Transporte de Sedimento

download Transporte de Sedimento

of 62

Transcript of Transporte de Sedimento

  • 8/11/2019 Transporte de Sedimento

    1/62

    Estimating Sediment TransportPeter Wilcock 9 August 2011

    ore ac groun Critical and reference shear stresses

    y t s ar to est mate transport rates Empirical vs formula estimates A calibrated method for estimating transport rates in

    gravel-bed rivers

  • 8/11/2019 Transporte de Sedimento

    2/62

    If a sediment rating curve is what we use in application, isnt there

    Will 1,000 cfs in Silver Ck move the same amount of sediment as1,000 cfs in the Snake R?

    One recent attempt:

    s

    sr r

    Q Q

    Q Q

    b

    s aQQ Its nice that a cancelled, but for this model to be general, therate of change of Qs with Q (i.e. the exponent b) must be thesame everywhere. But we will find that b varies from littlemore than one to more than ten!.

    Basically , we are looking for a flow variable that can be

    accurately scaled, such that we have a general model

  • 8/11/2019 Transporte de Sedimento

    3/62

    A flow variable that does scale well (although it not always easy to.

    transport models in common use.

    What might a general transport model look like? First, lets get amore formal introduction to the la ers. The best wa to do this iswith a dimensional analysis which will produce a list of

    dimensionless variables that represent the problem.This helps because* the number of dimensionless variables is (usually) 3 less than the

    * the dimensionless variables often have a useful physical meaning* Any relation between the dimensionless variables should begenera , we ave s e a re evan var a es a e s ar .

  • 8/11/2019 Transporte de Sedimento

    4/62

    ( , , , , , , )s sq f h D g Our list:2L M M M M L

    , L, L, , , ,

    )/,*,*,(* h DsS f q

    sq **

    mens onaanalysis gives:

    gDs

    gDsgDs

    )1(

    )1(,

    )1(

    3

    3

    s /If s = const

    & S* large

  • 8/11/2019 Transporte de Sedimento

    5/62

    o(Flow force on bed)/(bed area): The Shields Number

    3(Grain weight): ( 1)6

    s g D

    2

    * Number of grains/area 1/

    Flow Force D

    e s um er:

    Grain weight ( 1)

    This is THE most im ortant variable in sediment trans ort

    s gD

    The Einstein Volumetric transport rate/width sq

    TransportParameter *

    Sediment fall velocity ( 1)

    trans ort rate

    w s gD

    q

    3fall velocity * grain size ( 1)

    q

    s gD

  • 8/11/2019 Transporte de Sedimento

    6/62

    First, we define conditions for the onset of sediment transport;these should depend on the same variables as the transport rate

    ot on o mot on , , ,s 3( 1)

    * * ss gD D

    ( 1) /s gD h

    The Shields curveIncipient motion defined in.

    *c

    terms of a critical value ofShields Number

    Motion

    * c Defined for unisize sediment No Motion

    ( 1)c s gD

    0.0110 100 1000 10000 100000

    *

    ec oDimensionless plots must be

    59.03.0* *35exp045.0*105.0 S S c

  • 8/11/2019 Transporte de Sedimento

    7/62

    bcaq )*(** A typical transport model:

    gDsc

    c

    )1( 2/3*** c-

    3/ 2 3 ( 1) ( 1)( 1) s gD s gDs gD

    0.1

    1

    10

    3/ 23/ 28

    ( 1)s cq

    s g

    0.001

    0.01

    3/ 278.7for in (tons/day)

    s c

    s

    q

    q

    1E-050.0001

    0.01 0.1 1

    * .and , in (Pa)c

    3**q

  • 8/11/2019 Transporte de Sedimento

    8/62

    bcaq )*(** A typical transport model:

    gDsc

    c

    )1( 2/3*** c

    )1(** s

    gqsq

    -

    One more transport variable, W*2/32/3 )/(*)(

    2/3

    (sorry!)

    One more stress, the reference stress r

    *18*

    cW

    onvert t e - ormu a to anincorporate a reference shear stress. First,we divide M-PM by ( *)3/2 to get

    At *= *r, W * = W *r = 0.002. Dividing by 8, raising both sides to the 2/3 power produces

    ** 996.0 r c *

    1004.0r

    c

    *

    *

    996.018*

    r W Meyer-Peter & Mller:

  • 8/11/2019 Transporte de Sedimento

    9/62

    Reference shear stress? Critical shear stress?

    3/ 210

    *10

    *

    Meyer-Peter & Mller

    ** 8 1 cW

    0.11

    0.1

    1

    3/ 2*

    or

    .996 0.01

    *W

    0.01

    *

    .0.01 0.1 1

    *

    *

    .0.01 0.1 1

    * *c

    r

  • 8/11/2019 Transporte de Sedimento

    10/62

    How the reference shear stress gets used

    100

    / ( m s

    ) ]

    1 r a

    t e W *

    1 r a

    t e W *

    1

    o r t r a t e q

    b i [

    0.1

    s t r a n s p o r

    t

    0.1

    s t r a n s p o r

    t

    0.001

    0.01

    .

    r a v e l

    t r a n s p

    0.001

    .

    i m e n s i o n

    l e

    0.001

    .

    J06

    J14 i m e n s i o n

    l e

    *

    r W

    0.00001

    0.0001

    G

    0.00001

    0.0001

    0.00001

    0.0001J27BOMC

    0.1 1 10 100

    Bed Shear Stress (Pa)

    0.1 1 10 100

    Bed Shear Stress (Pa)

    0.1 1 10 100

    r /r

  • 8/11/2019 Transporte de Sedimento

    11/62

    The Difference Between c

    and r

    c : boundary between motion & no motion.Definable exactly for an individual grain;

    10

    *W

    definable statistically for a river bed Hard to measure, tracer grains are yourbest shot

    0.1

    r : the stress associated with a small,agreed-upon transport rate ( W* = 0.002) 0.001

    0.01

    0.01 0.1 1

    *r W

    provides a threshold for transport estimate

    Easy to determine from transport

    *

    * *observations c

    tracers (painted rocks, magnetic rocks, radio rocks, rock scum) answer the question did the

    11

    , , ,flows, develop relation between %entrained, grain size, and flow)

    Need large numbers of grains for reliable sample Need to place naturally

  • 8/11/2019 Transporte de Sedimento

    12/62

    cWill sediment move? Is > ?

    As increases, up go stage & (controlled by resistance and continuity).o

    Q R

    The incipient motion problem

    For a given , we can find boundary stress using momentum =

    and compare too

    c

    S gRS

    100

    1.5

    2.0

    2.5 Lazy River Section 2

    a t i o n

    ( m )

    10

    a r s

    t r e s s

    ( P a

    )

    c Motion

    0.0

    0.5

    .

    0 2 4 6 8 10 12 14 16Station (m)

    E l e

    1 S h e

    No Motion

    At what does ?o cQ

    0.10.1 1 10 100

    Grain Size D (mm)quartz in water

    2 / 3 2 / 3Combining and :S S

    Q UA U R Q ARn n

    If we know and and , we can find from

    and then calculate . Or, we can simply adjust untilc c c c

    c c

    n S R gR S

    Q Q R R

  • 8/11/2019 Transporte de Sedimento

    13/62

    Discharge ( Q ): 70.0 cfs

    Enter values only in green cells Channel Velocity ( U ): 3.31 ft/sec 2 / 31.49 S

    1. CALIBRATION. For the slope, flow depth, and cross

    section you have specified, use Manning's eqn to find

    X/S.xls illustrates the back-calculation of n

    Manning's n : 0.054

    Channel Slope ( S ): 0.0120 Manning's n : 0.047Flow Depth: 1.64 ft Channel Velocity ( U ): 3.82 ft/sec

    Selected Flow Depth: 1.64 ft Discharge ( Q ): 80.8 cfsCross-Sectional Area ( A ): 21.1 sq.ft. 2.3 cms

    Hydraulic Radius ( R ): 1.2 ft Grain Size D 60 mm nD = 0.026Critical Shields Number t*c 0 06 t' = 16 8

    2 / 31.49 S Q ARn

    nQ

    2. FIND DISCHARGE. For the slope, flow depth, andcross section you have specified, use Manning's eqn tofind the discharge Q for a value of the roughness n incell F53. FIND CRITICAL DISCHARGE. You can also

    the roughness n for a value of the discharge Q in cellF1

    Apply . .

    Cross section of Minebank Run stream channel, 41.4 Pa t'/tc = 0.2928 feet downstream of gage 0158397967 December 2002. c 58.3 Pa

    Survey Data: c 0.71Grade Rod (ft) Distance (ft)

    4.0 0.04.4 0.04.4 2.0

    3

    3.5Left Bank

    critical stress c needed to entrain grains of size Dspecified in cell F9 (given a value of critical ShieldsNumber given in cell F10

    0

    *( 1)

    cc

    gRS

    s gD

    Enter inform ation only in

    green cells!!No cuttin and astin !

    n c

    . .4.7 8.04.8 12.04.9 14.05.5 18.05.7 20.05.9 21.06.7 22.3

    4

    4.5

    5

    5.5 d e R o d ( f t )

    No inserting or deleting

    rows!

    7.0 23.07.2 24.07.1 26.07.3 28.07.3 30.07.0 32.07.1 34.06.8 36.0

    6

    6.5

    7

    7.5

    G r a

    Input

    7.1 36.35.7 37.0 0 10 20 30 40 50Distance (ft)

    13

  • 8/11/2019 Transporte de Sedimento

    14/62

    Q BhU continuity

    /

    b B aQ

    h gS

    For a simple, wide,

    hydraulic geometry

    momentum

    2 / 3

    5 / 3

    soS

    U hn

    ,find Q c directly Mannings eqn.

    1

    or bQ aQgS n

    a S Q

    n gS

    *

    15 / 3 1*

    ( 1) soc c

    b

    s gD

    a

    0.045( 1)

    cc s gD

    7 / 6c c s

    nS

  • 8/11/2019 Transporte de Sedimento

    15/62

    Q BhU

    too sure aboutsome of the values/

    b B aQ

    h gS

    needed todetermine Q c ?2 / 3

    5 / 3

    soS

    U hn

    Like n, D , and * c

    what do you do?1

    or bQ aQgS n

    a S Q

    n gS

    *

    15 / 3 1*

    ( 1) soc c

    b

    s gD

    a

    7 / 6c c

    snS

  • 8/11/2019 Transporte de Sedimento

    16/62

    Suppose your best estimate of Mannings n is 0.035and that you are pretty sure that the real value falls n c

    y0.035

    0.0025n

    n

    e ween . an . .

    We could approximate your assessment of thevalue of n with a normal distribution with

    F r e q u

    2 n

    mean = . s an ar ev a on = . .

    95% of this distribution falls between 0.03 and 0.04,as can be seen in the cumulative fre uenc lot, so

    n n 0.02 0.03 0.04 0.05Manning's n

    0.8

    1

    q u e n c y

    2 n

    we are saying that the real value of n is 95% likely tofall between 0.03 and 0.04 and that it is more likely

    to be around the center of the distribution (0.035) 0.20.4

    0.6

    u m u

    l a t i v e

    F r e

    .values of n in our Monte Carlo simulation.

    How does that work? We use a random number

    00.02 0.03 0.04 0.05

    Manning's n

    1 n c y

    generator to pick a number between 0 and 1 andthen use this number to find a value of n for thecumulative frequency distribution. For example,

    =0.4

    0.60.8

    u l a t i v e

    F r e q u

    . , .for 0.23, n = 0.0332 0

    .

    0.02 0.03 0.04 0.05

    C u

    Manning's n

  • 8/11/2019 Transporte de Sedimento

    17/62

    n D*c

    1 .

    The Monte Carlo simulation

    *. c va ues o , , an rom spec e requency s r u ons.

    2 . Calculate critical discharge and transport rate.

    3 . Repeat 1000 times.

    c

    b

    Q BhU

    B a2 .

    4 . Distribution of calculated values givesestimate of the effect of input uncertaintyon calculated critical discharge and transport rate.

    2 / 3

    /

    so

    h gS

    S U h

    n

    1

    5 / 3 1

    or b

    b

    S Q aQ

    gS n

    a S

    100200

    300

    400Manning's n(a)

    50

    100

    150

    200*c (b)

    4 .

    *

    1

    ( 1) soc c

    n gS

    s gD

    0

    0 . 0 2 0

    0 . 0 2 4

    0 . 0 2 8

    0 . 0 3 2

    0 . 0 3 6

    0 . 0 4 0

    0 . 0 4 4

    0 . 0 4 8

    0

    0 . 0 3 0

    0 . 0 3 4

    0 . 0 3 8

    0 . 0 4 2

    0 . 0 4 6

    0 . 0 5 0

    0 . 0 5 4

    0 . 0 5 8

    200

    250 Grain Size D(mm)(c)

    200

    250

    300 Critical DischargeQc (m^3/s)(d)

    *7 / 6 ( 1)c caQ s DnS 0

    50

    100

    1 4 2 0 2 6 3 2 3 8 4 4 5 0 5 60

    50

    100

    150

    0 3 6 9 1 2 1 5 1 8 2 1 Monte Carlo

  • 8/11/2019 Transporte de Sedimento

    18/62

    LEGENDSpecify Mean St. Deviation pdf

    Manning's n 0.03 0.002 normal

    cMonte Carlo Simulation

    . .Grain size 5 0.25 normal

    D (mm) 32 lognormal95% Pred.

    o Qc ca cu at on, us ng1000 trials

    300

    400Manning's n(a)

    150

    200* (b)

    a cu a e ean . ev a on n erva

    Qc (m^3/s) 8.1 3.4 6.7

    100

    200

    50

    100

    (uncertain)

    solution to

    0 . 0

    2 0

    0 . 0

    2 4

    0 . 0

    2 8

    0 . 0

    3 2

    0 . 0

    3 6

    0 . 0

    4 0

    0 . 0

    4 4

    0 . 0

    4 8

    0 . 0

    3 0

    0 . 0

    3 4

    0 . 0

    3 8

    0 . 0

    4 2

    0 . 0

    4 6

    0 . 0

    5 0

    0 . 0

    5 4

    0 . 0

    5 8

    250 Grain Size D 300 Critical Discharge

    thresholdchannel

    roblem

    100

    150

    200mm

    (c)

    150

    200250 Qc (m 3/s) Need a

    better

    0

    50

    1 4

    2 0

    2 6

    3 2

    3 8

    4 4

    5 0

    5 6 0

    50

    0 3 6 9 1 2

    1 5

    1 8

    2 1 tracergravels

  • 8/11/2019 Transporte de Sedimento

    19/62

    Application of Monte Carlo approach for assessing risk:

    Given a channel with a design discharge. The channel isintended to be static. You would like to be 90% sure that the

    grains in the channel bed will not move at the designdischarge.

    Solution: specify possible range in n , D, and * c , use MonteCarlo to determine the range of possible discharges. Adjust

    are larger than the design discharge.

    300 Critical Discharge

    DesignDischarge

    100

    150

    200250 Qc (m 3/s)

    0

    50

    0 4 8 1 2 1 6 2 0 2 4 2 8

  • 8/11/2019 Transporte de Sedimento

    20/62

    Garcia, Vanoni Bed Load Transport Relations

  • 8/11/2019 Transporte de Sedimento

    21/62

    100,000100,000 D = 45 mm

    Sediment Transport Why its hard to estimate 0

    60,000

    70,000

    80,000

    ,

    t e ( k g

    / h r )

    10,000

    t e ( k g

    / h r )

    30,000

    40,000

    50,000

    T r a n s p o r t

    R

    100

    1,000

    T r a n s p o r t

    R

    0

    10,000

    20,000

    0 20 40 60 80 100 120

    D = 45 mm

    D = 30 mm

    1010 100

    DischargeDischarge

    Example calculation using Meyer-Peter and Muller for a channel= = =

    Discharge (cms) Discharge (cms)

    . , . , .solid curve uses = 0.045 and D = 45 mm. The dashed curve uses

    = 0.045 and D = 30 mm.

    *c

    *c

    Note that at discharge Q = 55 cms, one curve indicates zerotransport and the other a transport rate of 80,000 kg/hr.

  • 8/11/2019 Transporte de Sedimento

    22/62

    10 M-P&M2t*c

    Sediment Transport Why its hard to estimate I

    1ranspor ra e s a s eep, non nearfunction of bed shear stress

    0.1

    q* s

    Three things make it difficult to

    0.001

    .accura e y es ma e :

    1. Accelerations in unsteady,

    0.0001

    . .

    2. Only a portion of the total acts totrans ort sediment

    1E-050.01 0.1 1

    varies locally. Because transportis a nonlinear fn of estimates

    * based on total will be in error

  • 8/11/2019 Transporte de Sedimento

    23/62

    t g xg xS gR0

    Three things make it difficult toh U U accura e y es ma e :

    1. Accelerations in unsteady,0

    0 f

    g x g x

    gRS

    . .

    2. Only a portion of the total acts totrans ort sediment

    NOTE:

    varies locally. Because transportis a nonlinear fn of estimates

    compute S f

    based on total will be in error

  • 8/11/2019 Transporte de Sedimento

    24/62

    The Drag Partition

    , 0, per area, that the flow exerts on the boundary of the channel.

    But onl a ortion of the

    Three things make it difficult to total 0 acts on thesediment grains to produce

    accura e y es ma e :

    1. Accelerations in unsteady,

    .transport rates, we need to

    partition 0 into the part. .

    2. Only a portion of the total acts totrans ort sediment

    that acts only on thesediment grains. We callthis the skin friction or

    varies locally. Because transportis a nonlinear fn of estimates

    grain stress .There is no direct way to

    based on total will be in error .

    an approximate method,using Mannings equation.

  • 8/11/2019 Transporte de Sedimento

    25/62

    Solve the Manning eqn for the boundary stress:

    2 / 3 1/ 6 2 / 3( ) ( )g S nU gRS 2 / 3SRU

    0gS nU

    3/ 2 1/ 4 3/ 2 '

    1/ 6 .

    1/ 4

    Manning-Strickler Roughnessfor D in mm

    .

    65 65where we use 2 D D

    1/6

    *8.1

    s

    U hu k

    3 21000 kg/m & = 9.81 m/sg

    1/6

    8.1

    s D

    k n

    g

  • 8/11/2019 Transporte de Sedimento

    26/62

    Using both the grain roughness and total roughness, we have anestimate of the portion of the total stess acting on the grains the

    0.06

    0.07

    0.08

    typical range of n values

    . 3/ 21/ 4o gS nU

    0.04

    0.05

    a n n i n g s n

    3 21/ 4

    ' DgS n U

    0.01

    0.02

    .

    Manning-Strickler n

    D

    o

    n

    n

    1 10 100 1000Charactersitc Bed Material Grain Size (mm)

    3/ 2' D o

    n

    nBasically the same drag partition suggested by Meyer-Peter & Muller in the . ,application in HEC-RAS

  • 8/11/2019 Transporte de Sedimento

    27/62

    Sediment Transport Why its hard to estimate II

    W at s or a reac ?

    Critical shear stress depends linearlyon grain size, but the grain size of thetransport is poorly known!

    100

    )

    10

    e a r s t r e s s

    ( P a

    c Motion

    Transport rate is a steep, nonlinearfunction of bed shear stress

    1 S

    h

    No Motion

    Small error in c can produce bigerror in qs

    0.1

    0.1 1 10 100Grain Size D (mm)quartz in water

  • 8/11/2019 Transporte de Sedimento

    28/62

    Estimating Sediment Transport: Why its hard

    Sediment transport is a local process: between individual grainsand the near-bed flow they encounter

    The transport process is highly nonlinear: a very steep functionw w

    Real streams have considerable variability in topography, flow,and bed composition The local flow actin on rains is hard to estimate The distribution of bed grain sizes is hard to determine You never know either local flow or local bed composition in

    detail, so you have to estimate Errors in estimated transport rates are typically very large

    (often well in excess of an order of magnitude!) Next, we examine an approach to provide reliable transport

    estimates of reater accurac with acce table effort

  • 8/11/2019 Transporte de Sedimento

    29/62

    If estimating transport rates using shear stress is so hard, remind me again why we cant find some general formula using Q.

    t an est mate or , ets return tothe sediment rating curve problem. sQ Q

    relation based on discharge Q can beeneral.

    sr r

    10 M-P&M

    1

    2t*c(t*)^3We approximate transport with a

    power function of

    * *q 3'sq 0.01.

    q*

    3'

    0.0001

    0.001

    Write the relation twice, take ratio

    'sr r q

    1E-050.01 0.1 1

    *

  • 8/11/2019 Transporte de Sedimento

    30/62

    3

    ' 'sr r q

    ''

    r

    U U

    We use our grain stress relation:

    4.5

    sq U

    Which givessr r q U

    .sQ U For simplicity, we assumethe width of transport does

    sr r not change

  • 8/11/2019 Transporte de Sedimento

    31/62

    We can relate U to Q using the hydraulicgeometry:

    4.5 4.5 mbaQ B

    r r U Q

    mk U

    c 4.5 msQ Q sr r

    For 0.2 < m < 0.8, 1.0 < < 3.6.s no a cons an s no a su a y generavariable for a transport model.

    Even larger values of found in steep mountainstreams (typically very small transport rates,

    >

    W find the exponent to vary between 1 and 10 (!!)

  • 8/11/2019 Transporte de Sedimento

    32/62

    Estimating Bed-Material

  • 8/11/2019 Transporte de Sedimento

    33/62

    Bed/Suspended Load vsWash/Bed Material Load How many sizes?

  • 8/11/2019 Transporte de Sedimento

    34/62

    Washloadclay, silt, fine

    suspension ?? uplands,banks,

    true washload:(a) Transport not predictable

    san , oo e n e o a ectransport of other fractions

    Bed Material Fine

    bed load orsuspension

    interstices,stripes and

    grain path in near-bed regiondominated by larger grains;

    med-crs sand, pea gravel

    dunes,subsurface

    hard to sample & model

    Bed Material bed load bed framework displacements generally rareCoarse

    med-crs gravel,cobble

    Hugeboulder

    typical high flows

    grains to exclude from thetransportable population

    We focus on fine and coarse bed material

  • 8/11/2019 Transporte de Sedimento

    35/62

    What about more fractions?

    Many-fraction models available: including ones basedon the grain size of the bed surface, which allow for the

    .

    These models are fragile output is sensitive to the.

    To simulate transport at a particular location, at aarticular time

    need large amounts of detailed bed and flow data

    Use these models to ask more general questions:

    e.g. change in bed composition & transport witha change in flow releases from dams or

    We will apply such a model later

  • 8/11/2019 Transporte de Sedimento

    36/62

    Estimating Sediment Transport: Three overarchingconstraints bound the problem

    Large spatial & temporal variabilityNeed BIG samples

    Strongly nonlinear processese -mater a transport s a oca a a r

    Modeling with spatial/temporal averages produces large error Sparse information available relative to that needed to model the

    Modeling with high spatial/temporal resolution requires vast amounts of data Generally, we need a robust approach

  • 8/11/2019 Transporte de Sedimento

    37/62

    Target: sediment rating curve Q s = ( Q )

    Predict from a flow & transport model We cant measure ever thin but

    Approaches

    Models too fragile

    Sample transport , Accuracy poor and a full sampling program too

    burdensome

    Tracer gravels and scour chains Measure volumetric change in local topography

    1. Dealing with grain size2. Calculating transport rates

    Issues:

    3. Sampling bed material load

    4. Best approach?

  • 8/11/2019 Transporte de Sedimento

    38/62

    .

    motion: What is Q c ? -

    rate: What is Q se ave trou e est mat ng c, as we as y rau c parameters

  • 8/11/2019 Transporte de Sedimento

    39/62

    Calculating cumulativeQ

    h

    sediment transport in asimple, prismatic channel,

    b B aQ

    over a hydrograph U h

    nnQ

    2 / 33 / 5

    baQ Sha or uncer a n y nn, D , and * c

    nh

    a S

    consequences?

    3/ 23/51 0.73 *2650

    bnQ S

    ep ace n

    ghS Replace in Meyer-Peter & Muller:

    1000 ( 1)s o ca s D 0.7nQg S

    a

  • 8/11/2019 Transporte de Sedimento

    40/62

    LEGENDSpecify Mean St. Deviation pdf

    Mannin 's n 0.03 0.002 normalMonte Carlo Simulation

    c 0.045 0.0050 normalGrain size 5 0.25 normal

    D (mm) 32 lognormal

    of Qs calculation, using1000 trials

    400'

    200 Cumulative

    .Calculate Mean St. Deviation Interval

    Cumulative transport (tons) 14,997 2,806 5,509

    0

    100

    200

    300 a

    0

    50

    100

    150 c (b)

    100150200250 Transport

    (metric tons)(f)

    0 . 0

    2 0

    0 . 0

    2 4

    0 . 0

    2 8

    0 . 0

    3 2

    0 . 0

    3 6

    0 . 0

    4 0

    0 . 0

    4 4

    0 . 0

    4 8

    0 . 0

    3 0

    0 . 0

    3 4

    0 . 0

    3 8

    0 . 0

    4 2

    0 . 0

    4 6

    0 . 0

    5 0

    0 . 0

    5 4

    0 . 0

    5 8

    200

    250 Grain Size D(mm)(c)

    60

    80

    100

    ( m ^ 3 / s )

    (d)

    050

    2 0 0 0

    6 0 0 0

    0 0 0 0

    4 0 0 0

    8 0 0 0

    2 0 0 0

    6 0 0 0

    0 0 0 0

    0

    50

    100

    1 4

    2 0

    2 6

    3 2

    3 8

    4 4

    5 0

    5 6

    0

    20

    40

    0 20 40 60 80 100Time (hrs)

    D i s c h a r g e 1 1 1 2 2 3

    Useful for evaluating uncertaintyin sediment balance between

    MonteCarloTransport.xls

  • 8/11/2019 Transporte de Sedimento

    41/62

  • 8/11/2019 Transporte de Sedimento

    42/62

    2. Estimating Transport: Sampling

    Option 1: trap all the transport in a weir, slot, or pool

    -

    samplers installed on the bed.

    Option 1 is best, butgenerally not practical

    Option 2 is practical,but involves larger

    error, some r s , someluck, and lots of effort

  • 8/11/2019 Transporte de Sedimento

    43/62

    Bi River Sam lin 1991

  • 8/11/2019 Transporte de Sedimento

    44/62

  • 8/11/2019 Transporte de Sedimento

    45/62

    Big River Sampling 2007

    R ll Bi Ri S li 2007

  • 8/11/2019 Transporte de Sedimento

    46/62

    Really Big River Sampling 2007

  • 8/11/2019 Transporte de Sedimento

    47/62

  • 8/11/2019 Transporte de Sedimento

    48/62

    Sampling ITransport field highly variable in space & time

    Need LARGE samples!

    Define Sampling Intensity for a 6.5m stream

    Transport. = ,

    Hand-held 13 * 0.075m X 120s = 117 msSamplingTransect

    .

    rapSampler . m s = ,ms (23.5%)

    So, pit or net-frame traps look pretty good

    Pit samplers fill up

  • 8/11/2019 Transporte de Sedimento

    49/62

    Pit samplers fill up

    Photo J Pizzuto, U Delaware, home of big samples

    S d t f l

  • 8/11/2019 Transporte de Sedimento

    50/62

    So do net-frame samplers

    Bunte, K., 1998. Development and ield testing o a stationary net- rame bedload sampler ormeasuring entrainment of pebble and cobble particles, Report prepared for the StreamSystems Technology Center, USDA Forest Service, Rocky Mountain Research Station, Fort

    Collins, CO, 74 pp.

  • 8/11/2019 Transporte de Sedimento

    51/62

    3 E ti ti g S di t T t

  • 8/11/2019 Transporte de Sedimento

    52/62

    3. Estimating Sediment TransportDirect sampling+ gives a direct relation between Q and Qs- requ res a g e or

    - cannot predict future conditions- error: is it random or s stematic? - Handheld samplers: Scooping, perching, limited

    grain size & TINY SAMPLES- - ,rates

    + can predict future changes- highly inaccurate

    ow ar o sca eboundary conditions poorly known

    The alternative? Join forces.

  • 8/11/2019 Transporte de Sedimento

    53/62

    The alternative? Join forces.

    the future is a combination of simple robustmodels and efficient measurement . A first cut, using today s technology

    If pit/trap samplers can collect good samplesof small transport rates, why not use these tocalibrate a model of coarse bed-materialranspor

    GOOD samples! (long duration, spatially

    Two sizes: sand and gravel om ne n ro us ramewor a s

    insensitive to major sources of error

    T t F l (G l)

  • 8/11/2019 Transporte de Sedimento

    54/62

    Transport Formula (Gravel)

    r r 5.4

    846.012.11

    iW 2.14*

    r r .

    r Calibrate **

    ( 1) bs gqqW

    * ( / )

    Formula provides the trend,but the samples provide the accuracy

    Transport formula based on shear stress so

  • 8/11/2019 Transporte de Sedimento

    55/62

    Transport formula based on shear stress , so

    stress from discharge. We return to ourMannin -Strickler formula:

    2/34/16517 U SD

    For Cub River: .

    D65 = 90 mm = 0.42 .

  • 8/11/2019 Transporte de Sedimento

    56/62

    0.01

    0.1 ObservedTransport Funct ionW*r

    W* 0.0001

    0.001 ObservedTransport FunctionW*r

    Qs(m^3/s)

    * 0.039c

    0.001 1E-05

    0.00001

    .

    1E-07

    -

    0.0000010.1 1 10

    / r

    1E-080.1 1 10

    Q (m^3/s)

    SRC.xls

  • 8/11/2019 Transporte de Sedimento

    57/62

    1 A B C D E F G H I J K L M N O P

    Lonely R. NR Whirlpool Observed Observed23456789

    s wor s ee or ranspor Slope S 0.015D65 90 (mm) D65 of bed surfaceD50 42 (mm) D50 of bed subsurfacefg 0.50 proportion fravel in bedb 15.0 (m) width of bed material, not channelrg 30 (Pa) Adjust the reference shear stress*rg 0.044 Reference Shields Number; is it reasonable?

    0.001

    0.01

    .Transport FunctionW*r

    W*

    0.00001

    0.0001

    . Transport Function*

    Qs(m^3/s)

    10111213141516

    Qrg 10.2 cmsObserved Observed

    Q Qsg ' '/ rg qsg W*g(m^3/s) (m^3/s) (Pa) - (m^2/s) -

    3.37 7.07E-09 17.0 0.57 4.71E-10 6.87E-064.90 8.80E-08 20.6 0.69 5.87E-09 6.42E-056.71 2.76E-08 24.2 0.81 1.84E-09 1.59E-05

    - - - 0.000001

    0.00001

    0.0001

    1E-08

    0.0000001

    0.000001

    181920212223

    24

    . . . . . .8.78 4.35E-06 27.7 0.92 2.90E-07 2.03E-03

    0.00 1.00E-20 1.00E-200.00 1.00E-20 1.00E-200.00 1.00E-20 1.00E-200.00 1.00E-20 1.00E-200.00 1.00E-20 1.00E-20

    0.00 1.00E-20 1.00E-20

    0.00000010.1 1 10

    '/ r

    1E-091 10 100

    Q (m^3/s)

    Lonely R. NR Whirlpool

    Enter parameters of velocity rating curve herek = 0.63 m = 0.34 Qc = 0.00

    ( )mt U k Q Q 1.21.4

    1.6

    1.8

    U ( m / s )

    The cells below contain values of k and m

    fitted to the (Q, U) values for specified Qck = 0.63 m = 0.34

    0.3382 -0.1983 LINEST resultsQ U Q-Qt

    (m^3/s) (m/s) (m^3/s)1.568

    0.4

    0.6

    0.8

    1

    M e a n

    V e l o c i

    t y

    . . .4.225 1.04 4.2255.946 1.17 5.9467.891 1.29 7.891

    12.340 1.47 12.34013.326 1.50 13.326

    0.0000.000

    0

    0.2

    0 5 10 15 20

    Discharge Q (cms)

    Transport samples provide accuracy by

  • 8/11/2019 Transporte de Sedimento

    58/62

    p p p y y

    (1) Establishing grain size D of the transport &

    2 Scalin the flow

    Calculate grain stress: 0.25 1.5

    6517 SD U 1.5for two different flows & take the ratio:

    Suppose

    1 1

    2 2U b

    U a1.5b

    1.5b

    Q en

    2 2Q r r

    If you calibrate, the transport formula is needed only to

    give the change in transport with the change in discharge.

  • 8/11/2019 Transporte de Sedimento

    59/62

    high flows & you base yourestimate on samples at low

    , , .

    in gravel-bed rivers, Earth Surface Processes & Landforms 26, 1395-1408.

    Estimating bed-material transport in gravel-bedi

  • 8/11/2019 Transporte de Sedimento

    60/62

    rivers Conceptual basis

    - fine and coarse bed material- (supply of one affects the transport of the other)

    Sampling- standard needed for minimum sample size- fine bed material Helle -Smith or ?- coarse bed material pit or net frame samplers- big rivers ???

    - 2-fraction model captures essential interaction between fine &coarse

    & facilitates inte ral measure of reach rain size

    - But it can t do everything (armoring; change in sand or gravel size) Future

    ,- can be done now in wadeable streams, although effort is non-trivial

    SRC & BAGS

  • 8/11/2019 Transporte de Sedimento

    61/62

    -transport rates in gravel-bed rivers. Stream Systems Technology Center, (the StreamTeam), US Forest Service

    B GS Yantao Cu , St water Sc ence : supports var ety o transport ormu as, a ows

    variety of input, includes calibrated approachUsers Manual by John Pitlick

    Primer by Peter Wilcock

  • 8/11/2019 Transporte de Sedimento

    62/62