Triangular spiral tilings and origami (Presentation sheet)

38
Spiral phyllotaxis Quadrilateral spiral multiple tilings Triangular spiral multiple tilings Main theorems for triangular spiral multiple tilings Triangular spiral tilings and origami Takamichi SUSHIDA* Akio HIZUMEand Yoshikazu YAMAGISHI*Graduate course of applied mathematics and informatics, Department of applied mathematics and informatics, Ryukoku University Mathematical Software And Free Documents XVI KYOTO UNIVERSITY March 19, 2013 Takamichi SUSHIDA* Akio HIZUMEand Yoshikazu YAMAGISHITriangular spiral tilings and origami

Transcript of Triangular spiral tilings and origami (Presentation sheet)

Page 1: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Triangular spiral tilings and origami

Takamichi SUSHIDA!

Akio HIZUME† and Yoshikazu YAMAGISHI†

!Graduate course of applied mathematics and informatics,†Department of applied mathematics and informatics,

Ryukoku University

Mathematical Software And Free Documents XVIKYOTO UNIVERSITY

March 19, 2013

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 2: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Table of contents

(i) Spiral phyllotaxis

(ii) Quadrilateral spiral multiple tilings

(iii) Triangular spiral multiple tilings

(iv) Main theorems for triangular spiral multiple tilings

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 3: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Spiral phyllotaxis

Phyllotaxis is the arrangement of leaves and other organs of plants.

Spiral phyllotaxis: ”Sunflower” and ”Pine cone” and so on.

The golden section:

! =1 +

"5

2= 1 +

1

1 +1

1 + · · ·

.

The fibonacci sequence:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89 · · · .

The lucas sequence:

2, 1, 3, 4, 7, 11, 18, 29, 47, 76, · · · .

Figure: Capitulum of sunflower

counterclockwise: 89 spiralsclockwise: 55 spirals

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 4: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Mathematical studies of phyllotaxis

Mathematical studies of phyllotaxis were started by people such as

Bravais brothers in the first half of 19th century.

! Comprehensive text of phyllotaxis:

1994: Roger.V.Jean, Phyllotaxis, A Systemic Study in PlantMorphogenesis, Cambrige University Press.

Figure: Bravais’s sketch ? (http://www.math.smith.edu/phyllo: PHYLLOTAXIS)

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 5: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

! Experiment:

1996: S.Douady and Y.Couder, Phyllotaxis as a DynamicalSelf Organizing Process, J. Theor. Biol, 178, 255-274, 275-294,295-312.

! Bifurcation structure of a dynamical system:

2002: P.Atela, C.Gole and S.Hotton, A dynamical systemfor plant pattern formation: A rigorous analysis, J.Nonlinear Sci.Vol. 12, pp. 641-676.

! Mathematical models:

2006: R.S.Smith at.el, A plausible model of phyllotaxis, Proc.Nat. Acad. Sci. 103 (5) 1301-1306.

2012: Y.Tanaka and M.Mimura, Reaction-di!usion modelfor inflorescence of sunflower, The 3rd Taiwan-Japan jointworkshop for young scholars in applied mathematics, NationalTaiwan University.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 6: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Mathematical studies of spiral tilings

2008: A.Hizume, Fibonacci Tornado, in: Proceedings of the11th Bridges Conference, 485-486.

2009: A.Hizume and Y.Yamagishi, Real Tornado, in:Proceedings of the 12th Bridges Conference, 239-242.

2012: T.Sushida, A.Hizume and Y.Yamagishi, Triangularspiral tilings, J.Phys.A: Math.Theor. 45, 23, 235203.

0

1

2

3

4 5

6

7

8

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

-20-18

-16

-12

-10

-9

-7

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

4243

44

45

46

47

48

49

50

-8

-14-6

Figure: Triangular spiral tilings with phyllotactic patterns

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 7: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Quadrilateral spiral multiple tilings

Let " = re!"1! # D\R. Let m,n > 0 be relatively prime integers.

We denote a point with the complex coordinate "j, j # Z by Aj.

We consider a spiral lattice S = {Aj}j#Z.

(a)-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

(b)-5

-3

-1

0

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20

Figure: Quadrilateral spiral multiple tilings:Each j denotes a position of a point Aj , j ! Z.

r = 0.94, ! = 2"# , # = 1+!

52 , (a) (m, n) = (5, 8), (b) (m, n) = (13, 3)

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 8: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Quadrilateral spiral multiple tilings

Let " = re!"1! # D\R. Let m,n > 0 be relatively prime integers.

We denote a point with the complex coordinate "j, j # Z by Aj.

We consider a spiral lattice S = {Aj}j#Z.

(a)-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

(b)-5

-3

-1

0

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20

Figure: Quadrilateral spiral multiple tilings:Each j denotes a position of a point Aj , j ! Z.

r = 0.94, ! = 2"# , # = 1+!

52 , (a) (m, n) = (5, 8), (b) (m, n) = (13, 3)

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 9: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Definition 1

A tiling of a two dimensional manifold X is a family T = {Tj}j of

topological disks Tj $ X which satisfies the following conditions:

X =!

j

Tj , int(Tj) % int(Tk) = & (j '= k).

Each Tj is called a tile.

Let v '= 0 be an integer. Let Cv := C/2#v"(1Z be a cylinder.

We denote C which punctures at the origin O by C$ := C\ {0}.

By the exponential map exp : Cv ) C$, w + 2#v"(1Z ) z = ew,

Cv is a covering space of C$ of a degree |v|.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 10: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let T % ="T %

j

#j

be a tiling of Cv. Then exp (T %) ="exp (T %

j)#

T "j#T "

is a multiple tiling of C$ of multiplicity |v|.

Definition 2

Let V % be an additive subgroup of Cv.We say that T % admits a transitive action by V % if

(i) *T % # T %, *$ # V %, T % + $ # T % and

(ii) *T %1, T

%2 # T %, +$ # V % such that T %

2 = T %1 + $.

If T % admits a transitive action by an additive subgroup %Z which isgenerated by a single element % # Cv,

then T = exp(T %) is called a spiral multiple tiling of multiplicity |v|.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 11: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let " = re!"1! # D\R. Let m,n > 0 be relatively prime integers.

We denote the principal argument of z # C$ by (# < arg (z) , #.

We suppose that T0 := "A0AmAm+nAn is a quadrilateral in C$ inthis order of vertices.

Let

%m = m log (r) +"(1

$m& ( 2#[[

m&

2#]]%

# log ("m),

%n = n log (r) +"(1

$n& ( 2#[[

n&

2#]]%

# log ("n),

where [[x]] # Z is an integer which is the nearest to x # R

such that (12

< -x. := x ( [[x]] , 12.

We obtain a tiling T % := {T %0 + k1%m + k2%n}k1,k2#Z of Cv.

where T %0 is a component of log (T0) which has 0, %m, %m + %n and

%n on its boundary.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 12: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

-39

-39

-38

-37

-39

-38

-37

-36

-37

-36

-35

-34

-36

-35

-34

-33

-32

-34

-33

-32

-31

-32

-31

-30

-29

-31

-30

-29

-28

-29

-28

-27

-26

-27

-26

-25

-24

-26

-25

-24

-23

-24

-23

-22

-21

-23

-22

-21

-20

-19

-21

-20

-19

-18

-19

-18

-17

-16

-18

-17

-16

-15

-16

-15

-14

-13

-15

-14

-13

-12

-11

-13

-12

-11

-10

-11

-10

-9

-8

-10

-9

-8

-7

-8

-7

-6

-5

-6

-5

-4

-3

-5

-4

-3

-2

-3

-2

-1

0

-2

-1

0

1

2

0

1

2

3

2

3

4

5

3

4

5

6

5

6

7

8

6

7

8

9

10

8

9

10

11

10

11

12

13

11

12

13

14

15

13

14

15

16

15

16

17

18

16

17

18

19

18

19

20

21

19

20

21

22

23

21

22

23

24

23

24

25

26

24

25

26

27

26

27

28

29

28

29

30

31

29

30

31

32

31

32

33

34

32

33

34

35

36

34

35

36

37

36

37

38

39

37

38

39

40

39

40

40

Re

Im

2!

!2!

!!

!

Figure: A quadrilateral spiral tiling and a tiling of Cv, v = 1:r = 0.94, ! = 2"# , # = 1+

!5

2 , (m, n) = (5, 8)

In the right figure, each j ! Z denotes a position of

$j = j log (r) +"#1(j(! + 2"%) + 2"kv), k ! Z, % ! Z

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 13: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

-39

-39

-38

-37

-39

-38

-37

-36

-37

-36

-35

-34

-36

-35

-34

-33

-32

-34

-33

-32

-31

-32

-31

-30

-29

-31

-30

-29

-28

-29

-28

-27

-26

-27

-26

-25

-24

-26

-25

-24

-23

-24

-23

-22

-21

-23

-22

-21

-20

-19

-21

-20

-19

-18

-19

-18

-17

-16

-18

-17

-16

-15

-16

-15

-14

-13

-15

-14

-13

-12

-11

-13

-12

-11

-10

-11

-10

-9

-8

-10

-9

-8

-7

-8

-7

-6

-5

-6

-5

-4

-3

-5

-4

-3

-2

-3

-2

-1

0

-2

-1

0

1

2

0

1

2

3

2

3

4

5

3

4

5

6

5

6

7

8

6

7

8

9

10

8

9

10

11

10

11

12

13

11

12

13

14

15

13

14

15

16

15

16

17

18

16

17

18

19

18

19

20

21

19

20

21

22

23

21

22

23

24

23

24

25

26

24

25

26

27

26

27

28

29

28

29

30

31

29

30

31

32

31

32

33

34

32

33

34

35

36

34

35

36

37

36

37

38

39

37

38

39

40

39

40

40

Re

2!

!2!

!!

!

Im

Figure: A quadrilateral spiral tiling and a tiling of Cv, v = 1:r = 0.94, ! = 2"# , # = 1+

!5

2 , (m, n) = (5, 8)

In the right figure, each j ! Z denotes a position of

$j = j log (r) +"#1(j(! + 2"%) + 2"kv), k ! Z, % ! Z

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 14: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

-5

-3

-1

0

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20

-44

-43

-42

-44

-43

-42

-41

-40

-39

-38

-42

-41

-40

-39

-38

-37

-36

-35

-39

-38

-37

-36

-35

-34

-33

-32

-36

-35

-34

-33

-32

-31

-30

-29

-33

-32

-31

-30

-29

-28

-27

-26

-25

-29

-28

-27

-26

-25

-24

-23

-22

-26

-25

-24

-23

-22

-21

-20

-19

-23

-22

-21

-20

-19

-18

-17

-16

-20

-19

-18

-17

-16

-15

-14

-13

-12

-16

-15

-14

-13

-12

-11

-10

-9

-13

-12

-11

-10

-9

-8

-7

-6

-10

-9

-8

-7

-6

-5

-4

-3

-7

-6

-5

-4

-3

-2

-1

0

-4

-3

-2

-1

0

1

2

3

4

0

1

2

3

4

5

6

7

3

4

5

6

7

8

9

10

6

7

8

9

10

11

12

13

9

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

16

17

18

19

20

21

22

23

19

20

21

22

23

24

25

26

22

23

24

25

26

27

28

29

30

26

27

28

29

30

31

32

33

29

30

31

32

33

34

35

36

32

33

34

35

36

37

38

39

35

36

37

38

39

40

41

42

43

39

40

41

42

43

44

45

42

43

44

45

45

Re

2!

!2!

!!

!

4!

!4!

Im

Figure: A quadrilateral spiral multiple tiling and a tiling of Cv, v = 2:r = 0.94, ! = 2"# , # = 1+

!5

2 , (m, n) = (13, 3)

In the right figure, each j ! Z denotes a position of

$j = j log (r) +"#1(j(! + 2"%) + 2"kv), k ! Z, % = 2%" + 1, %" ! Z

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 15: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

-5

-3

-1

0

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19

20

-44

-43

-42

-44

-43

-42

-41

-40

-39

-38

-42

-41

-40

-39

-38

-37

-36

-35

-39

-38

-37

-36

-35

-34

-33

-32

-36

-35

-34

-33

-32

-31

-30

-29

-33

-32

-31

-30

-29

-28

-27

-26

-25

-29

-28

-27

-26

-25

-24

-23

-22

-26

-25

-24

-23

-22

-21

-20

-19

-23

-22

-21

-20

-19

-18

-17

-16

-20

-19

-18

-17

-16

-15

-14

-13

-12

-16

-15

-14

-13

-12

-11

-10

-9

-13

-12

-11

-10

-9

-8

-7

-6

-10

-9

-8

-7

-6

-5

-4

-3

-7

-6

-5

-4

-3

-2

-1

0

-4

-3

-2

-1

0

1

2

3

4

0

1

2

3

4

5

6

7

3

4

5

6

7

8

9

10

6

7

8

9

10

11

12

13

9

10

11

12

13

14

15

16

17

13

14

15

16

17

18

19

20

16

17

18

19

20

21

22

23

19

20

21

22

23

24

25

26

22

23

24

25

26

27

28

29

30

26

27

28

29

30

31

32

33

29

30

31

32

33

34

35

36

32

33

34

35

36

37

38

39

35

36

37

38

39

40

41

42

43

39

40

41

42

43

44

45

42

43

44

45

45

Re

2!

!2!

!!

!

4!

!4!

Im

Figure: A quadrilateral spiral multiple tiling and a tiling of Cv, v = 2:r = 0.94, ! = 2"# , # = 1+

!5

2 , (m, n) = (13, 3)

In the right figure, each j ! Z denotes a position of

$j = j log (r) +"#1(j(! + 2"%) + 2"kv), k ! Z, % = 2%" + 1, %" ! Z

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 16: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let a, b # Z be integers such that bm ( an = 1.

Then we obtain the followings:

% := b%m ( a%n = log (r)+"(1(&+2#') # log ("), ' = a[[

n&

2#]](b[[

m&

2#]].

v := m[[n&

2#]] ( n[[

m&

2#]] =

12#

(n arg("m) ( m arg("n)).

In Cv, we have [[n!2" ]]%m ( [[m!

2" ]]%n / 0,

m% / %m, n% / %n and %mZ + %nZ / %Z mod 2#v"(1Z.

Let T % = {T %0 + k1%m + k2%n}k1,k2#Z = {T %

0 + k%}k#Z.

Then T % is a tiling of Cv that admits a transitive action by %Zand we have T = exp(T %).

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 17: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let " = re!"1! # D\R. Let m,n > 0 be relatively prime integers.

We denote C which punctures at the origin O by C$ := C\ {0}.We denote the principal argument of z # C$ by (# < arg (z) , #.

Proposition 3

Suppose that "m, "n '# R".If T0 := "A0AmAm+nAn is a quadrilateral in C$ in this order ofvertices, then a family of quadrilaterals

T = {Tj := "AjAj+mAj+m+nAj+n}j#Z (1)

is a quadrilateral spiral multiple tiling of multiplicity |v|,where v is given by

v =12#

(n arg ("m) ( m arg ("n)). (2)

In (1), a combinational index (m,n) is called a parastichy pair.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 18: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Definition 4

(i) A parastichy pair (m,n) is an opposed parastichy pair

if (arg ("m))(arg ("n))< 0.

(ii) A parastichy pair (m,n) is a non-opposed parastichy pair

if (arg ("m))(arg ("n))> 0.

(a)-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

Re

(b)

-3-1

0

1

2

3

4

5

6

78

9

10

1112

13

14

15

16

17

18

19

20

Re

Figure: r = 0.94, (m, n) = (5, 8), (a) ! = 2"# , (b) ! = 2"# + &

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 19: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

For x # R, let

x = a0 +1

a1 + 1a2+···

= [a0, a1, a2, · · · ], a0 # Z, ai # Z+, i 0 1

be a continued fraction expansion of x.

Define the sequence

{pi}i&0 , {qi}i&0 , {pi,k}i&0,0<k<ai+1, {qi,k}i&0,0<k<ai+1

by p0 = a0, q0 = 1; p1 = a0a1 + 1, q1 = a1;

pi = pi"2 + aipi"1, qi = qi"2 + aiqi"1, i 0 2; and

pi,k = pi"1 + kpi, qi,k = qi"1 + kqi, i 0 0, 0 < k < ai+1.

pi

qi= [a0, a1, · · · , ai] is called a principal convergent of x and

pi,k

qi,k= [a0, a1, · · · , ai, k] is called an intermediate convergent of x.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 20: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Lemma 5

Let 0 < x < 1. Let m,n, a, b be positive integers such that

a

m< x <

b

n, bm ( an = 1.

Thena

m,

b

nare principal or intermediate convergents of x,

at least one of which is principal.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 21: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let " = re!"1! # D\R. Let m,n > 0 be relatively prime integers.

Let a, b be integers such that bm ( an = 1.

Proposition 6

Suppose that "m, "n '# R".

Suppose that T = {Tj := "AjAj+mAj+m+nAj+n}j#Zis a quadrilateral spiral multiple tiling of a multiplicity |v| and(m,n) is an opposed parastichy pair.

Thena

m,

b

nare principal or intermediate convergents of

1v

$&

2#+ '

%, at least one of which is principal,

where ' is given by ' = a[[n&

2#]] ( b[[

m&

2#]].

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 22: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

! Proof of proposition 6:We may suppose that arg("n) < 0 < arg("m) without loss ofgenerality. So we have

-n&2#

. =n&

2#( [[

n&

2#]] < 0 <

m&

2#( [[

m&

2#]] = -m&

2#.

By ' = a[[n&

2#]] ( b[[

m&

2#]] and v = m[[

n&

2#]] ( n[[

m&

2#]], We have

[[m&

2#]] = av ( m', [[

n&

2#]] = bv ( n'.

Thus we obtain

n

$&

2#+ '

%( bv < 0 < m

$&

2#+ '

%( av,

and hencea

m<

1v

$&

2#+ '

%<

b

n, bm ( an = 1.

"Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 23: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Triangular spiral multiple tilings

LetT = {Tj := "AjAj+mAj+m+nAj+n}j#Z

be a quadrilateral spiral multiple tiling of multiplicity |v|.

If three vertices of a quadrilateral T0 = "A0AmAm+nAn lie on asame line, then T becomes a triangular spiral multiple tiling.

-1

0

1

2

3

4

5

6

7

89

10

11

1213

14

15

Re

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

Re

-3

-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

Re

Figure: Deformation between quadrilateral tilings through a triangulartiling with an opposed parastichy pair (3, 5)

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 24: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

0

1

2

3

4 5

6

Re

0

1

2

3

4 5

6

7

8Re

-1

0

1

2

3

4

5

6

7

8

Re

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

Re

-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

Re

2 -5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Re

Figure: Parastichy transition: ! = 2"# , # = 1+!

52 , (2, 3) $ (5, 3) $ (5, 8)

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 25: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

-1

0

1

2

3

4

5

6

7

89

10

11

1213

14

15

Re

4

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15Re

-4-2

-1

0

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

Re

Figure: Deformation between quadrilateral tilings through a triangulartiling with a non-opposed parastichy pair (3, 5)

Questions

(i) For each pair (m,n), which complex numbers " = re!"1! # D\R

produce triangular spiral multiple tilings ?

(ii) Which triangles admit spiral multiple tilings ?

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 26: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let

(m,k(z) =zk ( 1zm ( 1

(3)

be a rational function with one complex variable.

Lemma 7

Let " = re!"1! # C\R. Let m,n > 0 be relatively prime integers.

Suppose that "m '= 1. Then the following conditions are mutuallyequivalent.

(i) The three points Am, Am+n and An lie on a same line.

(ii) The four points O, A0, Am and An lie on a same circle.

(iii) rm sinn& ( rn sinm& + sin (m ( n)& = 0.

(iv) (m,m"n(") # R.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 27: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Main theorems for triangular spiral multiple tilings

We proved the following theorem about triangular spiral multipletilings with opposed parastichy pairs.

Theorem A

Let m,n > 0 be relatively prime integers.Let v be an integer which satisfies 0 < |v| < max {m,n}

2 .

Let Pm,n,v be the set of generators " = re!"1! # D\R

for triangular spiral multiple tilings of multiplicity |v|with an opposed parastichy pair (m,n).

Then Pm,n,v is a branch of a real algebraic curve parameterized by& = arg (").

Moreover, the union P =&

v>0

&(m,n) Pm,n,v is a dense subset of D.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 28: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Re

Im

52

31 5

141

61

71

81

72

83

73

81

71

61

51

41

723

1835

273-

---- - -

---

(5; 3)

(3; 5)

(3; 2)

(2; 3)

(5; 2)

(2; 5)

(4; 3)

(3; 4)

(3; 1)

(1; 3)

(1; 4)

(1; 5)

(4; 1)(5; 1)

21

Figure: The set of generators for triangular spiral tilings of multiplicityv = 1, with opposed parastichy pairs (m, n): A rational number x on theunit circle denotes e2!

!#1x

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 29: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Re

Im

52

31 5

141

61

71

81

72

83

73

81

71

61

51

41

723

1835

273-

---- - -

---

(5; 3)

(3; 5)

(3; 2)

(2; 3)

(5; 2)

(2; 5)

(4; 3)

(3; 4)

(3; 1)

(1; 3)

(1; 4)

(1; 5)

(4; 1)(5; 1)

21

●●

0

1

2

3

4 5

6

Re

0

1

2

3

4 5

6

7

8Re

-1

0

1

2

3

4

5

6

7

8

Re

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

Re

-5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

Re

2 -5

-3

-1

0

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

2526

27

28

29

30

31

32

33

34

35

36

37

38

39

40

Re

Figure: Parastichy transition: ! = 2"# , # = 1+!

52 , (2, 3) $ (5, 3) $ (5, 8)

! Principal convergents of the Golden section ! = 1+!

52 :

11,32,85,2113

, · · · , !, · · · ,3421

,138

,53,21

! Parastichy transition:

(2, 3) ) (5, 3) ) (5, 8) ) (13, 8) ) (13, 21), · · · .

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 30: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Next, we proved the following theorem about triangular spiralmultiple tilings with non-opposed parastichy pairs.

Theorem B

Let m,n > 0 be relatively prime integers.Let v be an integer which satisfies 0 < |v| < n

2 .

Let Qm,n,v be the set of generators " = re!"1! # D\R

for triangular spiral multiple tilings of multiplicity |v|with a non-opposed parastichy pair (m,n).

Then Qm,n,v is a branch of a real algebraic curve parameterized byr = |"|.

Moreover, the union Qv =&

(m,n) Qm,n,v is a dense subset of D.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 31: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Triangles which admit spiral multiple tilings

Let arg "m = ( arg "n = #/3, and let v = 1 .

n arg "m ( m arg "n = 2# · 1 1 m + n = 6. (m,n) = (1, 5), & = #/3.

rm sinn& ( rn sin m& + sin (m ( n)& = 0 has a unique root

0 < r = 0.7548 · · · < 1.

! !

!

!

!

Re

Im

!m

!n

!m+n 1

O

arg !m =3ù

à arg !n =3ù

0

1

2

3

45

6

78

9

10

Figure: A spiral tiling by equilateral triangles

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 32: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let arg "m = arg "n = #/3, and let v = 1.

n arg "m ( m arg "n = 2#v 1 (m + n = 6. (m,n) = (1, 7), & = #/3.

However, rm sin (m + n)& ( rm+n sin m& ( sin n& = 0 doesn’t have asolution 0 < r < 1.

Hence we can’t obtain a spiral tiling by equilateral triangles, withan non-opposed parastichy pair.

!!

!

!

Re

Im

arg !m =3ù

arg !n =3ù

!m+n

!m

!n

1

O

Figure: A equilateral triangle of the case of non-opposed parastichy pair

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 33: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let arg "m = #/3, arg "n = (#/6, and let v = 1.

n arg "m ( m arg "n = 2#v 1 m + 2n = 12

(m,n) = (2, 5), & = (5#/6.

The equation rm sinn& ( rn sinm& + sin (m ( n)& = 0

has a unique root 0 < r = 0.9214 · · · < 1.

! !

!

!

!

Re

Im

!m

!n

!m+n

1

O

arg !m =3ù

à arg !n =6ù

-2

-1

0

1

2

3

4

5

6

7

8

9

10

Figure: A spiral tiling by right triangles with angles 30$, 60$, 90$

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 34: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Let arg "m = #/3, arg "n = #/6, and let v = 1

n arg "m ( m arg "n = 2#v 1 (m + 2n = 12

(m,n) = (2, 7), & = (5#/6.

The equation rm sin (m + n)& ( rm+n sinm& ( sinn& = 0

has two solutions r = 0.883 · · · and 0.754 · · · .

! !

!

!

!

Re

Im

!m

!n

!m+n

1

Oarg !m =

arg !n =6ù

-1

0

1

2

3

4

5

6

7

8

10

12

14

9

11

13

0

1

2

3

4

56

7

Figure: Spiral tilings by right triangles with angles 30$, 60$, 90$

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 35: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Origami for triangular spiral tilings

Figure: Origami sheets for a Fibonacci tornado:Solid lines are mountain fold and dashed lines are valley fold.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 36: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

0

5

1

3

68

2

7

4

4

5

3

9

0

5

1

3

6

4

8

2

7

4

8

Figure: Origami sheets for a spiral tiling by regular triangles:Solid lines are mountain fold and dashed lines are valley fold.

0

1

2

3

45

6

78

9

10 11

12

Figure: Top-down view of an origami of a spiral tiling by regular triangles.Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 37: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

-7

-5

-4-2

-1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

2021

22

23

24

25

2627

28

29

30

-3

0

112

9

18

-2

7

53

1

161412

10

8

20

4

6

8

10

121416

18

20

13

15

17

19

21

23

22

24

26

28

252729

30

32343638

6

4

2

Figure: An origami sheet for a spiral multiple tiling by right triangles withangles 30$, 60$, 90$

Figure: Top-down view

In the right figure,solid lines are mountain fold anddashed lines are valley fold.

These figures were chosen the coverpage of Journal of Physics A:Mathematical and Theoretical. 45. 23,2012.

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami

Page 38: Triangular spiral tilings and origami (Presentation sheet)

Spiral phyllotaxisQuadrilateral spiral multiple tilings

Triangular spiral multiple tilingsMain theorems for triangular spiral multiple tilings

Thank you for your attention...

Takamichi SUSHIDA! Akio HIZUME† and Yoshikazu YAMAGISHI† Triangular spiral tilings and origami