.1

    16[

    1627

    17.8

    330

    .62

    26b,

    c,27

    cT

    r270

    ...

    2004

    Apr

    1610

    450.

    0915

    712

    .617

    .84

    72[

    4921

    1012

    .715

    [16

    2137

    .69

    30.3

    728

    dT

    r271

    ...

    2004

    Jun

    2707

    450.

    7035

    414

    .915

    .922

    141

    [75

    2109

    32.6

    72[

    1625

    17.4

    029

    .27

    26a,

    b,27

    a,b,

    cT

    r272

    ...

    2004

    Jul18

    1511

    0.18

    159

    26.7

    16.8

    816

    215

    221

    0738

    .055

    [16

    3410

    .82

    29.1

    025

    b,26

    a,b,

    cT

    r273

    ...

    2004

    Jul27

    0427

    0.94

    349

    19.7

    17.0

    717

    0[

    5521

    0642

    .850

    [16

    3757

    .72

    29.0

    724

    c,25

    a,b

    Tr2

    74..

    .20

    04A

    ug14

    1613

    1.00

    342

    19.8

    17.5

    417

    210

    921

    0443

    .688

    [16

    4642

    .34

    29.0

    723

    bT

    r275

    ...

    2004

    Aug

    1900

    280.

    6035

    121

    .816

    .88

    167

    [19

    2104

    14.8

    12[

    1649

    01.6

    029

    .08

    23c

    Tr2

    76..

    .20

    04A

    ug24

    0147

    0.55

    348

    24.9

    17.6

    416

    2[

    4421

    0343

    .756

    [16

    5128

    .68

    29.1

    123

    b,c

    Tr2

    77..

    .20

    04Se

    p4

    0306

    0.53

    343

    24.4

    16.9

    715

    1[

    7521

    0239

    .879

    [16

    5612

    .14

    29.1

    822

    b,23

    bT

    r278

    ...

    2004

    Sep

    704

    230.

    6116

    215

    .815

    .922

    148

    [97

    2102

    23.1

    11[

    1656

    57.5

    829

    .21

    22b,

    23b,

    cT

    r279

    ...

    2004

    Oct

    514

    020.

    9218

    65.

    115

    .553

    120

    9021

    0029

    .199

    [17

    0521

    .48

    29.5

    521

    a,22

    a,b,

    cT

    r280

    ...

    2004

    Oct

    818

    110.

    6915

    211

    .617

    .19

    117

    2421

    0023

    .883

    [17

    0603

    .95

    29.6

    020

    c,21

    b,22

    bT

    r281

    ...

    2004

    Oct

    1919

    450.

    5311

    75.

    417

    .410

    106

    [10

    2100

    09.4

    43[

    1707

    02.7

    929

    .78

    20c,

    22b,

    cT

    r282

    ...

    2005

    Apr

    3016

    180.

    6235

    111

    .412

    .829

    683

    [14

    421

    1939

    .403

    [15

    4259

    .95

    30.1

    732

    a,b,

    c,33

    a,b,

    cT

    r283

    ...

    2005

    Jun

    1709

    230.

    4614

    714

    .415

    .243

    129

    [87

    2119

    13.8

    21[

    1545

    49.5

    529

    .41

    31b,

    32a,

    b,c

    Tr2

    84..

    .20

    05Ju

    l2

    1729

    0.39

    172

    15.1

    14.8

    5714

    413

    621

    1807

    .662

    [15

    5104

    .91

    29.2

    330

    a,31

    a,b,

    c,32

    b,c

    Tr2

    85..

    .20

    05Ju

    l7

    1612

    0.06

    348

    20.7

    15.8

    2114

    915

    021

    1742

    .737

    [15

    5316

    .58

    29.1

    930

    a,c,

    31a,

    bT

    r286

    ...

    2005

    Jul18

    0436

    0.72

    160

    26.3

    17.2

    515

    9[

    4621

    1644

    .980

    [15

    5754

    .01

    29.1

    130

    a,31

    cT

    r287

    ...

    2005

    Aug

    516

    460.

    5334

    626

    .615

    .524

    177

    112

    2114

    48.0

    16[

    1606

    57.8

    829

    .05

    28a,

    b,c,

    d,29

    c,30

    a,c

    Tr2

    88..

    .20

    05N

    ov5

    1632

    0.97

    203.

    316

    .044

    9124

    2109

    06.8

    76[

    1632

    53.7

    430

    .02

    25a,

    b,c,

    26a,

    bT

    r289

    ...

    2005

    Nov

    912

    390.

    1533

    411

    .518

    .04

    8878

    2109

    11.2

    78[

    1632

    24.0

    930

    .08

    25b

    Tr2

    90..

    .20

    05D

    ec13

    1457

    0.27

    155

    24.0

    15.9

    1854

    1121

    1129

    .357

    [16

    2240

    .64

    30.6

    326

    b,27

    cT

    r291

    ...

    2006

    Mar

    1802

    380.

    6415

    631

    .317

    .73

    3910

    621

    2426

    .581

    [15

    2417

    .16

    30.8

    334

    a,c,

    35b,

    cT

    r292

    ...

    2006

    Mar

    2405

    520.

    5833

    730

    .215

    .326

    4551

    2125

    10.6

    39[

    1520

    52.9

    830

    .76

    34a,

    b,35

    a,b,

    36b,

    cT

    r293

    ...

    2006

    Jun

    2919

    250.

    7415

    720

    .917

    .07

    138

    113

    2127

    20.7

    14[

    1512

    35.2

    829

    .29

    36a,

    b,c,

    37b,

    cT

    r294

    ...

    2006

    Jul19

    0243

    0.22

    170

    21.2

    15.2

    3215

    7[

    1621

    2539

    .785

    [15

    2044

    .02

    29.1

    134

    a,b,

    35a,

    b,c,

    36b,

    cT

    r295

    ...

    2006

    Aug

    312

    030.

    8615

    527

    .117

    .63

    172

    [17

    221

    2407

    .383

    [15

    2816

    .21

    29.0

    534

    a,35

    b

    940

  • TA

    BL

    E3È

    Con

    tinue

    d

    CLO

    SEST

    APPR

    OA

    CH

    Min

    imum

    P.A

    .of

    Shad

    owSO

    LA

    RE

    AST

    Sepa

    ration

    Trito

    nV

    eloc

    ity

    CC

    DA

    NG

    LE

    LO

    NG.

    R.A

    .D

    EC

    L.

    DIS

    TA

    NC

    E

    EV

    EN

    TD

    ate

    UT

    (arc

    sec)

    (deg

    )(k

    ms~

    1)M

    AG.

    S/N

    a(d

    eg)

    (deg

    )(J

    2000

    )(J

    2000

    )(A

    U)

    STR

    IPS

    Tr2

    96..

    .20

    06A

    ug9

    0848

    0.52

    156

    27.3

    18.0

    217

    8[

    129

    2123

    29.7

    79[

    1531

    17.3

    629

    .04

    34a

    Tr2

    97..

    .20

    06A

    ug18

    1721

    0.02

    164

    19.4

    15.7

    2217

    393

    2122

    27.9

    65[

    1535

    54.6

    429

    .05

    32a,

    b,33

    a,b,

    34b,

    cT

    r298

    ...

    2006

    Aug

    2116

    260.

    9733

    927

    .816

    .78

    170

    104

    2122

    10.3

    65[

    1537

    43.9

    929

    .06

    32a,

    b,c,

    33b

    Tr2

    99..

    .20

    06A

    ug27

    0832

    0.19

    338

    26.9

    18.2

    216

    4[

    143

    2121

    35.1

    31[

    1540

    29.1

    029

    .08

    32c

    Tr3

    00..

    .20

    06Se

    p9

    1600

    0.49

    349

    21.2

    16.8

    815

    191

    2120

    16.1

    05[

    1546

    39.4

    829

    .17

    31c,

    32a,

    bT

    r301

    ...

    2006

    Sep

    1200

    580.

    7215

    716

    .717

    .36

    148

    [46

    2120

    04.5

    33[

    1547

    13.1

    529

    .19

    31b

    Tr3

    02..

    .20

    06Se

    p25

    1632

    0.99

    335

    19.2

    17.0

    713

    567

    2119

    01.1

    35[

    1552

    35.2

    529

    .34

    30a,

    c,31

    a,b

    Tr3

    03..

    .20

    06O

    ct4

    0409

    0.65

    359

    7.8

    17.8

    512

    6[

    116

    2118

    28.5

    90[

    1554

    50.8

    029

    .45

    31c

    Tr3

    04..

    .20

    07Ja

    n7

    1516

    0.32

    165

    34.6

    14.1

    6731

    [15

    2122

    58.8

    03[

    1534

    19.3

    530

    .88

    33a,

    b,34

    a,b,

    cT

    r305

    ...

    2007

    Mar

    1208

    260.

    1116

    035

    .616

    .68

    3127

    2132

    08.2

    27[

    1451

    22.4

    430

    .90

    38b,

    39a,

    c,40

    cT

    r306

    ...

    2007

    May

    609

    260.

    1318

    55.

    314

    .018

    884

    [41

    2137

    10.4

    11[

    1427

    53.0

    630

    .15

    41a,

    42b,

    c,43

    a,b,

    c,d

    Tr3

    07..

    .20

    07A

    ug24

    1336

    0.75

    159

    19.9

    18.0

    316

    914

    621

    3053

    .446

    [15

    0017

    .13

    29.0

    537

    aT

    r308

    ...

    2007

    Aug

    2903

    250.

    1416

    920

    .117

    .17

    165

    [66

    2130

    23.9

    36[

    1502

    51.4

    729

    .07

    38b,

    cT

    r309

    ...

    2007

    Sep

    405

    490.

    0735

    018

    .316

    .412

    159

    [10

    821

    2947

    .374

    [15

    0548

    .12

    29.1

    036

    a,37

    a,c

    Tr3

    10..

    .20

    07Se

    p12

    2217

    0.68

    154

    23.2

    18.0

    315

    0[

    421

    2900

    .506

    [15

    0949

    .95

    29.1

    736

    bT

    r311

    ...

    2007

    Sep

    1904

    520.

    6615

    622

    .316

    .98

    144

    [10

    921

    2828

    .223

    [15

    1231

    .37

    29.2

    336

    a,b,

    c,37

    aT

    r312

    ...

    2007

    Sep

    2103

    030.

    0317

    416

    .813

    .416

    114

    2[

    8421

    2817

    .238

    [15

    1317

    .49

    29.2

    535

    a,b,

    c,36

    a,b,

    c,37

    bT

    r313

    ...

    2008

    Mar

    1322

    070.

    5934

    327

    .116

    .410

    31[

    179

    2140

    52.4

    41[

    1412

    43.6

    330

    .89

    44a,

    45b

    Tr3

    14..

    .20

    08A

    pr7

    0437

    0.11

    337

    21.0

    15.4

    2954

    6121

    4340

    .841

    [13

    5857

    .57

    30.6

    245

    b,c,

    46b,

    c,47

    b,c

    Tr3

    15..

    .20

    08A

    pr17

    1920

    0.16

    169

    14.5

    16.4

    1464

    [17

    021

    4438

    .728

    [13

    5415

    .37

    30.4

    646

    c,47

    b,c

    Tr3

    16..

    .20

    08M

    ay21

    0146

    0.30

    174

    0.8

    12.9

    1031

    9661

    2146

    11.0

    38[

    1346

    45.6

    129

    .91

    47b,

    c,48

    bT

    r317

    ...

    2008

    Aug

    121

    230.

    1533

    827

    .517

    .35

    167

    5421

    4210

    .348

    [14

    0904

    .72

    29.0

    544

    a,c,

    d,45

    aT

    r318

    ...

    2008

    Aug

    2313

    380.

    9515

    422

    .517

    .16

    172

    148

    2139

    53.6

    04[

    1420

    25.4

    529

    .04

    43a,

    c,d,

    44a,

    b,c,

    dT

    r319

    ...

    2008

    Sep

    2211

    440.

    4633

    019

    .118

    .13

    142

    146

    2137

    04.5

    71[

    1434

    47.7

    029

    .24

    40a,

    42c

    Tr3

    20..

    .20

    09Ja

    n6

    2207

    0.71

    167

    26.7

    17.3

    436

    [11

    421

    3952

    .482

    [14

    2101

    .32

    30.8

    342

    cT

    r321

    ...

    2009

    Jun

    1823

    530.

    2614

    29.

    518

    .04

    121

    6321

    5425

    .438

    [13

    0851

    .71

    29.4

    953

    dT

    r322

    ...

    2009

    Jul7

    1547

    0.36

    149

    19.5

    17.2

    614

    016

    521

    5320

    .836

    [13

    1509

    .95

    29.2

    551

    a,b,

    c,52

    cT

    r323

    ...

    2009

    Aug

    2908

    370.

    2515

    224

    .817

    .93

    169

    [14

    021

    4814

    .645

    [13

    4230

    .55

    29.0

    449

    cT

    r324

    ...

    2009

    Sep

    1420

    210.

    5515

    817

    .417

    .93

    152

    2721

    4637

    .092

    [13

    5046

    .93

    29.1

    347

    bT

    r325

    ...

    2009

    Sep

    2022

    380.

    3815

    516

    .616

    .513

    146

    [13

    2146

    05.5

    05[

    1353

    31.4

    729

    .19

    46c,

    47b,

    cT

    r326

    ...

    2009

    Sep

    2408

    160.

    3234

    818

    .716

    .412

    143

    [16

    121

    4547

    .819

    [13

    5523

    .13

    29.2

    246

    b,c,

    47b,

    cT

    r327

    ...

    2009

    Sep

    2618

    090.

    8215

    514

    .615

    .628

    140

    4821

    4537

    .769

    [13

    5553

    .32

    29.2

    546

    a,b,

    c,47

    b,c

    Tr3

    28..

    .20

    09O

    ct14

    1634

    0.10

    325

    9.8

    15.0

    6012

    254

    2144

    33.1

    43[

    1401

    26.3

    229

    .48

    45a,

    c,46

    a,b,

    cT

    r329

    ...

    2009

    Dec

    210

    070.

    5835

    110

    .417

    .56

    7410

    321

    4455

    .478

    [13

    5944

    .15

    30.2

    946

    b,c

    Tr3

    30..

    .20

    09D

    ec2

    1041

    0.11

    172

    10.4

    17.4

    774

    9421

    4455

    .536

    [13

    5943

    .30

    30.2

    946

    bT

    r331

    ...

    2009

    Dec

    2408

    280.

    0734

    625

    .817

    .25

    5210

    621

    4643

    .462

    [13

    5009

    .14

    30.6

    247

    a,c,

    48b,

    cT

    r332

    ...

    2009

    Dec

    2906

    040.

    3516

    030

    .416

    .96

    4713

    821

    4713

    .619

    [13

    4729

    .41

    30.6

    947

    a,b,

    c,48

    c

    NO

    TE.È

    Uni

    tsof

    righ

    tasc

    ension

    areho

    urs,

    min

    utes

    ,and

    seco

    nds,

    and

    unitsof

    decl

    inat

    ion

    arede

    gree

    s,ar

    cmin

    utes

    ,and

    arcs

    econ

    ds.

    aThe

    sign

    al-to-

    noise

    ratio

    forth

    elig

    htcu

    rve

    hasbe

    enca

    lcul

    ated

    foran

    aver

    agin

    gin

    terv

    alof

    20km

    (the

    appr

    oxim

    ate

    scal

    ehe

    ight

    ofT

    rito

    nÏsat

    mos

    pher

    e),b

    ased

    onth

    eex

    pect

    edpe

    rfor

    man

    ceof

    HO

    PI

    onSO

    FIA

    (see

    text

    ).P

    oten

    tial

    obse

    rver

    ssh

    ould

    eval

    uate

    theS/

    Nfo

    rth

    ete

    lesc

    opean

    dph

    otom

    etriceq

    uipm

    entp

    lann

    edfo

    rus

    e.

    941

  • 311 312 313 314Right Ascension, degrees

    -1

    -0.5

    0

    0.5

    1

    1.5RA

    Residuals,arcsec

    311 312 313 314Right Ascension, degrees

    -1

    -0.5

    0

    0.5

    1

    1.5

    DecResiduals,arcsec

    942 MCDONALD AND ELLIOT

    FIG. 2.ÈResiduals vs. right ascension, before correction. These twoplots show a typical example of the systematic deviation of the observedposition from the catalog position with respect to R.A. The pattern of thedeviation changes with each observation, but all show residuals in R.A.and decl. that independently vary systematically along the length of thestrip (i.e., along R.A. or time). Also plotted is a Fourier series Ðt to theresiduals that we use to correct our astrometry.

    within a few tenths of a magnitude. Hence, we used the Rmagnitudes for the sample of USNO-A2.0 stars within eachstrip scan as standard stars to obtain approximate R magni-tudes for our candidates. Since each strip scan was 25minutes long, the seeing could change considerably fromthe beginning of the strip to the end. We corrected for time-variable seeing conditions over the course of each strip scanby Ðtting a Fourier series to the magnitudes as a function ofright ascension, analogous to our corrections for the time-dependent positional deviation.

    The observed star positions were then compared with aTriton ephemeris to produce a list of candidates. We usedthe NEP016 ephemeris solution for Triton (Jacobson,Reidel, & Taylor 1991) combined with the DE405 ephem-eris for Neptune and Earth. The ephemerides were suppliedto us by JPLÏs Navigation Ancillary Information Facility(Acton 1990). All stars lying within of the ephemeris and1A.0more than 20¡ from the Sun at the time of the closestapproach of Triton were retained as occultation candidates.We examined each of these candidates on our images andon the Digitized Sky Survey and rejected several thatappeared to be nonstellar.

    3. RESULTS AND DISCUSSION

    Table 2 provides information about each of the strip-scanimages used in this occultation candidate search. Table 3

    contains information about each occultation candidate wefound in our search. The format of the table is similar tothat used in McDonald & Elliot (1995). Each candidate hasbeen given an identiÐcation label beginning with ““ Tr ÏÏ andfollowed by a sequence number. The next columns show thedate and time of TritonÏs closest approach to the star andthe minimum separation and position angle of Triton rela-tive to the star (measured north through east) at that timefor a geocentric observer. The CCD magnitude of the star inthe next column is approximately equivalent to an R mag-nitude as described above. The velocity of the occultationshadow relative to the geocenter is in the next column.

    An estimate for the expected signal-to-noise ratio (S/N)for the occultation event using the high-throughput modefor the High-Speed Occultation Photometer and Imager(HOPI ; Dunham, Elliot, & Taylor 1998) on the Strato-spheric Observatory for Infrared Astronomy (SOFIA;Becklin 1997) is given in the next column. For this calcu-lation, the signal is that expected from the unocculted starover a time interval corresponding to 20 km of shadowmotion, and the noise is the photon noise expected from thecombined light of Triton and the star. We have notremoved candidates with signal-to-noise values lower thanthe minimum of 20 that is necessary for atmospheric model-ing of the light curve, because higher values could beobtained if the occultation proves to be visible with a tele-scope larger than SOFIA. Also, the colors of these stars arenot known, and a very red or very blue star may providebetter signal-to-noise ratios if observed in the infrared orultraviolet, respectively.

    The next column contains the solar elongation of Tritonat event time. Then comes the observed coordinates of thestar in J2000 equinox. The next column is the substar Earthlongitude of the star at the time of the event. The substarEarth latitude is the same as the starÏs declination. The lastcolumn contains a list of the CCD strip images on which thecandidate was measured.

    Our previous occultation candidate search papers haveincluded Ðnder charts for the candidates. However, there isno longer a need to publish such Ðnder charts with thecurrent availability of the Digitized Sky Survey and othercharting resources. Figure 3 contains a view of Earth fromTriton at the time of closest approach to the star. The shad-owed region shows the area from which the Sun is morethan 12¡ below the horizon. This Ðgure is useful for seeingwhere on Earth the event might be visible, but we have notshown an actual path of the occultation shadow (which hasa width about a quarter of EarthÏs diameter).

    For a geocentric observer, an appulse by Triton to a starcloser than about angle subtended by the sum of0A.37Èthethe radii of Earth and Triton at the mean distance ofTritonÈwould produce an occultation event observablefrom somewhere on Earth. To be sure of not missing anypotential occultations due to astrometric errors, ouroccultation candidate list includes events with minimumgeocentric separations up to The minimum separations1A.0.in Table 3 are only our best estimates, and they may bea†ected by errors in our observations, the USNO-A2.0catalog, and the ephemeris. In our earlier work we esti-mated the total e†ect of these errors would be a few tenthsof an arcsecond (McDonald & Elliot 1992), an estimate thathas been substantiated by several observed occultations(Table 1). Since the error is substantially larger than theangle subtended by the half-light radius in TritonÏs atmo-

  • Tr205 Tr206 Tr207 Tr208 Tr209 Tr210 Tr211 Tr212 Tr213 Tr214 Tr215 Tr216

    Tr217 Tr218 Tr219 Tr220 Tr221 Tr222 Tr223 Tr224 Tr225 Tr226 Tr227 Tr228

    Tr229 Tr230 Tr231 Tr232 Tr233 Tr234 Tr235 Tr236 Tr237 Tr238 Tr239 Tr240

    Tr241 Tr242 Tr243aTr243b Tr244 Tr245 Tr246 Tr247 Tr248 Tr249 Tr250 Tr251

    Tr252 Tr253 Tr254 Tr255 Tr256 Tr257 Tr258 Tr259 Tr260 Tr261 Tr262 Tr263

    Tr264 Tr265 Tr266 Tr267 Tr268 Tr269 Tr270 Tr271 Tr272 Tr273 Tr274 Tr275

    Tr276 Tr277 Tr278 Tr279 Tr280 Tr281 Tr282 Tr283 Tr284 Tr285 Tr286 Tr287

    Tr288 Tr289 Tr290 Tr291 Tr292 Tr293 Tr294 Tr295 Tr296 Tr297 Tr298 Tr299

    Tr300 Tr301 Tr302 Tr303 Tr304 Tr305 Tr306 Tr307 Tr308 Tr309 Tr310 Tr311

    Tr312 Tr313 Tr314 Tr315 Tr316 Tr317 Tr318 Tr319 Tr320 Tr321 Tr322 Tr323

    Tr324 Tr325 Tr326 Tr327 Tr328 Tr329 Tr330 Tr331 Tr332

    FIG. 3.ÈVisibility zones for Triton appulse and occultation events. Each frame in this Ðgure shows Earth as seen from Triton at the time of closestapproach of Triton to the designated star. The shaded region of Earth indicates the areas where the Sun is more than 12¡ below the horizon.

  • 0.5 1 1.5 2 2.5 3Log of Signal-to-Noise

    -0.75

    -0.5

    -0.25

    0

    0.25

    0.5

    0.75

    1

    Minimum

    Separation,

    arcsec

    944 MCDONALD AND ELLIOT

    FIG. 4.ÈSignal-to-noise ratio vs. geocentric minimum separation. Thehorizontal axis is the logarithm (base 10) of the signal-to-noise values listedin Table 3. Negative values of minimum separation indicate events withposition angles greater than 90¡ and less than 270¡, i.e., events that passsouth of the center of Earth. Two horizontal lines indicate plus and minus

    If our astrometry had no errors, those events between the two lines0A.37.would be occultations visible from somewhere on Earth, while thoseoutside the lines would be appulses. However, uncertainties in the astrom-etry and ephemeris mean that the actual minimum separations will di†erfrom those marked on this Ðgure.

    sphere, considerable astrometric reÐnement will be neces-sary to produce a prediction sufficiently accurate to observean occultation.

    Taking the ratio of to the search path we used,0A.37 1A.0we would expect about 47 stars from our candidate list tobe occulted by Triton (visible from Earth). Of these events,several will likely be visible from existing large telescopefacilities. Occultations of the brightest stars can be observedwith portable instruments (see, e.g., Elliot et al. 2000).Figure 4 plots our estimated signal-to-noise ratios for eachevent (taken from Table 3) versus the nominal minimumseparation.

    The most interesting events are those that would have thehighest signal-to-noise ratios and permit observation of the““ central Ñash ÏÏ (Elliot et al. 1977). The events with the bestpotential signal-to-noise ratio are, in decreasing order,

    Tr316, Tr232, Tr282, Tr306, Tr231, Tr312, Tr266, Tr222,and Tr261. Of these, six have nominal minimum separa-tions less than Tr222, Tr312, Tr306, Tr261, Tr231, and0A.37 :Tr316, in order by increasing minimum separation. Tr316 isa particularly promising event, with a magnitude 12.9 starand a geocentric shadow velocity of only 0.8 km s~1. In thenext 2 years, Tr222 and Tr231, in 2001, provide the bestopportunities, unless a signiÐcant correction to the ephem-eris or to the position of Tr232 shifts the expected path of itsoccultation shadow onto Earth. One other star of note inthe candidate list is Tr243, which provides two appulses byTriton in 2002 separated by 17 days (Tr243a and Tr243b).Unfortunately, this star is magnitude 17.9 and neitherappulse is currently expected to produce an occultationvisible from Earth.

    4. CONCLUSIONS

    We have found 128 stars within of TritonÏs ephemeris1A.0over the years 2000 to 2009. Of these, 47 can be expected toproduce occultations visible from Earth. We emphasize thatthese stars should be considered only candidates foroccultations, and that further astrometric observations arenecessary to determine whether any speciÐc candidate islikely to be occulted and where it would be visible. We haveprovided views of Earth at the event times to aid in selectingthe most promising occultations for further study.

    We thank Vincent Fish, Angie Hancock, Lisa Kwok,Lucy Lim, Mike Person, Lucy Crespo da Silva, VanessaThomas, and Rosa Villastrigo, for carrying out most of theobservations. Figure 1 was created by the STARCHARTprogram, written by Alan Paeth and Craig Counterman.The Triton ephemeris was calculated by Bob Jacobson atJPL and repackaged by the Navigation Ancillary Informa-tion Facility. The USNO-A2.0 catalog was produced at theUS Naval Observatory at Flagsta†. This work was sup-ported, in part, by grant NAG 5-3940 from NASAÏsPlanetary Astronomy Program and NSFÏs Research Expe-riences for Undergraduates (REU) program.

    REFERENCESActon, C. H., Jr. 1990, in Second International Symposium on Space Infor-

    mation Systems, ed. L. A. Tavenner (Washington : American Inst. Aero-naut. Astronaut.), 1029

    Becklin, E. E. 1997, in The Far Infrared and Submillimetre Universe, ed. A.Wilson (ESA SP-401) (Noordwijk : ESA), 201

    Buie, M. W., et al. 1993, BAAS, 25, 1115Dunham, E. W., Baron, R. L., Elliot, J. L., Vallerga, J. V., Doty, J. P., &

    Ricker, G. R. 1985, PASP, 97, 1196Dunham, E. W., Elliot, J. L., & Taylor, B. W. 1998, BAAS, 30, 1109Dunham, E. W., McDonald, S. W., & Elliot, J. L. 1991, AJ, 102, 1464Elliot, J. L., Dunham, E. W., & Olkin, C. B. 1995, in ASP Conf. Ser. 73,

    Airborne Astronomy Symposium on the Galactic Ecosystem: From Gasto Stars to Dust, ed. M. R. Haas, J. A. Davidson, & E. F. Erickson (SanFrancisco : ASP), 285

    Elliot, J. L., French, R. G., Dunham, E., Gierasch, P. J., Veverka, J.,Church, C., & Sagan, C. 1977, ApJ, 217, 661

    Elliot, J. L., et al. 1998, Nature, 393, 765Elliot, J. L., & Olkin, C. B. 1996, Ann. Rev. Earth Planet. Sci., 24, 89Elliot, J. L., et al. 2000, in preparationElliot, J. L., Stansberry, J. A., Olkin, C. B., Agner, M. A., & Davies, M. E.

    1997, Science, 278, 436Jacobson, R. A., Riedel, J. E., & Taylor, A. H. 1991, A&A, 247, 565McDonald, S. W., & Elliot, J. L. 1992, AJ, 104, 862ÈÈÈ. 1995, AJ, 109, 1352Olkin, C. B., et al. 1997, Icarus, 129, 178Sicardy, B., et al. 1998, BAAS, 30, 1107Stetson, P. B. 1987, PASP, 99, 191Tody, D. 1986, Proc. SPIE, 627, 733Wolfram, S. 1996, The Mathematica Book (3d ed. ; New York : Cambridge

    Univ. Press)