Transport Layer 3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and...

49
Transport Layer 3-1 Chapter 3 outline 3.1 Transport- layer services 3.2 Multiplexing and demultiplexing 3.3 Connectionless transport: UDP 3.4 Principles of reliable data transfer 3.5 Connection- oriented transport: TCP segment structure reliable data transfer flow control connection management 3.6 Principles of congestion control 3.7 TCP congestion control

Transcript of Transport Layer 3-1 Chapter 3 outline r 3.1 Transport-layer services r 3.2 Multiplexing and...

Transport Layer 3-1

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Transport Layer 3-2

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

full duplex data: bi-directional data flow

in same connection MSS: maximum

segment size

connection-oriented: handshaking (exchange

of control msgs) init’s sender, receiver state before data exchange

flow controlled: sender will not

overwhelm receiver

Point-to-point: one sender, one

receiver

reliable, in-order byte steam: no “message

boundaries”

pipelined: TCP congestion and flow

control set window size

send & receive bufferssocketdoor

T C Psend buffer

T C Preceive buffer

socketdoor

segm ent

applicationwrites data

applicationreads data

Transport Layer 3-3

TCP segment structure

source port # dest port #

32 bits

applicationdata

(variable length)

sequence number

acknowledgement numberReceive window

Urg data pnterchecksum

FSRPAUheadlen

notused

Options (variable length)

URG: urgent data (generally not used)

ACK: ACK #valid

PSH: push data now

RST, SYN, FIN:connection estab(setup, teardown

commands)

# bytes rcvr willingto accept

countingby bytes of data(not segments!)

Internetchecksum

(as in UDP)

Transport Layer 3-4

TCP seq. #’s and ACKsSeq. #’s:

byte stream “number” of first byte in segment’s dataACKs:

seq # of next byte expected from other side• In Rdt x.x protocols, the ack seq# is the current received one

cumulative ACK • different from Selective Repeat

Q: how receiver handles out-of-order segments? A: TCP spec doesn’t say Practical approach: save in buffer

Q: How TCP implement duplex communication? Seq. # for sending data, Ack# for receiving data

Transport Layer 3-5

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

incoming segment to sender

A

sent ACKed

sent, not-yet ACKed(“in-flight”)

usablebut not yet sent

not usable

window size N

sender sequence number space

source port # dest port #

sequence number

acknowledgement number

checksum

rwnd

urg pointer

outgoing segment from sender

Transport Layer 3-6

Duplex-Communication Example

Host A Host B

Seq=42, ACK=79, data = ‘john’

Seq=79, ACK=46, data = ‘pass’

Seq=46, ACK=83 data =‘CNT4704’

User

host ACKsreceipt, send

back use password

host ACKsreceipt, echoes

back ‘pass’

timesimple telnet scenario

4279

Sequence number is based on bytes, not packets

A’s out-dataB’s out-data

Transport Layer 3-7

TCP Round Trip Time and TimeoutQ: how to set TCP

timeout value? longer than RTT

but RTT varies too short: premature

timeout unnecessary

retransmissions too long: slow

reaction to segment loss

Q: how to estimate RTT? SampleRTT: measured time

from segment transmission until ACK receipt ignore retransmissions

SampleRTT will vary, want estimated RTT “smoother” average several recent

measurements, not just current SampleRTT

Transport Layer 3-8

TCP Round Trip Time and Timeout

EstimatedRTT = (1- )*EstimatedRTT + *SampleRTT

Exponential weighted moving average influence of past sample decreases exponentially fast typical value: = 0.125 [RFC 2988]

Transport Layer 3-9

Example RTT estimation:RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RTT

(mill

isec

onds

)

SampleRTT Estimated RTT

Transport Layer 3-10

TCP Round Trip Time and TimeoutSetting the timeout EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin

first estimate of how much SampleRTT deviates from EstimatedRTT:

TimeoutInterval = EstimatedRTT + 4*DevRTT

DevRTT = (1-)*DevRTT + *|SampleRTT-EstimatedRTT|

(typically, = 0.25) [RFC 2988]

Then set timeout interval:

Transport Layer 3-11

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Transport Layer 3-12

TCP reliable data transfer

TCP creates rdt service on top of IP’s unreliable service

Pipelined segments Cumulative acks

Similar to GBN

TCP uses single retransmission timer Similar to GBN Remove the timer

management overhead

Out of order packets Not specified Usually buffered

• Similar to SR

Retransmissions are triggered by: timeout events duplicate acks

Transport Layer 3-13

TCP sender events:data rcvd from app: Create segment with

seq # seq # is byte-stream

number of first data byte in segment

start timer if not already running (think of timer as for oldest unacked segment)

expiration interval: TimeOutInterval

timeout: retransmit the oldest

segment in the pipelining window Not Go Back all N

segments restart timer Ack rcvd: If acknowledges

previously unacked segments update what is known to

be acked start timer if there are

outstanding segments (since cumulative acks)

• Similar to GBN

Transport Layer 3-14

TCP sender(simplified)

NextSeqNum = InitialSeqNum SendBase = InitialSeqNum

loop (forever) { switch(event)

event: data received from application above create TCP segment with sequence number NextSeqNum if (timer currently not running) start timer pass segment to IP NextSeqNum = NextSeqNum + length(data)

event: timer timeout retransmit not-yet-acknowledged segment with smallest sequence number start timer

event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer else stop timer }

} /* end of loop forever */

Comment:• One direction only• SendBase-1: last cumulatively ack’ed byteExample:• SendBase-1 = 71;y= 73, so the rcvrwants 73+ ;y > SendBase, sothat new data is acked

Transport Layer 3-15

TCP: retransmission scenarios

Host A

Seq=100, 20 bytes data

ACK=100

timepremature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Seq=

92

tim

eout

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim

eout

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

Seq=

92

tim

eout

SendBase= 100

SendBase= 120

SendBase= 120

Sendbase= 100

Transport Layer 3-16

TCP retransmission scenarios (more)

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim

eout

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase= 120

Host A

Seq=100, 20 bytes data

ACK=100

timepremature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

Seq=

92

tim

eout

ACK=120

Seq=

92

tim

eout

SendBase= 120

SendBase= 120

Sendbase= 100

Transport Layer 3-17

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment withexpected seq #. All data up toexpected seq # already ACKed

Arrival of in-order segment withexpected seq #. One other segment has ACK pending

Arrival of out-of-order segmenthigher-than-expect seq. # .Gap detected

Arrival of segment that partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 500msfor next segment. If no next segment,send ACK (why?)

Immediately send single cumulative ACK, ACKing both in-order segments

Immediately send duplicate ACK, indicating seq. # of next expected byte

Immediate send ACK, provided thatsegment starts at lower end of gap

Transport Layer 3-18

Fast Retransmit

Retransmission triggered by timeout

Time-out period often relatively long: long delay before

resending lost packet Detect lost segments

via duplicate ACKs. Sender often sends

many segments back-to-back (pipelining)

If segment is lost, there will likely be many duplicate ACKs.

If sender receives 3 ACKs for the same data, it supposes that segment after ACKed data was lost: fast retransmit: resend

segment before timer expires

Transport Layer 3-19

event: ACK received, with ACK field value of y if (y > SendBase) { SendBase = y if (there are currently not-yet-acknowledged segments) start timer } else { increment count of dup ACKs received for y if (count of dup ACKs received for y = 3) { resend segment with sequence number y }

Fast retransmit algorithm:

a duplicate ACK for already ACKed segment

fast retransmit

Transport Layer 3-20

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Transport Layer 3-21

TCP: GBN or SR?

Cumulative Acks --- GBN Buffer out-of-order packets --- SR Retransmit current BaseSeq packet only

when timeout --- SR TCP: a hybrid protocol

ACK #: not packet number, but byte number

ACK #: expected (not like rdt x.x)

Transport Layer 3-22

TCP Flow Control

receive side of TCP connection has a receive buffer:

speed-matching service: matching the send rate to the receiving app’s drain rate app process may be

slow at reading from buffer

sender won’t overflow

receiver’s buffer bytransmitting too

much, too fast

flow control

Transport Layer 3-23

TCP Flow control: how it works

(Suppose TCP receiver discards out-of-order segments)

spare room in buffer= RcvWindow

= RcvBuffer-[LastByteRcvd - LastByteRead]

Rcvr advertises spare room by including value of RcvWindow in TCP header

Sender limits unACKed data to RcvWindow guarantees receive

buffer doesn’t overflow

Transport Layer 3-24

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Transport Layer 3-25

TCP Connection Management

Recall: TCP sender, receiver establish “connection” before exchanging data segments

initialize TCP variables: seq. #s

• Why not always 0?– No confusion

– Security buffers, flow control info (e.g. RcvWindow)

client: connection initiator

connect(); server: contacted by client accept();

Transport Layer 3-26

TCP Connection Setup --- Three-Way Handshaking

Step 1: client host sends TCP SYN segment to server specifies initial seq # no data

Step 2: server host receives SYN, replies with SYN/ACK segment

server allocates buffers specifies server initial seq.

#Step 3: client receives SYN/ACK,

replies with ACK segment, which may contain data

Wireshark Example

client

SYN, seq=client_seq

server

SYN/ACK,

seq=server_seq,

ack=client_seq+1

ACK, seq=client_seq+1ack=server_seq+1

Wireshark shows relative sequence number by default (SYN packet always has seq=0)

You can disable this feature by “Edit” “Preference” “Protocol” “TCP” Uncheck “relative sequence number”

Transport Layer 3-27

Transport Layer 3-28

TCP Connection Management (cont.)

Closing a connection:

close();

Step 1: client end system sends TCP/FIN control segment to server

Step 2: server receives FIN, replies with ACK. Closes connection, sends FIN.

client

FIN

server

ACK

ACK

FIN

close

close

closed

tim

ed w

ait

Transport Layer 3-29

TCP Connection Management (cont.)

Step 3: client receives FIN, replies with ACK.

Enters “timed wait” - will respond with ACK to received FINs

Step 4: server, receives ACK. Connection closed.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim

ed w

ait

closedSome applications simply send RST to terminate TCP connections immediately

Wireshark Example

Transport Layer 3-30

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Transport Layer 3-31

Principles of Congestion Control

Congestion: informally: “too many sources sending too

much data too fast for network to handle” different from flow control! manifestations:

lost packets (buffer overflow at routers) long delays (queueing in router buffers)

a top-10 problem!

Transport Layer 3-32

Causes/costs of congestion: scenario 1

two senders, two receivers

one router, infinite buffers

no retransmission

large delays when congested

maximum achievable throughput

unlimited shared output link buffers

Host A in : original data

Host B

out

Remember the queue delay formula?

Transport Layer 3-33

Causes/costs of congestion: scenario 2

one router, finite buffers sender retransmission of lost packet

finite shared output link buffers

Host A in : original data

Host B

out

'in : original data, plus

retransmitted data

Transport Layer 3-34

Causes/costs of congestion: scenario 2 Always want : (goodput)

“perfect” retransmission only when loss:

retransmission of delayed (not lost) packet makes

larger (than perfect case) for same

in

out

=

in

out

>

in

out

“costs” of congestion: more work (retrans) for given “goodput” unneeded retransmissions: link carries multiple copies of pkt

R/2

R/2in

ou

t

b.

R/2

R/2in

ou

t

a.

R/2

R/2in

ou

t

c.

R/4

R/3

If every packet forwarded twice

Transport Layer 3-35

Causes/costs of congestion: scenario 3 four senders multihop paths timeout/retransmit

in

Q: what happens as and increase ?

in

finite shared output link buffers

Host Ain : original data

Host B

out

'in : original data, plus retransmitted data

Transport Layer 3-36

Causes/costs of congestion: scenario 3

Another “cost” of congestion: when packet dropped, any “upstream” transmission capacity

used for that packet was wasted!

Host A

Host B

out

Transport Layer 3-37

Approaches towards congestion control

End-end congestion control:

no explicit feedback from network

congestion inferred from end-system observed loss, delay

approach taken by TCP

Network-assisted congestion control:

routers provide feedback to end systems single bit indicating

congestion (SNA, DECbit, TCP/IP ECN, ATM)

Two broad approaches towards congestion control:

Transport Layer 3-38

Chapter 3 outline

3.1 Transport-layer services

3.2 Multiplexing and demultiplexing

3.3 Connectionless transport: UDP

3.4 Principles of reliable data transfer

3.5 Connection-oriented transport: TCP segment structure reliable data transfer flow control connection

management

3.6 Principles of congestion control

3.7 TCP congestion control

Transport Layer 3-39

TCP Congestion Control

end-end control (no network assistance)

sender limits transmission: LastByteSent-LastByteAcked

CongWin Roughly,

Why this formula?

CongWin is dynamic, function of perceived network congestion

How does sender perceive congestion?

loss event = timeout or 3 duplicate acks

TCP sender reduces rate (CongWin) after loss event

three mechanisms: AIMD slow start conservative after

timeout events

rate = CongWin

RTT Bytes/sec

Transport Layer 3-40

TCP AIMD

8 Kbytes

16 Kbytes

24 Kbytes

time

congestionwindow

multiplicative decrease: cut CongWin in half after loss event

additive increase: increase CongWin by 1 MSS every RTT in the absence of loss events: probing

Long-lived TCP connection

MSS: Maximum Segment Size

Transport Layer 3-41

TCP Slow Start

When connection begins, CongWin = 1 MSS Example: MSS = 500

bytes & RTT = 200 msec

initial rate = 20 kbps

available bandwidth may be >> MSS/RTT desirable to quickly

ramp up to respectable rate

When connection begins, increase rate exponentially fast until first loss event

Transport Layer 3-42

TCP Slow Start (more)

When connection begins, increase rate exponentially until first loss event: double CongWin every

RTT done by incrementing CongWin by 1MSS for every ACKed segment

Summary: initial rate is slow but ramps up exponentially fast

Host A

one segment

RTT

Host B

time

two segments

four segments

Transport Layer 3-43

Refinement (more)Q: When should the

exponential increase switch to linear?

A: When CongWin gets to 1/2 of its value before timeout.

Implementation: Variable Threshold At loss event, Threshold

is set to 1/2 of CongWin just before loss event

Transport Layer 3-44

Refinement After 3 dup ACKs:

CongWin is cut in half window then grows linearly

But after timeout event: CongWin instead set to 1 MSS; window then grows exponentially to a threshold, then grows linearly

• 3 dup ACKs indicates network capable of delivering some segments• timeout before 3 dup ACKs is “more alarming”

Philosophy:

Transport Layer 3-45

Summary: TCP Congestion Control (Reno) When CongWin is below Threshold, sender in

slow-start phase, window grows exponentially.

When CongWin is above Threshold, sender is in congestion-avoidance phase, window grows linearly.

When a triple duplicate ACK occurs, Threshold set to CongWin/2 and CongWin set to Threshold.

When timeout occurs, Threshold set to CongWin/2 and CongWin is set to 1 MSS.

Transport Layer 3-46

Fairness goal: if K TCP sessions share same bottleneck link of bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneckrouter

capacity R

TCP connection 2

TCP Fairness

Transport Layer 3-47

Why is TCP fair?

Two competing sessions: Additive increase gives slope of 1, as throughout increases multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughputConnect

ion 2

th

roughput

congestion avoidance: additive increaseloss: decrease window by factor of 2

congestion avoidance: additive increaseloss: decrease window by factor of 2

Transport Layer 3-48

Fairness (more)

Fairness and UDP Multimedia apps

often do not use TCP do not want rate

throttled by congestion control

Instead use UDP: pump audio/video at

constant rate, tolerate packet loss

Research area: TCP friendly

Fairness and parallel TCP connections

nothing prevents app from opening parallel cnctions between 2 hosts.

Web browsers do this Example: link of rate R

supporting 9 cnctions; new app asks for 1 TCP,

gets rate R/10 new app asks for 9 TCPs,

gets R/2 !

Transport Layer 3-49

Chapter 3: Summary principles behind transport

layer services: multiplexing,

demultiplexing reliable data transfer flow control congestion control

instantiation and implementation in the Internet UDP TCP

Next: leaving the network

“edge” (application, transport layers)

into the network “core”