Triplet Extension of the MSSM and its Higgs...

25
Triplet Extension of the MSSM and its Higgs Physics Germano Nardini Universit¨ at Bielefeld SUSY 2013 Based on A. Delgado, G.N., M. Quir´ os arXiv:1207.6596 , arXiv:1303.0800 Germano Nardini Triplet Higgs Physics

Transcript of Triplet Extension of the MSSM and its Higgs...

Triplet Extension of the MSSMand its Higgs Physics

Germano Nardini

Universitat Bielefeld

SUSY 2013

Based onA. Delgado, G.N., M. Quiros

arXiv:1207.6596 , arXiv:1303.0800

Germano Nardini Triplet Higgs Physics

Outline

Outline

1 IntroductionThe model

2 Higgs PhenomenologySpectrumFeatures of the decoupling limitFeatures at small mA

3 Conclusion

Germano Nardini Triplet Higgs Physics

Introduction

Motivation

No clear discrepancies between data and SM predictions withmh ' 126 GeVIf we do not give up with the (Planck/GUT - EW) hierarchyproblem, SUSY is (one of) the favourite UV optionIn the MinimalSSM mh ' 126 GeV requires “heavy” stopsector ⇒ Little Hierarchy Problem, i.e. some fine-tuningNon-minimalSSM models can alleviate this problem as theycan enhance the tree-level Higgs mass via

D–terms: Extra gauge interactionsF –terms: Extra scalar sector (singlets and/or triplets)

If Γ(h→ γγ) is confirmed by future data. . .

. . . the extra charged fermions in the triplet superfield are(potentially) largely coupled to the Higgs and can make the job

Germano Nardini Triplet Higgs Physics

Introduction The model

The Y=0 Triplet Extension (Espinosa&Quiros’92)

Σ =

(ξ0/√

2 −ξ+2

ξ−1 −ξ0/√

2

), ∆W = λH1·ΣH2+

1

2µΣtrΣ

2+µH1·H2

T parameter bound requires 〈ξ0〉 . 4 GeV which imposes(unless of fine-tuning)

|Aλ|, |µ| , |µΣ| .m2

Σ + λ2v2/2

102 λv

This hierarchy implies decoupling between ξ0 and H1, H2

Mass boost: V (H1, H2) ' VMSSM + λ2|H01H

02 |2

(other tripl. SUSY extens. in E.J.Chun&al,1209.1303; Z.Kang&al,1301.2204)

Germano Nardini Triplet Higgs Physics

Phenomenology Spectrum

The relevant spectrum

Heavy scalar triplet [ & 1 TeV ]

Minimiz. conditions

m23 = m2

A sinβ cosβ , m2Z =

m22−m2

1cos 2β −m

2A + λ2

2 v2

CP-odd/charged Higgses [ no preferences ]

m2A = m2

1 +m22 + 2|µ|2 + λ2

2 v2 , m2

H± = m2A +m2

W+λ2

2 v2

Charginos [ O(100 GeV) if diphoton excess ]

(W−, H−

1 , ξ−1

)M±

ch

W+

H+2

ξ+2

, M±ch =

M2 gv2 0gv1 µ −λv2

0 −λv1 µΣ

Germano Nardini Triplet Higgs Physics

Phenomenology Spectrum

The relevant spectrum

CP-even Higgs masses (basis h2, h1)

M20 =

(m2A cos2 β +m2

Z sin2 β (λ2v2 −m2A −m2

Z) sin 2β/2

(λ2v2 −m2A −m2

Z) sin 2β/2 m2A sin2 β +m2

Z cos2 β

)

After including radiative corrections ∆M2t(ht) and ∆M2

Σ(λ)(also in the min.condts) [mh = 126 GeV](

h2

h1

)=

(cosα sinα− sinα cosα

)(hH

)

Coupling ratios rHXX = gHXX/gSMhXX (H = h,H)

r0hV V r0

HV V r0htt r0

Htt r0hdd r0

Hdd

sin(β − α) cos(β − α)cosα

sinβ

sinα

sinβ− sinα

cosβ

cosα

cosβ

Germano Nardini Triplet Higgs Physics

Phenomenology Features of the decoupling limit

Decoupling limit mA →∞

If mA� mh . . .

Germano Nardini Triplet Higgs Physics

Phenomenology Features of the decoupling limit

Decoupling limit mA →∞

Tree-level Higgs mass

m2h = m2

Z cos2 2β + λ2v2 sin2 2β/2

Little hierarchy problem pushes towards small tanβ and large λ,but perturbation theory may break down at the scale Λ

106

108

1010

1012

1014

1016

1018

0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5

1

2

3

4

5

6

Λ

tanΒ

.

curves:1018, 1016, 1014, . . . , 106

Λ .

Germano Nardini Triplet Higgs Physics

Phenomenology Features of the decoupling limit

Decoupling limit mA →∞Signal strength Rγγ [ = BR(h→ γγ)/BR(h→ γγ)SM]

∂ log vlog detMch(v) = − v2(λ2M2 + g2µΣ) sin 2β

M2µµΣ − 12λ

2v2(λ2M2 + g2µΣ) sin 2β

ATLAS: 1.65± 0.30; CMS: 0.8− 1.1± 0.3Loop-induced process which is sensitive to new chargedparticlesNew triplet charged fermion can enhance Rγγ (. 1.1 via MSSM

charginos; e.g. Casas,Moreno,Rolbiecki,Zaldivar ’13)

As no (large) modifications in the Higgs production exist formA →∞, the diphoton enhancement is (easily implemented from

the QED eff.pot. Ellis&al,79; Shifman&al,79; Carena&al,12)

Rγγ =

∣∣∣∣1 +(

43

∂∂ log v log detMch(v)

)/

(A1(τW ) +

4

3A1/2(τt)

)∣∣∣∣2Germano Nardini Triplet Higgs Physics

Phenomenology Features of the decoupling limit

Decoupling limit mA →∞Signal strength Rγγ [ = BR(h→ γγ)/BR(h→ γγ)SM]

∂ log vlog detMch(v) = − v2(λ2M2 + g2µΣ) sin 2β

M2µµΣ − 12λ

2v2(λ2M2 + g2µΣ) sin 2β

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

1

2

3

4

5

6

Λ

tanΒ

1.1

1.15

1.2

1.25

1.3

1.35

1.4

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

1

2

3

4

5

6

Λ

tanΒ

M2 = 250 GeV Xt =4, 0; mQ = 700 GeV M2 = 750 GeVµ = µΣ → mχ±

1∼ 105 GeV

Germano Nardini Triplet Higgs Physics

Phenomenology Features of the decoupling limit

Decoupling limit mA →∞

S and T parameters (due to EWKinos)

αS =s2Wλ2

10π2

m2Wµ2

[1 + 19

24 sin 2β]

+O(g4) , S = 0.04± 0.09

αT = 3λ2

128π2

m2Wµ2 cos2 2β +O(g4) , T = 0.07± 0.08

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

Λ

tanΒ

0.01 0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.6 0.8 1.0 1.2 1.4

1

2

3

4

5

6

Λ

tanΒ

S T

[M2 = 250 GeV, µ = µΣ → mχ±1∼ 105 GeV]

Germano Nardini Triplet Higgs Physics

Phenomenology Features at small mA

Small mA

And now let us

DECREASE mA

without upsetting the h Higgssignatures

Germano Nardini Triplet Higgs Physics

Phenomenology Features at small mA

Small mA (similar idea in C.Wagner’talk)

CP-even Higgs masses (basis h2, h1)

M20 =

(m2A cos2 β +m2

Z sin2 β (λ2v2 −m2A −m2

Z) sin 2β/2(λ2v2 −m2

A −m2Z) sin 2β/2 m2

A sin2 β +m2Z cos2 β

)(h2

h1

)=

(cosα sinα− sinα cosα

)(hH

)Tree-level h couplings are SM-like if α = β − π/2. With M2

0:

βc = π4 , λc=

√2mhv

More generically with M2, fixing h mass yields (no m4A!):

A(tanβ, λ,mh)m2A +B(tanβ, λ,mh) = 0

SM-LIKE POINT (λc, tanβc) INDEPENDENT OF mA

Germano Nardini Triplet Higgs Physics

Phenomenology Features at small mA

Small mA

tanβ(λ) and sinα(λ) fixing mh = 126 GeV

0.85 0.90 0.95

1

2

3

4

5

6

Λ

tanΒ

0.85 0.90 0.95

-0.6

-0.4

-0.2

0.0

0.2

Λ

sinΑ

Radiative correction ∆M2t(ht) and ∆M2

Σ(λ) included(mQ = 700 GeV, At = 0, mΣ = 5 TeV).Curves: mA =∞, 200, 155, 145,140,135,130 GeV

No attempt to reproduce data with mH = 126 GeV (but worth tocheck!)

Germano Nardini Triplet Higgs Physics

Phenomenology Features at small mA

Small mA

Signal strengths RHXX

RHXX =σ(pp→ H)BR(H → XX)

[σ(pp→ h)BR(h→ XX)]SM

R(ggF )HXX = R(Htt)

HXX =r2Htt r

2HXXD

, R(V BF )HXX = R(VH)

HXX =r2HWW r2

HXXD

D = BR(h→ b b)SM r2Hbb + BR(h→ gg, cc)SM r2

Htt

+ BR(h→ ττ)SM r2Hττ +BR(h→WW,ZZ)SM r2

HWW

No extra inv. width, i.e. mχ0 & mH/2sbottom-gluino may correct rhbb (M3 =1 TeV,mb=700 GeV)

Germano Nardini Triplet Higgs Physics

Phenomenology Features at small mA

Small mA mA = 140GeV, µ = µΣ = 250GeV, mχ± = 104GeV

Signal strengths RhXX from ggF and htt

RHXX =σ(pp→ H)BR(H → XX)

[σ(pp→ h)BR(h→ XX)]SM

0.90 0.95 1.000.0

0.5

1.0

1.5

2.0

2.5

3.0

Λ

RhXX

HggFL

bb,ττ ,WW ,γγ

Germano Nardini Triplet Higgs Physics

Phenomenology Features at small mA

Small mA mA = 140GeV, µ = µΣ = 250GeV, mχ± = 104GeV

Signal strengths RhXX from VBF and Vh

RHXX =σ(pp→ H)BR(H → XX)

[σ(pp→ h)BR(h→ XX)]SM

0.90 0.95 1.00

0.0

0.5

1.0

1.5

2.0

2.5

Λ

RhXX

HVBFL

bb,ττ ,WW ,γγ

Germano Nardini Triplet Higgs Physics

Phenomenology Features at small mA

Small mA mA = 140GeV, µ = µΣ = 250GeV, mχ± = 104GeV

Signal strengths RHXX from ggF and htt

RHXX =σ(pp→ H)BR(H → XX)

[σ(pp→ h)BR(h→ XX)]SM

0.90 0.95 1.000.0

0.2

0.4

0.6

0.8

1.0

Λ

RHXX

HggFL

bb,ττ ,WW ,γγ

Further reduction if mχ0 . mH/2 (mH ∼138 GeV)

Germano Nardini Triplet Higgs Physics

Conclusion

Conclusion

Triplet extension alleviates the fine-tuninig with respect to theMSSM

At very small mA there are 2 region around λ ≈ 0.9 and λ ≈ 1 thatmimic the signal strength of a SM Higgs. The exact values dependon mΣ, mQ and mU .

Some small deviations from a pure SM Higgs (e.g. γγ, bb, ττ) canalso be encompassed without need of modifying other rates

The argument to prove the existence of the SM-like point is quitegeneric and can be extended to other models (e.g. singlet exts.)

The extra Higgs sector may be at the EW scale but hidden

and only tiny deviations in RhXX may be present

Dedicated analyses on H± and A are worthwhile (generalizations ofL.Diaz Cruz and M.Battaglia’s talks)

Germano Nardini Triplet Higgs Physics

Conclusion

EXTRAS

Germano Nardini Triplet Higgs Physics

Conclusion

Plot of rhdd

0.85 0.90 0.95

-1.0

-0.5

0.0

0.5

1.0

1.5

Λ

rhbb

0

Germano Nardini Triplet Higgs Physics

Conclusion

Plot of rhtt

0.85 0.90 0.95

0.98

1.00

1.02

1.04

1.06

Λ

rhtt

0

Germano Nardini Triplet Higgs Physics

Conclusion

Plot of rhV V

0.85 0.90 0.95

0.90

0.92

0.94

0.96

0.98

1.00

Λ

rhVV

0

Germano Nardini Triplet Higgs Physics

Conclusion

Plot of rhγγ

0.85 0.90 0.95

0.95

1.00

1.05

1.10

1.15

1.20

1.25

Λ

rhΓΓ

Germano Nardini Triplet Higgs Physics

Conclusion

mχ±1

= 104 GeV (solid line), mχ±1

= 150 GeV with µ = µΣ = 300

GeV (dashed line) and mχ±1

= 200 GeV with µ = µΣ = 350 GeV

(dotted line)

0.90 0.92 0.94 0.96 0.98 1.00

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Λc

tanΒc

mSHTeVL

0.90 0.92 0.94 0.96 0.98 1.00 1.021.10

1.15

1.20

1.25

1.30

1.35

1.40

Λc

RhΓΓ

Germano Nardini Triplet Higgs Physics